documentation updates, added a smooth plastic material
parent
4b95e7ba64
commit
2b140885e8
|
@ -2,7 +2,10 @@
|
|||
to be tested for consistency. This is done
|
||||
using the testcase 'test_chisquare' -->
|
||||
<scene>
|
||||
<!-- Test the diffuse model -->
|
||||
<!-- Test the smooth plastic model -->
|
||||
<bsdf type="plastic"/>
|
||||
|
||||
<!-- Test the smooth diffuse model -->
|
||||
<bsdf type="diffuse"/>
|
||||
|
||||
<!-- Test the diffuse transmission model -->
|
||||
|
@ -21,10 +24,10 @@
|
|||
</bsdf>
|
||||
</bsdf>
|
||||
|
||||
<!-- Test the conductor model -->
|
||||
<!-- Test the smooth conductor model -->
|
||||
<bsdf type="conductor"/>
|
||||
|
||||
<!-- Test the dielectric model -->
|
||||
<!-- Test the smooth dielectric model -->
|
||||
<bsdf type="dielectric">
|
||||
<string name="intIOR" value="water"/>
|
||||
<string name="extIOR" value="air"/>
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
Import('env', 'plugins')
|
||||
|
||||
# Basic materials (smooth & rough versions of each)
|
||||
plugins += env.SharedLibrary('diffuse', ['diffuse.cpp'])
|
||||
plugins += env.SharedLibrary('dielectric', ['dielectric.cpp'])
|
||||
plugins += env.SharedLibrary('conductor', ['conductor.cpp'])
|
||||
plugins += env.SharedLibrary('diffuse', ['diffuse.cpp'])
|
||||
#plugins += env.SharedLibrary('plastic', ['plastic.cpp'])
|
||||
plugins += env.SharedLibrary('plastic', ['plastic.cpp'])
|
||||
|
||||
#plugins += env.SharedLibrary('roughdiffuse', ['roughdiffuse.cpp'])
|
||||
plugins += env.SharedLibrary('roughdielectric', ['roughdielectric.cpp'])
|
||||
plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp'])
|
||||
#plugins += env.SharedLibrary('roughdiffuse', ['roughdiffuse.cpp'])
|
||||
#plugins += env.SharedLibrary('roughplastic', ['roughplastic.cpp'])
|
||||
|
||||
# Other
|
||||
|
|
|
@ -26,13 +26,13 @@ MTS_NAMESPACE_BEGIN
|
|||
/*!\plugin{conductor}{Smooth conductor}
|
||||
* \order{5}
|
||||
* \parameters{
|
||||
* \parameter{preset}{\String}{Name of a material preset, see
|
||||
* \parameter{material}{\String}{Name of a material preset, see
|
||||
* \tblref{conductor-iors}.\!\default{\texttt{Cu} / copper}}
|
||||
* \parameter{eta}{\Spectrum}{Real part of the material's index
|
||||
* of refraction \default{based on the value of \texttt{preset}}}
|
||||
* of refraction \default{based on the value of \texttt{material}}}
|
||||
* \parameter{k}{\Spectrum}{Imaginary part of the material's index of
|
||||
* refraction, also known as absorption coefficient.
|
||||
* \default{based on the value of \texttt{preset}}}
|
||||
* \default{based on the value of \texttt{material}}}
|
||||
* \lastparameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{
|
||||
* Optional factor used to modulate the reflectance component
|
||||
* \default{1.0}}
|
||||
|
@ -54,7 +54,7 @@ MTS_NAMESPACE_BEGIN
|
|||
* considerable changes throughout the visible color spectrum.
|
||||
*
|
||||
* To faciliate the tedious task of specifying spectrally-varying index of
|
||||
* refraction information, Mitsuba ships with a set of measured data for a
|
||||
* refraction information, Mitsuba ships with a set of measured data for
|
||||
* several materials, where visible-spectrum information was publicly
|
||||
* available\footnote{
|
||||
* These index of refraction values are identical to the data distributed
|
||||
|
@ -74,14 +74,17 @@ MTS_NAMESPACE_BEGIN
|
|||
* refraction (named ``ordinary'' and ``extraordinary ray'').
|
||||
*
|
||||
* When using this plugin, you should ideally compile Mitsuba with support for
|
||||
* spectral renderings to get the most accurate results. While it also works
|
||||
* spectral rendering to get the most accurate results. While it also works
|
||||
* in RGB mode, the computations will be much more approximate in this case.
