mitsuba/src/bsdfs/roughcoating.cpp

658 lines
25 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2014 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/hw/basicshader.h>
#include "microfacet.h"
#include "rtrans.h"
#include "ior.h"
MTS_NAMESPACE_BEGIN
/*!\plugin{roughcoating}{Rough dielectric coating}
* \order{11}
* \icon{bsdf_roughcoating}
* \parameters{
* \parameter{distribution}{\String}{
* Specifies the type of microfacet normal distribution
* used to model the surface roughness.
* \vspace{-1mm}
* \begin{enumerate}[(i)]
* \item \code{beckmann}: Physically-based distribution derived from
* Gaussian random surfaces. This is the default.\vspace{-1.5mm}
* \item \code{ggx}: The GGX \cite{Walter07Microfacet} distribution (also known as
* Trowbridge-Reitz \cite{Trowbridge19975Average} distribution)
* was designed to better approximate the long tails observed in measurements
* of ground surfaces, which are not modeled by the Beckmann distribution.
* \vspace{-1.5mm}
* \item \code{phong}: Classical Phong distribution.
* In most cases, the \code{ggx} and \code{beckmann} distributions
* should be preferred, since they provide better importance sampling
* and accurate shadowing/masking computations.
* \vspace{-4mm}
* \end{enumerate}
* }
* \parameter{alpha}{\Float\Or\Texture}{
* Specifies the roughness of the unresolved surface micro-geometry.
* When the Beckmann distribution is used, this parameter is equal to the
* \emph{root mean square} (RMS) slope of the microfacets.
* \default{0.1}.
* }
* \parameter{sampleVisible}{\Boolean}{
* Enables an improved importance sampling technique. Refer to
* pages \pageref{plg:roughconductor} and \pageref{sec:visiblenormal-sampling}
* for details. \default{\code{true}}
* }
* \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified
* numerically or using a known material name. \default{\texttt{bk7} / 1.5046}}
* \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
* \parameter{thickness}{\Float}{Denotes the thickness of the layer (to
* model absorption --- should be specified in inverse units of \code{sigmaA})\default{1}}
* \parameter{sigmaA}{\Spectrum\Or\Texture}{The absorption coefficient of the
* coating layer. \default{0, i.e. there is no absorption}}
* \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
* factor that can be used to modulate the specular reflection component. Note
* that for physical realism, this parameter should never be touched. \default{1.0}}
* \parameter{\Unnamed}{\BSDF}{A nested BSDF model that should be coated.}
* }
* \renderings{
* \rendering{Rough gold coated with a \emph{smooth} varnish layer}
* {bsdf_roughcoating_gold_smooth}
* \rendering{Rough gold coated with a \emph{rough} ($\alpha\!=\!0.03$) varnish layer}
* {bsdf_roughcoating_gold_rough}
* }
*
* This plugin implements a \emph{very} approximate\footnote{
* The model only accounts for roughness
* in the specular reflection and Fresnel transmittance through the interface.
* The interior model receives incident illumination
* that is transformed \emph{as if} the coating was smooth. While
* that's not quite correct, it is a convenient workaround when the
* \pluginref{coating} plugin produces specular highlights that are too sharp.}
* model that simulates a rough dielectric coating. It is essentially the
* roughened version of \pluginref{coating}.
* Any BSDF in Mitsuba can be coated using this plugin and multiple coating
* layers can even be applied in sequence, which allows designing interesting
* custom materials. The coating layer can optionally be tinted (i.e. filled
* with an absorbing medium), in which case this model also accounts for the
* directionally dependent absorption within the layer.
*
* Note that the plugin discards illumination that undergoes internal
* reflection within the coating. This can lead to a noticeable energy
* loss for materials that reflect much of their energy near or below the critical
* angle (i.e. diffuse or very rough materials).
*
* The implementation here is motivated by the paper
* ``Arbitrarily Layered Micro-Facet Surfaces'' by Weidlich and
* Wilkie \cite{Weidlich2007Arbitrarily}, though the implementation
* works differently.
