/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2014 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "microfacet.h" #include "rtrans.h" #include "ior.h" MTS_NAMESPACE_BEGIN /*!\plugin{roughcoating}{Rough dielectric coating} * \order{11} * \icon{bsdf_roughcoating} * \parameters{ * \parameter{distribution}{\String}{ * Specifies the type of microfacet normal distribution * used to model the surface roughness. * \vspace{-1mm} * \begin{enumerate}[(i)] * \item \code{beckmann}: Physically-based distribution derived from * Gaussian random surfaces. This is the default.\vspace{-1.5mm} * \item \code{ggx}: The GGX \cite{Walter07Microfacet} distribution (also known as * Trowbridge-Reitz \cite{Trowbridge19975Average} distribution) * was designed to better approximate the long tails observed in measurements * of ground surfaces, which are not modeled by the Beckmann distribution. * \vspace{-1.5mm} * \item \code{phong}: Classical Phong distribution. * In most cases, the \code{ggx} and \code{beckmann} distributions * should be preferred, since they provide better importance sampling * and accurate shadowing/masking computations. * \vspace{-4mm} * \end{enumerate} * } * \parameter{alpha}{\Float\Or\Texture}{ * Specifies the roughness of the unresolved surface micro-geometry. * When the Beckmann distribution is used, this parameter is equal to the * \emph{root mean square} (RMS) slope of the microfacets. * \default{0.1}. * } * \parameter{sampleVisible}{\Boolean}{ * Enables an improved importance sampling technique. Refer to * pages \pageref{plg:roughconductor} and \pageref{sec:visiblenormal-sampling} * for details. \default{\code{true}} * } * \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified * numerically or using a known material name. \default{\texttt{bk7} / 1.5046}} * \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified * numerically or using a known material name. \default{\texttt{air} / 1.000277}} * \parameter{thickness}{\Float}{Denotes the thickness of the layer (to * model absorption --- should be specified in inverse units of \code{sigmaA})\default{1}} * \parameter{sigmaA}{\Spectrum\Or\Texture}{The absorption coefficient of the * coating layer. \default{0, i.e. there is no absorption}} * \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional * factor that can be used to modulate the specular reflection component. Note * that for physical realism, this parameter should never be touched. \default{1.0}} * \parameter{\Unnamed}{\BSDF}{A nested BSDF model that should be coated.} * } * \renderings{ * \rendering{Rough gold coated with a \emph{smooth} varnish layer} * {bsdf_roughcoating_gold_smooth} * \rendering{Rough gold coated with a \emph{rough} ($\alpha\!=\!0.03$) varnish layer} * {bsdf_roughcoating_gold_rough} * } * * This plugin implements a \emph{very} approximate\footnote{ * The model only accounts for roughness * in the specular reflection and Fresnel transmittance through the interface. * The interior model receives incident illumination * that is transformed \emph{as if} the coating was smooth. While * that's not quite correct, it is a convenient workaround when the * \pluginref{coating} plugin produces specular highlights that are too sharp.