|
||||
* Also note that this material is one-sided---that is, observed from the
|
||||
* back side, it will be completely black. If this is undesirable,
|
||||
* consider using the \pluginref{twosided} BRDF adapter plugin.\vspace{4mm}
|
||||
*
|
||||
* \begin{xml}[caption=Material configuration for a smooth conductor with
|
||||
* \begin{xml}[caption=A material configuration for a smooth conductor with
|
||||
* measured gold data, label=lst:conductor-gold]
|
||||
* <shape type="...">
|
||||
* <bsdf type="conductor">
|
||||
* <string name="preset" value="Au"/>
|
||||
* <string name="material" value="Au"/>
|
||||
* </bsdf>
|
||||
* <shape>
|
||||
* \end{xml}
|
||||
|
@ -149,15 +152,15 @@ public:
|
|||
m_specularReflectance = new ConstantSpectrumTexture(
|
||||
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
|
||||
|
||||
std::string preset = props.getString("preset", "Cu");
|
||||
Spectrum presetEta, presetK;
|
||||
presetEta.fromContinuousSpectrum(InterpolatedSpectrum(
|
||||
fResolver->resolve("data/ior/" + preset + ".eta.spd")));
|
||||
presetK.fromContinuousSpectrum(InterpolatedSpectrum(
|
||||
fResolver->resolve("data/ior/" + preset + ".k.spd")));
|
||||
std::string material = props.getString("material", "Cu");
|
||||
Spectrum materialEta, materialK;
|
||||
materialEta.fromContinuousSpectrum(InterpolatedSpectrum(
|
||||
fResolver->resolve("data/ior/" + material + ".eta.spd")));
|
||||
materialK.fromContinuousSpectrum(InterpolatedSpectrum(
|
||||
fResolver->resolve("data/ior/" + material + ".k.spd")));
|
||||
|
||||
m_eta = props.getSpectrum("eta", presetEta);
|
||||
m_k = props.getSpectrum("k", presetK);
|
||||
m_eta = props.getSpectrum("eta", materialEta);
|
||||
m_k = props.getSpectrum("k", materialK);
|
||||
|
||||
m_components.push_back(EDeltaReflection | EFrontSide);
|
||||
m_usesRayDifferentials = false;
|
||||
|
@ -193,7 +196,8 @@ public:
|
|||
|
||||
void configure() {
|
||||
BSDF::configure();
|
||||
/* Verify the input parameter and fix them if necessary */
|
||||
|
||||
/* Verify the input parameters and fix them if necessary */
|
||||
m_specularReflectance = ensureEnergyConservation(
|
||||
m_specularReflectance, "specularReflectance", 1.0f);
|
||||
}
|
||||
|
|
|
@ -98,19 +98,19 @@ MTS_NAMESPACE_BEGIN
|
|||
* \rmfamily \textbf{Name} & \multicolumn{2}{l}{\textbf{Value}}\\
|
||||
* \cmidrule{1-3} \cmidrule{5-7}
|
||||
* vacuum & 1 & 0 & &
|
||||
* silicone oil & 1 & 52045\\
|
||||
* helium & 1 & 00004 & &
|
||||
* bromine & 1 & 661\\
|
||||
* helium & 1 & 00004 & &
|
||||
* water ice & 1 & 31\\
|
||||
* hydrogen & 1 & 00013& &
|
||||
* water ice & 1 & 31\\[-.8mm]
|
||||
* fused quartz & 1 & 458\\[-.8mm]
|
||||
* \cmidrule{5-7}\\[-5.5mm]
|
||||
* air & 1 & 00028& &
|
||||
* fused quartz & 1 & 458\\
|
||||
* pyrex & 1 & 470\\
|
||||
* carbon dioxide & 1 & 00045& &
|
||||
* pyrex & 1 & 470\\[-.8mm]
|
||||
* acrylic glass & 1 & 49\\[-.8mm]
|
||||
* \cmidrule{1-3}\\[-5.5mm]
|
||||
* water & 1 & 3330& &
|
||||
* acrylic glass & 1 & 490\\
|
||||
* polypropylene & 1 & 49\\
|
||||
* acetone & 1 & 36 & &
|
||||
* bk7 & 1 & 5046\\
|
||||
* ethanol & 1 & 361& &
|
||||
|
@ -121,6 +121,7 @@ MTS_NAMESPACE_BEGIN
|
|||
* pet & 1 & 575\\
|
||||
* benzene & 1 & 501& &
|
||||
* diamond & 2 & 419\\
|
||||
* silicone oil & 1 & 52045\\
|
||||
* \bottomrule
|
||||
* \end{tabular}
|
||||
* \caption{
|
||||
|
@ -192,7 +193,8 @@ public:
|
|||
|
||||
void configure() {
|
||||
BSDF::configure();
|
||||
/* Verify the input parameter and fix them if necessary */
|
||||