*/
class RoughCoating : public BSDF {
public:
/// \sa refractTo()
enum EDestination {
EInterior = 0,
EExterior = 1
};
RoughCoating(const Properties &props) : BSDF(props) {
/* Specifies the internal index of refraction at the interface */
Float intIOR = lookupIOR(props, "intIOR", "bk7");
/* Specifies the external index of refraction at the interface */
Float extIOR = lookupIOR(props, "extIOR", "air");
if (intIOR < 0 || extIOR < 0 || intIOR == extIOR)
Log(EError, "The interior and exterior indices of "
"refraction must be positive and differ!");
m_eta = intIOR / extIOR;
m_invEta = 1 / m_eta;
/* Specifies the absorption within the layer */
m_sigmaA = new ConstantSpectrumTexture(
props.getSpectrum("sigmaA", Spectrum(0.0f)));
/* Specifies the layer's thickness using the inverse units of sigmaA */
m_thickness = props.getFloat("thickness", 1);
/* Specifies a multiplier for the specular reflectance component */
m_specularReflectance = new ConstantSpectrumTexture(
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
MicrofacetDistribution distr(props);
m_type = distr.getType();
m_sampleVisible = distr.getSampleVisible();
if (distr.isAnisotropic())
Log(EError, "The 'roughplastic' plugin currently does not support "
"anisotropic microfacet distributions!");
m_alpha = new ConstantFloatTexture(distr.getAlpha());
m_specularSamplingWeight = 0.0f;
}
RoughCoating(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_type = (MicrofacetDistribution::EType) stream->readUInt();
m_sampleVisible = stream->readBool();
m_nested = static_cast<BSDF *>(manager->getInstance(stream));
m_sigmaA = static_cast<Texture *>(manager->getInstance(stream));
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_alpha = static_cast<Texture *>(manager->getInstance(stream));
m_eta = stream->readFloat();
m_thickness = stream->readFloat();
m_invEta = 1 / m_eta;
configure();
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
stream->writeUInt((uint32_t) m_type);
stream->writeBool(m_sampleVisible);
manager->serialize(stream, m_nested.get());
manager->serialize(stream, m_sigmaA.get());
manager->serialize(stream, m_specularReflectance.get());
manager->serialize(stream, m_alpha.get());
stream->writeFloat(m_eta);
stream->writeFloat(m_thickness);
}
void configure() {
unsigned int extraFlags = 0;
if (!m_sigmaA->isConstant() || !m_alpha->isConstant())
extraFlags |= ESpatiallyVarying;
m_components.clear();
for (int i=0; i<m_nested->getComponentCount(); ++i)
m_components.push_back(m_nested->getType(i) | extraFlags);
m_components.push_back(EGlossyReflection | EFrontSide | EBackSide
| (m_specularReflectance->isConstant() ? 0 : ESpatiallyVarying));
m_usesRayDifferentials = m_nested->usesRayDifferentials()
|| m_sigmaA->usesRayDifferentials()
|| m_alpha->usesRayDifferentials()
|| m_specularReflectance->usesRayDifferentials();
/* Compute weights that further steer samples towards
the specular or nested components */
Float avgAbsorption = (m_sigmaA->getAverage()
*(-2*m_thickness)).exp().average();
m_specularSamplingWeight = 1.0f / (avgAbsorption + 1.0f);
/* Verify the input parameters and fix them if necessary */
m_specularReflectance = ensureEnergyConservation(
m_specularReflectance, "specularReflectance", 1.0f);
if (!m_roughTransmittance.get()) {
/* Load precomputed data used to compute the rough
transmittance through the dielectric interface */
m_roughTransmittance = new RoughTransmittance(m_type);
m_roughTransmittance->checkEta(m_eta);
m_roughTransmittance->checkAlpha(m_alpha->getMinimum().average());