} * model that simulates a rough dielectric coating. It is essentially the * roughened version of \pluginref{coating}. * Any BSDF in Mitsuba can be coated using this plugin and multiple coating * layers can even be applied in sequence, which allows designing interesting * custom materials. The coating layer can optionally be tinted (i.e. filled * with an absorbing medium), in which case this model also accounts for the * directionally dependent absorption within the layer. * * Note that the plugin discards illumination that undergoes internal * reflection within the coating. This can lead to a noticeable energy * loss for materials that reflect much of their energy near or below the critical * angle (i.e. diffuse or very rough materials). * * The implementation here is motivated by the paper * ``Arbitrarily Layered Micro-Facet Surfaces'' by Weidlich and * Wilkie \cite{Weidlich2007Arbitrarily}, though the implementation * works differently. */ class RoughCoating : public BSDF { public: /// \sa refractTo() enum EDestination { EInterior = 0, EExterior = 1 }; RoughCoating(const Properties &props) : BSDF(props) { /* Specifies the internal index of refraction at the interface */ Float intIOR = lookupIOR(props, "intIOR", "bk7"); /* Specifies the external index of refraction at the interface */ Float extIOR = lookupIOR(props, "extIOR", "air"); if (intIOR < 0 || extIOR < 0 || intIOR == extIOR) Log(EError, "The interior and exterior indices of " "refraction must be positive and differ!"); m_eta = intIOR / extIOR; m_invEta = 1 / m_eta; /* Specifies the absorption within the layer */ m_sigmaA = new ConstantSpectrumTexture( props.getSpectrum("sigmaA", Spectrum(0.0f))); /* Specifies the layer's thickness using the inverse units of sigmaA */ m_thickness = props.getFloat("thickness", 1); /* Specifies a multiplier for the specular reflectance component */ m_specularReflectance = new ConstantSpectrumTexture( props.getSpectrum("specularReflectance", Spectrum(1.0f))); MicrofacetDistribution distr(props); m_type = distr.getType(); m_sampleVisible = distr.getSampleVisible(); if (distr.isAnisotropic()) Log(EError, "The 'roughplastic' plugin currently does not support " "anisotropic microfacet distributions!"); m_alpha = new ConstantFloatTexture(distr.getAlpha()); m_specularSamplingWeight = 0.0f; } RoughCoating(Stream *stream, InstanceManager *manager) : BSDF(stream, manager) { m_type = (MicrofacetDistribution::EType) stream->readUInt(); m_sampleVisible = stream->readBool(); m_nested = static_cast(manager->getInstance(stream)); m_sigmaA = static_cast(manager->getInstance(stream)); m_specularReflectance = static_cast(manager->getInstance(stream)); m_alpha = static_cast(manager->getInstance(stream)); m_eta = stream->readFloat(); m_thickness = stream->readFloat(); m_invEta = 1 / m_eta; configure(); } void serialize(Stream *stream, InstanceManager *manager) const { BSDF::serialize(stream, manager); stream->writeUInt((uint32_t) m_type); stream->writeBool(m_sampleVisible); manager->serialize(stream, m_nested.get()); manager->serialize(stream, m_sigmaA.get()); manager->serialize(stream, m_specularReflectance.get()); manager->serialize(stream, m_alpha.get()); stream->writeFloat(m_eta); stream->writeFloat(m_thickness); } void configure() { unsigned int extraFlags = 0; if (!m_sigmaA->isConstant() || !m_alpha->isConstant()) extraFlags |= ESpatiallyVarying; m_components.clear(); for (int i=0; igetComponentCount(); ++i) m_components.push_back(m_nested->getType(i) | extraFlags); m_components.push_back(EGlossyReflection | EFrontSide | EBackSide | (m_specularReflectance->isConstant() ? 