|
||||
/* Verify the input parameters and fix them if necessary */
|
||||
m_specularReflectance = ensureEnergyConservation(
|
||||
m_specularReflectance, "specularReflectance", 1.0f);
|
||||
m_specularTransmittance = ensureEnergyConservation(
|
||||
|
@ -344,9 +346,8 @@ public:
|
|||
cosThetaT = -cosThetaT;
|
||||
}
|
||||
|
||||
/* Calculate the refracted/reflected vectors+coefficients */
|
||||
if (sampleTransmission && sampleReflection) {
|
||||
/* Importance sample according to the reflectance/transmittance */
|
||||
/* Importance sample wrt. the Fresnel reflectance */
|
||||
if (sample.x <= Fr) {
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EDeltaReflection;
|
||||
|
@ -426,9 +427,7 @@ public:
|
|||
cosThetaT = -cosThetaT;
|
||||
}
|
||||
|
||||
/* Calculate the refracted/reflected vectors+coefficients */
|
||||
if (sampleTransmission && sampleReflection) {
|
||||
/* Importance sample according to the reflectance/transmittance */
|
||||
if (sample.x <= Fr) {
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EDeltaReflection;
|
||||
|
|
|
@ -65,7 +65,8 @@ public:
|
|||
|
||||
void configure() {
|
||||
BSDF::configure();
|
||||
/* Verify the input parameter and fix them if necessary */
|
||||
|
||||
/* Verify the input parameters and fix them if necessary */
|
||||
m_transmittance = ensureEnergyConservation(m_transmittance, "transmittance", 1.0f);
|
||||
}
|
||||
|
||||
|
|
|
@ -89,6 +89,7 @@ public:
|
|||
|
||||
void configure() {
|
||||
BSDF::configure();
|
||||
|
||||
/* Verify the input parameter and fix them if necessary */
|
||||
m_reflectance = ensureEnergyConservation(m_reflectance, "reflectance", 1.0f);
|
||||
}
|
||||
|
|
|
@ -55,7 +55,8 @@ static IOREntry iorData[] = {
|
|||
{ "water ice", 1.31f },
|
||||
{ "fused quartz", 1.458f },
|
||||
{ "pyrex", 1.470f },
|
||||
{ "acrylic glass", 1.490f },
|
||||
{ "acrylic glass", 1.49f },
|
||||
{ "polypropylene", 1.49f },
|
||||
{ "bk7", 1.5046f },
|
||||
{ "sodium chloride", 1.544f },
|
||||
{ "amber", 1.55f },
|
||||
|
|
|
@ -17,40 +17,48 @@
|
|||
*/
|
||||
|
||||
#include <mitsuba/render/bsdf.h>
|
||||
#include <mitsuba/render/consttexture.h>
|
||||
#include <mitsuba/render/texture.h>
|
||||
#include "ior.h"
|
||||
|
||||
MTS_NAMESPACE_BEGIN
|
||||
|
||||
/*! \plugin{plastic}{Smooth plastic material}
|
||||
*
|
||||
/*!\plugin{plastic}{Smooth plastic material}
|
||||
* \order{7}
|
||||
* \parameters{
|
||||
* \parameter{intIOR}{\Float}{Interior index of refraction \default{1.5046}}
|
||||
* \parameter{extIOR}{\Float}{Exterior index of refraction \default{1.0}}
|
||||
* \parameter{diffuse\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
|
||||
* factor used to modulate the diffuse reflectance component\default{1.0}}
|
||||
* \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified
|
||||
* numerically or using a known material name. \default{\texttt{polypropylene} / 1.49}}
|
||||
* \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified
|
||||
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
|
||||
* \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
|
||||
* factor used to modulate the specular reflectance component\default{1.0}}
|
||||
* factor used to modulate the specular component\default{1.0}}
|
||||
* \lastparameter{specular\showbreak Transmittance}{\Spectrum\Or\Texture}{Optional
|
||||
* factor used to modulate the diffuse component\default{0.5}}
|
||||
* }
|
||||
*
|
||||
* \renderings{
|
||||
* \medrendering{Air$\leftrightarrow$Water (IOR: 1.33) interface.