m_roughTransmittance->checkAlpha(m_alpha->getMaximum().average());
/* Reduce the rough transmittance data to a 2D slice */
m_roughTransmittance->setEta(m_eta);
/* If possible, even reduce it to a 1D slice */
if (m_alpha->isConstant())
m_roughTransmittance->setAlpha(
m_alpha->eval(Intersection()).average());
}
BSDF::configure();
}
/// Helper function: reflect \c wi with respect to a given surface normal
inline Vector reflect(const Vector &wi, const Normal &m) const {
return 2 * dot(wi, m) * Vector(m) - wi;
}
/// Refraction in local coordinates
Vector refractTo(EDestination dest, const Vector &wi) const {
Float cosThetaI = Frame::cosTheta(wi);
Float invEta = (dest == EInterior) ? m_invEta : m_eta;
bool entering = cosThetaI > 0.0f;
/* Using Snell's law, calculate the squared sine of the
angle between the normal and the transmitted ray */
Float sinThetaTSqr = invEta*invEta * Frame::sinTheta2(wi);
if (sinThetaTSqr >= 1.0f) {
/* Total internal reflection */
return Vector(0.0f);
} else {
Float cosThetaT = std::sqrt(1.0f - sinThetaTSqr);
/* Retain the directionality of the vector */
return Vector(invEta*wi.x, invEta*wi.y,
entering ? cosThetaT : -cosThetaT);
}
}
Spectrum eval(const BSDFSamplingRecord &bRec, EMeasure measure) const {
bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || bRec.component < (int) m_components.size()-1);
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1)
&& measure == ESolidAngle;
/* Construct the microfacet distribution matching the
roughness values at the current surface position. */
MicrofacetDistribution distr(
m_type,
m_alpha->eval(bRec.its).average(),
m_sampleVisible
);
Spectrum result(0.0f);
if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) {
/* Calculate the reflection half-vector */
const Vector H = normalize(bRec.wo+bRec.wi)
* math::signum(Frame::cosTheta(bRec.wo));
/* Evaluate the microfacet normal distribution */
const Float D = distr.eval(H);
/* Fresnel term */
const Float F = fresnelDielectricExt(absDot(bRec.wi, H), m_eta);
/* Smith's shadow-masking function */
const Float G = distr.G(bRec.wi, bRec.wo, H);
/* Calculate the specular reflection component */
Float value = F * D * G /
(4.0f * std::abs(Frame::cosTheta(bRec.wi)));
result += m_specularReflectance->eval(bRec.its) * value;
}
if (hasNested) {
BSDFSamplingRecord bRecInt(bRec);
bRecInt.wi = refractTo(EInterior, bRec.wi);
bRecInt.wo = refractTo(EInterior, bRec.wo);
Spectrum nestedResult = m_nested->eval(bRecInt, measure) *
m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi)), distr.getAlpha()) *
m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wo)), distr.getAlpha());
Spectrum sigmaA = m_sigmaA->eval(bRec.its) * m_thickness;
if (!sigmaA.isZero())
nestedResult *= (-sigmaA *
(1/std::abs(Frame::cosTheta(bRecInt.wi)) +
1/std::abs(Frame::cosTheta(bRecInt.wo)))).exp();
if (measure == ESolidAngle) {
/* Solid angle compression & irradiance conversion factors */
nestedResult *= m_invEta * m_invEta *
Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo)
/ (Frame::cosTheta(bRecInt.wi) * Frame::cosTheta(bRecInt.wo));
}
result += nestedResult;
}
return result;
}
Float pdf(const BSDFSamplingRecord &bRec, EMeasure measure) const {
bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || bRec.component < (int) m_components.size()-1);
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1)
&& measure == ESolidAngle;
/* Calculate the reflection half-vector */
const Vector H = normalize(bRec.wo+bRec.wi)