0 : ESpatiallyVarying)); m_usesRayDifferentials = m_nested->usesRayDifferentials() || m_sigmaA->usesRayDifferentials() || m_alpha->usesRayDifferentials() || m_specularReflectance->usesRayDifferentials(); /* Compute weights that further steer samples towards the specular or nested components */ Float avgAbsorption = (m_sigmaA->getAverage() *(-2*m_thickness)).exp().average(); m_specularSamplingWeight = 1.0f / (avgAbsorption + 1.0f); /* Verify the input parameters and fix them if necessary */ m_specularReflectance = ensureEnergyConservation( m_specularReflectance, "specularReflectance", 1.0f); if (!m_roughTransmittance.get()) { /* Load precomputed data used to compute the rough transmittance through the dielectric interface */ m_roughTransmittance = new RoughTransmittance(m_type); m_roughTransmittance->checkEta(m_eta); m_roughTransmittance->checkAlpha(m_alpha->getMinimum().average()); m_roughTransmittance->checkAlpha(m_alpha->getMaximum().average()); /* Reduce the rough transmittance data to a 2D slice */ m_roughTransmittance->setEta(m_eta); /* If possible, even reduce it to a 1D slice */ if (m_alpha->isConstant()) m_roughTransmittance->setAlpha( m_alpha->eval(Intersection()).average()); } BSDF::configure(); } /// Helper function: reflect \c wi with respect to a given surface normal inline Vector reflect(const Vector &wi, const Normal &m) const { return 2 * dot(wi, m) * Vector(m) - wi; } /// Refraction in local coordinates Vector refractTo(EDestination dest, const Vector &wi) const { Float cosThetaI = Frame::cosTheta(wi); Float invEta = (dest == EInterior) ? m_invEta : m_eta; bool entering = cosThetaI > 0.0f; /* Using Snell's law, calculate the squared sine of the angle between the normal and the transmitted ray */ Float sinThetaTSqr = invEta*invEta * Frame::sinTheta2(wi); if (sinThetaTSqr >= 1.0f) { /* Total internal reflection */ return Vector(0.0f); } else { Float cosThetaT = std::sqrt(1.0f - sinThetaTSqr); /* Retain the directionality of the vector */ return Vector(invEta*wi.x, invEta*wi.y, entering ? cosThetaT : -cosThetaT); } } Spectrum eval(const BSDFSamplingRecord &bRec, EMeasure measure) const { bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); bool hasSpecular = (bRec.typeMask & EGlossyReflection) && (bRec.component == -1 || bRec.component == (int) m_components.size()-1) && measure == ESolidAngle; /* Construct the microfacet distribution matching the roughness values at the current surface position. */ MicrofacetDistribution distr( m_type, m_alpha->eval(bRec.its).average(), m_sampleVisible ); Spectrum result(0.0f); if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) { /* Calculate the reflection half-vector */ const Vector H = normalize(bRec.wo+bRec.wi) * math::signum(Frame::cosTheta(bRec.wo)); /* Evaluate the microfacet normal distribution */ const Float D = distr.eval(H); /* Fresnel term */ const Float F = fresnelDielectricExt(absDot(bRec.wi, H), m_eta); /* Smith's shadow-masking function */ const Float G = distr.G(bRec.wi, bRec.wo, H); /* Calculate the specular reflection component */ Float value = F * D * G / (4.0f * std::abs(Frame::cosTheta(bRec.wi))); result += m_specularReflectance->eval(bRec.its) * value; } if (hasNested) { BSDFSamplingRecord bRecInt(bRec); bRecInt.wi = refractTo(EInterior, bRec.wi); bRecInt.wo = refractTo(EInterior, bRec.wo); Spectrum nestedResult = m_nested->eval(bRecInt, measure) * m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi)), distr.getAlpha()) * m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wo)), distr.getAlpha()); Spectrum sigmaA = m_sigmaA->eval(bRec.its) * m_thickness; if (!sigmaA.isZero()) nestedResult *= (-sigmaA * (1/std::abs(Frame::cosTheta(bRecInt.wi)) + 1/std::abs(Frame::cosTheta(bRecInt.wo)))).exp(); if (measure == ESolidAngle) { /* Solid angle compression & irradiance conversion factors */ nestedResult *= m_invEta * m_invEta * Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo) / (Frame::cosTheta(bRecInt.wi) * Frame::cosTheta(bRecInt.wo)); } result += nestedResult; } return result; } Float pdf(const BSDFSamplingRecord &bRec, EMeasure measure) const { bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); bool