|
||||
* See \lstref{dielectric-water}.}{bsdf_dielectric_water}
|
||||
* \medrendering{Air$\leftrightarrow$Diamond (IOR: 2.419)}{bsdf_dielectric_diamond}
|
||||
* \medrendering{Air$\leftrightarrow$Glass (IOR: 1.504) interface and absorption within.
|
||||
* See \lstref{dielectric-glass}.}{bsdf_dielectric_glass}
|
||||
* }
|
||||
*/
|
||||
class SmoothPlastic : public BSDF {
|
||||
public:
|
||||
SmoothPlastic(const Properties &props)
|
||||
: BSDF(props) {
|
||||
SmoothPlastic(const Properties &props) : BSDF(props) {
|
||||
/* Specifies the internal index of refraction at the interface */
|
||||
m_intIOR = props.getFloat("intIOR", 1.5046f);
|
||||
/* Specifies the external index of refraction at the interface */
|
||||
m_extIOR = props.getFloat("extIOR", 1);
|
||||
m_intIOR = lookupIOR(props, "intIOR", "polypropylene");
|
||||
|
||||
/* Specifies the external index of refraction at the interface */
|
||||
m_extIOR = lookupIOR(props, "extIOR", "air");
|
||||
|
||||
m_diffuseReflectance = new ConstantSpectrumTexture(
|
||||
props.getSpectrum("diffuseReflectance", Spectrum(0.5f)));
|
||||
m_specularReflectance = new ConstantSpectrumTexture(
|
||||
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
|
||||
m_diffuseReflectance = new ConstantSpectrumTexture(
|
||||
props.getSpectrum("diffuseReflectance", Spectrum(0.5f)));
|
||||
|
||||
m_componentCount = 2;
|
||||
m_type = new unsigned int[m_componentCount];
|
||||
m_type[0] = EDiffuseReflection | EFrontSide;
|
||||
m_type[1] = EDeltaTransmission | EFrontSide;
|
||||
m_combinedType = m_type[0] | m_type[1];
|
||||
m_components.push_back(EDeltaReflection | EFrontSide);
|
||||
m_components.push_back(EDiffuseReflection | EFrontSide);
|
||||
m_usesRayDifferentials = false;
|
||||
}
|
||||
|
||||
|
@ -58,241 +66,225 @@ public:
|
|||
: BSDF(stream, manager) {
|
||||
m_intIOR = stream->readFloat();
|
||||
m_extIOR = stream->readFloat();
|
||||
m_diffuseReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
||||
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
||||
|
||||
m_componentCount = 2;
|
||||
m_type = new unsigned int[m_componentCount];
|
||||
m_type[0] = EDiffuseReflection | EFrontSide;
|
||||
m_type[1] = EDeltaTransmission | EFrontSide;
|
||||
m_combinedType = m_type[0] | m_type[1];
|
||||
m_diffuseReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
||||
m_components.push_back(EDeltaReflection | EFrontSide);
|
||||
m_components.push_back(EDiffuseReflection | EFrontSide);
|
||||
m_usesRayDifferentials =
|
||||
m_diffuseReflectance->usesRayDifferentials() ||
|
||||
m_specularReflectance->usesRayDifferentials();
|
||||
m_specularReflectance->usesRayDifferentials() ||
|
||||
m_diffuseReflectance->usesRayDifferentials();
|
||||
}
|
||||
|
||||
virtual ~SmoothPlastic() {
|
||||
delete[] m_type;
|
||||
}
|
||||
virtual ~SmoothPlastic() { }
|
||||
|
||||
void serialize(Stream *stream, InstanceManager *manager) const {
|
||||
BSDF::serialize(stream, manager);
|
||||
|
||||
stream->writeFloat(m_intIOR);
|
||||
stream->writeFloat(m_extIOR);
|
||||
manager->serialize(stream, m_diffuseReflectance.get());
|
||||
manager->serialize(stream, m_specularReflectance.get());
|
||||
manager->serialize(stream, m_diffuseReflectance.get());
|
||||
}
|
||||
|
||||
void addChild(const std::string &name, ConfigurableObject *child) {
|
||||
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "diffuseReflectance") {
|
||||
m_diffuseReflectance = static_cast<Texture *>(child);
|
||||
m_usesRayDifferentials |= m_diffuseReflectance->usesRayDifferentials();