* math::signum(Frame::cosTheta(bRec.wo));
/* Construct the microfacet distribution matching the
roughness values at the current surface position. */
MicrofacetDistribution distr(
m_type,
m_alpha->eval(bRec.its).average(),
m_sampleVisible
);
Float probNested, probSpecular;
if (hasSpecular && hasNested) {
/* Find the probability of sampling the specular component */
probSpecular = 1-m_roughTransmittance->eval(
std::abs(Frame::cosTheta(bRec.wi)), distr.getAlpha());
/* Reallocate samples */
probSpecular = (probSpecular*m_specularSamplingWeight) /
(probSpecular*m_specularSamplingWeight +
(1-probSpecular) * (1-m_specularSamplingWeight));
probNested = 1 - probSpecular;
} else {
probNested = probSpecular = 1.0f;
}
Float result = 0.0f;
if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) {
/* Jacobian of the half-direction mapping */
const Float dwh_dwo = 1.0f / (4.0f * absDot(bRec.wo, H));
/* Evaluate the microfacet model sampling density function */
const Float prob = distr.pdf(bRec.wi, H);
result = prob * dwh_dwo * probSpecular;
}
if (hasNested) {
BSDFSamplingRecord bRecInt(bRec);
bRecInt.wi = refractTo(EInterior, bRec.wi);
bRecInt.wo = refractTo(EInterior, bRec.wo);
Float prob = m_nested->pdf(bRecInt, measure);
if (measure == ESolidAngle) {
prob *= m_invEta * m_invEta * Frame::cosTheta(bRec.wo)
/ Frame::cosTheta(bRecInt.wo);
}
result += prob * probNested;
}
return result;
}
inline Spectrum sample(BSDFSamplingRecord &bRec, Float &_pdf, const Point2 &_sample) const {
bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || bRec.component < (int) m_components.size()-1);
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1);
bool choseSpecular = hasSpecular;
Point2 sample(_sample);
/* Construct the microfacet distribution matching the
roughness values at the current surface position. */
MicrofacetDistribution distr(
m_type,
m_alpha->eval(bRec.its).average(),
m_sampleVisible
);
Float probSpecular;
if (hasSpecular && hasNested) {
/* Find the probability of sampling the diffuse component */
probSpecular = 1 - m_roughTransmittance->eval(
std::abs(Frame::cosTheta(bRec.wi)), distr.getAlpha());
/* Reallocate samples */
probSpecular = (probSpecular*m_specularSamplingWeight) /
(probSpecular*m_specularSamplingWeight +
(1-probSpecular) * (1-m_specularSamplingWeight));
if (sample.y < probSpecular) {
sample.y /= probSpecular;
} else {
sample.y = (sample.y - probSpecular) / (1 - probSpecular);
choseSpecular = false;
}
}
if (choseSpecular) {
/* Perfect specular reflection based on the microfacet normal */
Normal m = distr.sample(bRec.wi, sample);
bRec.wo = reflect(bRec.wi, m);
bRec.sampledComponent = (int) m_components.size() - 1;
bRec.sampledType = EGlossyReflection;
bRec.eta = 1.0f;
/* Side check */
if (Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
} else {
Vector wiBackup = bRec.wi;
bRec.wi = refractTo(EInterior, bRec.wi);
Spectrum result = m_nested->sample(bRec, _pdf, sample);
bRec.wi = wiBackup;
if (result.isZero())
return Spectrum(0.0f);
bRec.wo = refractTo(EExterior, bRec.wo);
if (bRec.wo.isZero())
return Spectrum(0.0f);
}
/* Guard against numerical imprecisions */
EMeasure measure = getMeasure(bRec.sampledType);
_pdf = pdf(bRec, measure);
if (_pdf == 0)
return Spectrum(0.0f);
else
return eval(bRec, measure) / _pdf;
}
Spectrum sample(BSDFSamplingRecord &bRec, const Point2 &sample) const {
Float pdf;
return RoughCoating::sample(bRec, pdf, sample);
}
Float getRoughness(const Intersection &its, int component) const {
return component < (int) m_components.size() - 1