hasSpecular = (bRec.typeMask & EGlossyReflection) && (bRec.component == -1 || bRec.component == (int) m_components.size()-1) && measure == ESolidAngle; /* Calculate the reflection half-vector */ const Vector H = normalize(bRec.wo+bRec.wi) * math::signum(Frame::cosTheta(bRec.wo)); /* Construct the microfacet distribution matching the roughness values at the current surface position. */ MicrofacetDistribution distr( m_type, m_alpha->eval(bRec.its).average(), m_sampleVisible ); Float probNested, probSpecular; if (hasSpecular && hasNested) { /* Find the probability of sampling the specular component */ probSpecular = 1-m_roughTransmittance->eval( std::abs(Frame::cosTheta(bRec.wi)), distr.getAlpha()); /* Reallocate samples */ probSpecular = (probSpecular*m_specularSamplingWeight) / (probSpecular*m_specularSamplingWeight + (1-probSpecular) * (1-m_specularSamplingWeight)); probNested = 1 - probSpecular; } else { probNested = probSpecular = 1.0f; } Float result = 0.0f; if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) { /* Jacobian of the half-direction mapping */ const Float dwh_dwo = 1.0f / (4.0f * absDot(bRec.wo, H)); /* Evaluate the microfacet model sampling density function */ const Float prob = distr.pdf(bRec.wi, H); result = prob * dwh_dwo * probSpecular; } if (hasNested) { BSDFSamplingRecord bRecInt(bRec); bRecInt.wi = refractTo(EInterior, bRec.wi); bRecInt.wo = refractTo(EInterior, bRec.wo); Float prob = m_nested->pdf(bRecInt, measure); if (measure == ESolidAngle) { prob *= m_invEta * m_invEta * Frame::cosTheta(bRec.wo) / Frame::cosTheta(bRecInt.wo); } result += prob * probNested; } return result; } inline Spectrum sample(BSDFSamplingRecord &bRec, Float &_pdf, const Point2 &_sample) const { bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); bool hasSpecular = (bRec.typeMask & EGlossyReflection) && (bRec.component == -1 || bRec.component == (int) m_components.size()-1); bool choseSpecular = hasSpecular; Point2 sample(_sample); /* Construct the microfacet distribution matching the roughness values at the current surface position. */ MicrofacetDistribution distr( m_type, m_alpha->eval(bRec.its).average(), m_sampleVisible ); Float probSpecular; if (hasSpecular && hasNested) { /* Find the probability of sampling the diffuse component */ probSpecular = 1 - m_roughTransmittance->eval( std::abs(Frame::cosTheta(bRec.wi)), distr.getAlpha()); /* Reallocate samples */ probSpecular = (probSpecular*m_specularSamplingWeight) / (probSpecular*m_specularSamplingWeight + (1-probSpecular) * (1-m_specularSamplingWeight)); if (sample.y < probSpecular) { sample.y /= probSpecular; } else { sample.y = (sample.y - probSpecular) / (1 - probSpecular); choseSpecular = false; } } if (choseSpecular) { /* Perfect specular reflection based on the microfacet normal */ Normal m = distr.sample(bRec.wi, sample); bRec.wo = reflect(bRec.wi, m); bRec.sampledComponent = (int) m_components.size() - 1; bRec.sampledType = EGlossyReflection; bRec.eta = 1.0f; /* Side check */ if (Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) <= 0) return Spectrum(0.0f); } else { Vector wiBackup = bRec.wi; bRec.wi = refractTo(EInterior, bRec.wi); Spectrum result = m_nested->sample(bRec, _pdf, sample); bRec.wi = wiBackup; if (result.isZero()) return Spectrum(0.0f); bRec.wo = refractTo(EExterior, bRec.wo); if (bRec.wo.isZero()) return Spectrum(0.0f); } /* Guard against numerical imprecisions */ EMeasure measure = getMeasure(bRec.sampledType); _pdf = pdf(bRec, measure); if (_pdf == 0) return Spectrum(0.0f); else return eval(bRec, measure) / _pdf; } Spectrum sample(BSDFSamplingRecord &bRec, const Point2 &sample) const { Float pdf; return RoughCoating::sample(bRec, pdf, sample); } Float getRoughness(const Intersection &its, int component) const { return component < (int) m_components.size() - 1 ? m_nested->getRoughness(its, component) : m_alpha->eval(its).average(); } void addChild(const std::string &name, ConfigurableObject *child) { if (child->getClass()->derivesFrom(MTS_CLASS(BSDF))) { if (m_nested != NULL) Log(EError, "Only a single nested BRDF can be added!"); m_nested = static_cast(child); } else if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) { if (name == "sigmaA") m_sigmaA = static_cast(child); else if (name == "alpha") m_alpha = static_cast(child); else BSDF::addChild(name, child); } else { BSDF::addChild(name, child); } } std::string toString() const { std::ostringstream oss; oss << "RoughCoating[" << endl << " id = \"" << getID() << "\"," << endl << " distribution = " << MicrofacetDistribution::distributionName(m_type) << "," << endl << " sampleVisible = " << m_sampleVisible << "," << endl << " alpha = " << indent(m_alpha->toString()) << "," << endl << " sigmaA = " << indent(m_sigmaA->toString()) << "," << endl << " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl << " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl << " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl << " eta = " << m_eta << "," << endl << " nested = " << indent(m_nested.toString()) << endl << "]"; return oss.str(); } Shader *createShader(Renderer *renderer) const; MTS_DECLARE_CLASS() private: MicrofacetDistribution::EType m_type; ref m_roughTransmittance; ref m_sigmaA; ref m_alpha; ref m_specularReflectance; ref m_nested; Float m_eta, m_invEta; Float m_specularSamplingWeight; Float m_thickness; bool m_sampleVisible; }; /** * GLSL port of the rough coating shader. This version is much more * approximate -- it only supports the Beckmann distribution, * does everything in RGB, uses a cheaper shadowing-masking term, and * it also makes use of the Schlick approximation to the Fresnel * reflectance of dielectrics. When the roughness is lower than * \alpha < 0.2, the shader clamps it to 0.2 so that it will still perform * reasonably well in a VPL-based preview. */ class RoughCoatingShader : public Shader { public: RoughCoatingShader(Renderer *renderer, const BSDF *nested, const Texture *sigmaA, const Texture *alpha, Float eta) : Shader(renderer, EBSDFShader), m_nested(nested), m_sigmaA(sigmaA), m_alpha(alpha), m_eta(eta) { m_nestedShader = renderer->registerShaderForResource(m_nested.get()); m_sigmaAShader = renderer->registerShaderForResource(m_sigmaA.get()); m_alphaShader = renderer->registerShaderForResource(m_alpha.get()); m_R0 = fresnelDielectricExt(1.0f, eta); } bool isComplete() const { return m_nestedShader.get() != NULL && m_sigmaAShader.get() != NULL && m_alphaShader.get() != NULL; } void putDependencies(std::vector &deps) { deps.push_back(m_nestedShader.get()); deps.push_back(m_sigmaAShader.get()); deps.push_back(m_alphaShader.get()); } void cleanup(Renderer *renderer) { renderer->unregisterShaderForResource(m_nested.get()); renderer->unregisterShaderForResource(m_sigmaA.get()); renderer->unregisterShaderForResource(m_alpha.get()); } void resolve(const GPUProgram *program, const std::string &evalName, std::vector ¶meterIDs) const { parameterIDs.push_back(program->getParameterID(evalName + "_R0", false)); parameterIDs.push_back(program->getParameterID(evalName + "_eta", false)); } void bind(GPUProgram *program, const std::vector ¶meterIDs, int &textureUnitOffset) const { program->setParameter(parameterIDs[0], m_R0); program->setParameter(parameterIDs[1], m_eta); } void generateCode(std::ostringstream &oss, const std::string &evalName, const std::vector &depNames) const { oss << "uniform float " << evalName << "_R0;" << endl << "uniform float " << evalName << "_eta;" << endl << endl << "float " << evalName << "_schlick(float ct) {" << endl << " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl << " return " << evalName << "_R0 + (1.0 - " << evalName << "_R0) * ct5;" << endl << "}" << endl << endl << "vec3 " << evalName << "_refract(vec3 wi, out float T) {" << endl << " float cosThetaI = cosTheta(wi);" << endl << " bool entering = cosThetaI > 0.0;" << endl << " float invEta = 1.0 / " << evalName << "_eta;" << endl << " float sinThetaTSqr = invEta * invEta * sinTheta2(wi);" << endl << " if (sinThetaTSqr >= 1.0) {" << endl << " T = 0.0; /* Total internal reflection */" << endl << " return vec3(0.0);" << endl << " } else {" << endl << " float cosThetaT = sqrt(1.0 - sinThetaTSqr);" << endl << " T = 1.0 - " << evalName << "_schlick(1.0 - abs(cosThetaI));" << endl << " return vec3(invEta*wi.x, invEta*wi.y, entering ? cosThetaT : -cosThetaT);" << endl << " }" << endl << "}" << endl << endl << "float " << evalName << "_D(vec3 m, float alpha) {" << endl << " float ct = cosTheta(m);" << endl << " if (cosTheta(m) <= 0.0)" << endl << " return 0.0;" << endl << " float ex = tanTheta(m) / alpha;" << endl << " return exp(-(ex*ex)) / (pi * alpha * alpha *" << endl << " pow(cosTheta(m), 4.0));" << endl << "}" << endl << endl << "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl << " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl << " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl << " return 0.0;" << endl << " float nDotM = cosTheta(m);" << endl << " return min(1.0, min(" << endl << " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl << " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl << "}" << endl << endl << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl << " float T12, T21;" << endl << " vec3 wiPrime = " << evalName << "_refract(wi, T12);" << endl << " vec3 woPrime = " << evalName << "_refract(wo, T21);" << endl << " vec3 nested = " << depNames[0] << "(uv, wiPrime, woPrime);" << endl << " vec3 sigmaA = " << depNames[1] << "(uv);" << endl << " vec3 result = nested * " << evalName << "_eta * " << evalName << "_eta" << endl << " * T12 * T21 * (cosTheta(wi)*cosTheta(wo)) /" << endl << " (cosTheta(wiPrime)*cosTheta(woPrime));" << endl << " if (sigmaA != vec3(0.0))" << endl << " result *= exp(-sigmaA * (1/abs(cosTheta(wiPrime)) + " << endl << " 1/abs(cosTheta(woPrime))));" << endl << " if (cosTheta(wi)*cosTheta(wo) > 0) {" << endl << " vec3 H = normalize(wi + wo);" << endl << " float alpha = max(0.2, " << depNames[2] << "(uv)[0]);" << endl << " float D = " << evalName << "_D(H, alpha)" << ";" << endl << " float G = " << evalName << "_G(H, wi, wo);" << endl << " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl << " result += vec3(F * D * G / (4*cosTheta(wi)));" << endl << " }" << endl << " return result;" << endl << "}" << endl << endl << "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl << " return " << depNames[0] << "_diffuse(uv, wi, wo);" << endl << "}" << endl; } MTS_DECLARE_CLASS() private: ref m_nested; ref m_nestedShader; ref m_sigmaA; ref m_sigmaAShader; ref m_alpha; ref m_alphaShader; Float m_R0, m_eta; }; Shader *RoughCoating::createShader(Renderer *renderer) const { return new RoughCoatingShader(renderer, m_nested.get(), m_sigmaA.get(), m_alpha.get(), m_eta); } MTS_IMPLEMENT_CLASS(RoughCoatingShader, false, Shader) MTS_IMPLEMENT_CLASS_S(RoughCoating, false, BSDF) MTS_EXPORT_PLUGIN(RoughCoating, "Rough coating BSDF"); MTS_NAMESPACE_END