|
||||
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
|
||||
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
|
||||
m_specularReflectance = static_cast<Texture *>(child);
|
||||
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
|
||||
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "diffuseReflectance") {
|
||||
m_diffuseReflectance = static_cast<Texture *>(child);
|
||||
m_usesRayDifferentials |= m_diffuseReflectance->usesRayDifferentials();
|
||||
} else {
|
||||
BSDF::addChild(name, child);
|
||||
}
|
||||
}
|
||||
|
||||
void configure() {
|
||||
BSDF::configure();
|
||||
|
||||
/* Verify the input parameters and fix them if necessary */
|
||||
m_specularReflectance = ensureEnergyConservation(
|
||||
m_specularReflectance, "specularReflectance", 1.0f);
|
||||
m_diffuseReflectance = ensureEnergyConservation(
|
||||
m_diffuseReflectance, "diffuseReflectance", 1.0f);
|
||||
}
|
||||
|
||||
/// Reflection in local coordinates
|
||||
inline Vector reflect(const Vector &wi) const {
|
||||
return Vector(-wi.x, -wi.y, wi.z);
|
||||
}
|
||||
|
||||
Spectrum f(const BSDFQueryRecord &bRec) const {
|
||||
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
|
||||
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
|
||||
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 0);
|
||||
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 1);
|
||||
|
||||
if (Frame::cosTheta(bRec.wi) <= 0 ||
|
||||
Frame::cosTheta(bRec.wo) <= 0 || !sampleDiffuse)
|
||||
if (Frame::cosTheta(bRec.wo) <= 0 || Frame::cosTheta(bRec.wi) <= 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
return m_diffuseReflectance->getValue(bRec.its) * INV_PI *
|
||||
(1 - fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR));
|
||||
}
|
||||
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
|
||||
|
||||
Spectrum fDelta(const BSDFQueryRecord &bRec) const {
|
||||
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 1);
|
||||
if (Frame::cosTheta(bRec.wi) <= 0 ||
|
||||
Frame::cosTheta(bRec.wo) <= 0 || !sampleSpecular)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
return m_specularReflectance->getValue(bRec.its) *
|
||||
fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
|
||||
}
|
||||
|
||||
Float pdf(const BSDFQueryRecord &bRec) const {
|
||||
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 0);
|
||||
|
||||
if (Frame::cosTheta(bRec.wi) <= 0 ||
|
||||
Frame::cosTheta(bRec.wo) <= 0 || !sampleDiffuse)
|
||||
return 0.0f;
|
||||
|
||||
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 1);
|
||||
|
||||
Float pdf = Frame::cosTheta(bRec.wo) * INV_PI;
|
||||
if (sampleSpecular)
|
||||
pdf *= 1 - fresnel(Frame::cosTheta(bRec.wi),
|
||||
m_extIOR, m_intIOR);
|
||||
|
||||
return pdf;
|
||||
}
|
||||
|
||||
Float pdfDelta(const BSDFQueryRecord &bRec) const {
|
||||
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 1);
|
||||
|
||||
if (Frame::cosTheta(bRec.wi) <= 0 ||
|
||||
Frame::cosTheta(bRec.wo) <= 0 || !sampleSpecular)
|
||||
return 0.0f;
|
||||
|
||||
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 0);
|
||||
|
||||
Float pdf = std::abs(Frame::cosTheta(bRec.wo));
|
||||
if (measure == EDiscrete && sampleSpecular) {
|
||||
/* Check if the provided direction pair matches an ideal
|
||||
specular reflection; tolerate some roundoff errors */
|
||||
bool reflection = std::abs(1 - dot(reflect(bRec.wi), bRec.wo)) < Epsilon;
|
||||
if (reflection)
|
||||
return m_specularReflectance->getValue(bRec.its) * Fr;