? m_nested->getRoughness(its, component)
: m_alpha->eval(its).average();
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(BSDF))) {
if (m_nested != NULL)
Log(EError, "Only a single nested BRDF can be added!");
m_nested = static_cast<BSDF *>(child);
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
if (name == "sigmaA")
m_sigmaA = static_cast<Texture *>(child);
else if (name == "alpha")
m_alpha = static_cast<Texture *>(child);
else
BSDF::addChild(name, child);
} else {
BSDF::addChild(name, child);
}
}
std::string toString() const {
std::ostringstream oss;
oss << "RoughCoating[" << endl
<< " id = \"" << getID() << "\"," << endl
<< " distribution = " << MicrofacetDistribution::distributionName(m_type) << "," << endl
<< " sampleVisible = " << m_sampleVisible << "," << endl
<< " alpha = " << indent(m_alpha->toString()) << "," << endl
<< " sigmaA = " << indent(m_sigmaA->toString()) << "," << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
<< " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl
<< " eta = " << m_eta << "," << endl
<< " nested = " << indent(m_nested.toString()) << endl
<< "]";
return oss.str();
}
Shader *createShader(Renderer *renderer) const;
MTS_DECLARE_CLASS()
private:
MicrofacetDistribution::EType m_type;
ref<RoughTransmittance> m_roughTransmittance;
ref<Texture> m_sigmaA;
ref<Texture> m_alpha;
ref<Texture> m_specularReflectance;
ref<BSDF> m_nested;
Float m_eta, m_invEta;
Float m_specularSamplingWeight;
Float m_thickness;
bool m_sampleVisible;
};
/**
* GLSL port of the rough coating shader. This version is much more
* approximate -- it only supports the Beckmann distribution,
* does everything in RGB, uses a cheaper shadowing-masking term, and
* it also makes use of the Schlick approximation to the Fresnel
* reflectance of dielectrics. When the roughness is lower than
* \alpha < 0.2, the shader clamps it to 0.2 so that it will still perform
* reasonably well in a VPL-based preview.
*/
class RoughCoatingShader : public Shader {
public:
RoughCoatingShader(Renderer *renderer, const BSDF *nested,
const Texture *sigmaA, const Texture *alpha,
Float eta) : Shader(renderer, EBSDFShader),
m_nested(nested), m_sigmaA(sigmaA), m_alpha(alpha), m_eta(eta) {
m_nestedShader = renderer->registerShaderForResource(m_nested.get());
m_sigmaAShader = renderer->registerShaderForResource(m_sigmaA.get());
m_alphaShader = renderer->registerShaderForResource(m_alpha.get());
m_R0 = fresnelDielectricExt(1.0f, eta);
}
bool isComplete() const {
return m_nestedShader.get() != NULL
&& m_sigmaAShader.get() != NULL
&& m_alphaShader.get() != NULL;
}
void putDependencies(std::vector<Shader *> &deps) {
deps.push_back(m_nestedShader.get());
deps.push_back(m_sigmaAShader.get());
deps.push_back(m_alphaShader.get());
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_nested.get());
renderer->unregisterShaderForResource(m_sigmaA.get());
renderer->unregisterShaderForResource(m_alpha.get());
}
void resolve(const GPUProgram *program, const std::string &evalName, std::vector<int> &parameterIDs) const {
parameterIDs.push_back(program->getParameterID(evalName + "_R0", false));
parameterIDs.push_back(program->getParameterID(evalName + "_eta", false));
}
void bind(GPUProgram *program, const std::vector<int> &parameterIDs, int &textureUnitOffset) const {
program->setParameter(parameterIDs[0], m_R0);
program->setParameter(parameterIDs[1], m_eta);
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "uniform float " << evalName << "_R0;" << endl