|
||||
} else if (measure == ESolidAngle && sampleDiffuse) {
|
||||
if (sampleDiffuse)
|
||||
pdf *= fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
|
||||
|
||||
return pdf;
|
||||
}
|
||||
|
||||
Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &_sample) const {
|
||||
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 0);
|
||||
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 1);
|
||||
|
||||
if ((!sampleDiffuse && !sampleSpecular) || Frame::cosTheta(bRec.wi) <= 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
|
||||
Point2 sample(_sample);
|
||||
|
||||
if (sampleDiffuse && sampleSpecular) {
|
||||
if (sample.x > Fr) {
|
||||
sample.x = (sample.x - Fr) / (1 - Fr);
|
||||
bRec.wo = squareToHemispherePSA(sample);
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EDiffuseReflection;
|
||||
pdf = Frame::cosTheta(bRec.wo) * INV_PI * (1-Fr);
|
||||
return m_diffuseReflectance->getValue(bRec.its) * INV_PI * (1-Fr);
|
||||
} else {
|
||||
bRec.sampledComponent = 1;
|
||||
bRec.sampledType = EDeltaReflection;
|
||||
bRec.wo = reflect(bRec.wi);
|
||||
pdf = std::abs(Frame::cosTheta(bRec.wo)) * Fr;
|
||||
return m_specularReflectance->getValue(bRec.its) * Fr;
|
||||
}
|
||||
} else if (sampleDiffuse) {
|
||||
bRec.wo = squareToHemispherePSA(sample);
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EDiffuseReflection;
|
||||
pdf = Frame::cosTheta(bRec.wo) * INV_PI;
|
||||
return m_diffuseReflectance->getValue(bRec.its) * INV_PI * (1-Fr);
|
||||
} else {
|
||||
bRec.sampledComponent = 1;
|
||||
bRec.sampledType = EDeltaReflection;
|
||||
bRec.wo = reflect(bRec.wi);
|
||||
pdf = std::abs(Frame::cosTheta(bRec.wo));
|
||||
return m_specularReflectance->getValue(bRec.its) * Fr;
|
||||
}
|
||||
}
|
||||
|
||||
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &_sample) const {
|
||||
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 0);
|
||||
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 1);
|
||||
|
||||
if ((!sampleDiffuse && !sampleSpecular) || Frame::cosTheta(bRec.wi) <= 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
|
||||
Point2 sample(_sample);
|
||||
|
||||
if (sampleDiffuse && sampleSpecular) {
|
||||
if (sample.x > Fr) {
|
||||
sample.x = (sample.x - Fr) / (1 - Fr);
|
||||
bRec.wo = squareToHemispherePSA(sample);
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EDiffuseReflection;
|
||||
return m_diffuseReflectance->getValue(bRec.its)
|
||||
/ Frame::cosTheta(bRec.wo);
|
||||
} else {
|
||||
bRec.sampledComponent = 1;
|
||||
bRec.sampledType = EDeltaReflection;
|
||||
bRec.wo = reflect(bRec.wi);
|
||||
return m_specularReflectance->getValue(bRec.its)
|
||||
/ std::abs(Frame::cosTheta(bRec.wo));
|
||||
* (INV_PI * Frame::cosTheta(bRec.wo) * (1-Fr));
|
||||
}
|
||||
} else if (sampleDiffuse) {
|
||||
bRec.wo = squareToHemispherePSA(sample);
|
||||
|
||||
return Spectrum(0.0f);
|
||||
}
|
||||
|
||||
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
|
||||
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 0);
|
||||
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 1);
|
||||
|
||||
if (Frame::cosTheta(bRec.wo) <= 0 || Frame::cosTheta(bRec.wi) <= 0)
|
||||
return 0.0f;
|
||||
|
||||
if (measure == EDiscrete && sampleSpecular) {
|
||||
/* Check if the provided direction pair matches an ideal
|
||||
specular reflection; tolerate some roundoff errors */
|
||||
bool reflection = std::abs(1 - dot(reflect(bRec.wi), bRec.wo)) < Epsilon;
|
||||
if (reflection)
|
||||
return sampleDiffuse ?