<< "uniform float " << evalName << "_eta;" << endl
<< endl
<< "float " << evalName << "_schlick(float ct) {" << endl
<< " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl
<< " return " << evalName << "_R0 + (1.0 - " << evalName << "_R0) * ct5;" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_refract(vec3 wi, out float T) {" << endl
<< " float cosThetaI = cosTheta(wi);" << endl
<< " bool entering = cosThetaI > 0.0;" << endl
<< " float invEta = 1.0 / " << evalName << "_eta;" << endl
<< " float sinThetaTSqr = invEta * invEta * sinTheta2(wi);" << endl
<< " if (sinThetaTSqr >= 1.0) {" << endl
<< " T = 0.0; /* Total internal reflection */" << endl
<< " return vec3(0.0);" << endl
<< " } else {" << endl
<< " float cosThetaT = sqrt(1.0 - sinThetaTSqr);" << endl
<< " T = 1.0 - " << evalName << "_schlick(1.0 - abs(cosThetaI));" << endl
<< " return vec3(invEta*wi.x, invEta*wi.y, entering ? cosThetaT : -cosThetaT);" << endl
<< " }" << endl
<< "}" << endl
<< endl
<< "float " << evalName << "_D(vec3 m, float alpha) {" << endl
<< " float ct = cosTheta(m);" << endl
<< " if (cosTheta(m) <= 0.0)" << endl
<< " return 0.0;" << endl
<< " float ex = tanTheta(m) / alpha;" << endl
<< " return exp(-(ex*ex)) / (pi * alpha * alpha *" << endl
<< " pow(cosTheta(m), 4.0));" << endl
<< "}" << endl
<< endl
<< "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl
<< " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl
<< " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl
<< " return 0.0;" << endl
<< " float nDotM = cosTheta(m);" << endl
<< " return min(1.0, min(" << endl
<< " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl
<< " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " float T12, T21;" << endl
<< " vec3 wiPrime = " << evalName << "_refract(wi, T12);" << endl
<< " vec3 woPrime = " << evalName << "_refract(wo, T21);" << endl
<< " vec3 nested = " << depNames[0] << "(uv, wiPrime, woPrime);" << endl
<< " vec3 sigmaA = " << depNames[1] << "(uv);" << endl
<< " vec3 result = nested * " << evalName << "_eta * " << evalName << "_eta" << endl
<< " * T12 * T21 * (cosTheta(wi)*cosTheta(wo)) /" << endl
<< " (cosTheta(wiPrime)*cosTheta(woPrime));" << endl
<< " if (sigmaA != vec3(0.0))" << endl
<< " result *= exp(-sigmaA * (1/abs(cosTheta(wiPrime)) + " << endl
<< " 1/abs(cosTheta(woPrime))));" << endl
<< " if (cosTheta(wi)*cosTheta(wo) > 0) {" << endl
<< " vec3 H = normalize(wi + wo);" << endl
<< " float alpha = max(0.2, " << depNames[2] << "(uv)[0]);" << endl
<< " float D = " << evalName << "_D(H, alpha)" << ";" << endl
<< " float G = " << evalName << "_G(H, wi, wo);" << endl
<< " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl
<< " result += vec3(F * D * G / (4*cosTheta(wi)));" << endl
<< " }" << endl
<< " return result;" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " return " << depNames[0] << "_diffuse(uv, wi, wo);" << endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
private:
ref<const BSDF> m_nested;
ref<Shader> m_nestedShader;
ref<const Texture> m_sigmaA;
ref<Shader> m_sigmaAShader;
ref<const Texture> m_alpha;
ref<Shader> m_alphaShader;
Float m_R0, m_eta;
};
Shader *RoughCoating::createShader(Renderer *renderer) const {
return new RoughCoatingShader(renderer, m_nested.get(),
m_sigmaA.get(), m_alpha.get(), m_eta);
}
MTS_IMPLEMENT_CLASS(RoughCoatingShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(RoughCoating, false, BSDF)
MTS_EXPORT_PLUGIN(RoughCoating, "Rough coating BSDF");
MTS_NAMESPACE_END