|
||||
fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR) : 1.0f;
|
||||
} else if (measure == ESolidAngle && sampleDiffuse) {
|
||||
return Frame::cosTheta(bRec.wo) * INV_PI *
|
||||
sampleSpecular ? (1 - fresnel(Frame::cosTheta(bRec.wi),
|
||||
m_extIOR, m_intIOR)) : 1.0f;
|
||||
}
|
||||
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
|
||||
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 0);
|
||||
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 1);
|
||||
|
||||
if ((!sampleDiffuse && !sampleSpecular) || Frame::cosTheta(bRec.wi) < 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
|
||||
|
||||
if (sampleDiffuse && sampleSpecular) {
|
||||
/* Importance sample wrt. the Fresnel reflectance */
|
||||
if (sample.x <= Fr) {
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EDiffuseReflection;
|
||||
return m_diffuseReflectance->getValue(bRec.its) * (1-Fr)
|
||||
/ Frame::cosTheta(bRec.wo);
|
||||
} else {
|
||||
bRec.sampledComponent = 1;
|
||||
bRec.sampledType = EDeltaReflection;
|
||||
bRec.wo = reflect(bRec.wi);
|
||||
return m_specularReflectance->getValue(bRec.its) * Fr
|
||||
/ std::abs(Frame::cosTheta(bRec.wo));
|
||||
|
||||
return m_specularReflectance->getValue(bRec.its);
|
||||
} else {
|
||||
bRec.sampledComponent = 1;
|
||||
bRec.sampledType = EDiffuseReflection;
|
||||
bRec.wo = squareToHemispherePSA(Point2(
|
||||
(sample.x - Fr) / (1 - Fr),
|
||||
sample.y
|
||||
));
|
||||
|
||||
return m_diffuseReflectance->getValue(bRec.its);
|
||||
}
|
||||
} else if (sampleSpecular) {
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EDeltaReflection;
|
||||
bRec.wo = reflect(bRec.wi);
|
||||
return m_specularReflectance->getValue(bRec.its) * Fr;
|
||||
} else {
|
||||
bRec.sampledComponent = 1;
|
||||
bRec.sampledType = EDiffuseReflection;
|
||||
|
||||
if (Fr == 1.0f) /* Total internal reflection */
|
||||
return Spectrum(0.0f);
|
||||
|
||||
bRec.wo = squareToSphere(sample);
|
||||
|
||||
return m_diffuseReflectance->getValue(bRec.its) * (1-Fr);
|
||||
}
|
||||
}
|
||||
|
||||
Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &sample) const {
|
||||
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 0);
|
||||
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 1);
|
||||
|
||||
if ((!sampleDiffuse && !sampleSpecular) || Frame::cosTheta(bRec.wi) < 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
|
||||
|
||||
if (sampleDiffuse && sampleSpecular) {
|
||||
/* Importance sample wrt. the Fresnel reflectance */
|
||||
if (sample.x <= Fr) {
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EDeltaReflection;
|
||||
bRec.wo = reflect(bRec.wi);
|
||||
|
||||
pdf = Fr;
|
||||
return m_specularReflectance->getValue(bRec.its) * Fr;
|
||||
} else {
|
||||
bRec.sampledComponent = 1;
|
||||
bRec.sampledType = EDiffuseReflection;
|
||||
bRec.wo = squareToHemispherePSA(Point2(
|
||||
(sample.x - Fr) / (1 - Fr),
|
||||
sample.y
|
||||
));
|
||||
|
||||
pdf = (1-Fr) * Frame::cosTheta(bRec.wo) * INV_PI;
|
||||
|
||||
return m_diffuseReflectance->getValue(bRec.its)
|
||||
* (INV_PI * Frame::cosTheta(bRec.wo) * (1-Fr));
|
||||
}
|
||||
} else if (sampleSpecular) {
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EDeltaReflection;
|
||||
bRec.wo = reflect(bRec.wi);
|
||||
pdf = 1;
|
||||
return m_specularReflectance->getValue(bRec.its) * Fr;
|
||||
} else {
|
||||
bRec.sampledComponent = 1;
|
||||
bRec.sampledType = EDiffuseReflection;
|
||||
|
||||
if (Fr == 1.0f) /* Total internal reflection */
|
||||
return Spectrum(0.0f);
|
||||
|
||||
bRec.wo = squareToSphere(sample);
|
||||
|
||||
pdf = Frame::cosTheta(bRec.wo) * INV_PI;
|
||||
|
||||
return m_diffuseReflectance->getValue(bRec.its)
|
||||
* (INV_PI * Frame::cosTheta(bRec.wo) * (1-Fr));
|
||||
}
|
||||
}
|
||||
|
||||
std::string toString() const {
|
||||
std::ostringstream oss;
|
||||
oss << "SmoothPlastic[" << endl
|
||||
<< " name = \"" << getName() << "\"," << endl
|
||||
<< " intIOR = " << m_intIOR << "," << endl
|
||||
<< " extIOR = " << m_extIOR << "," << endl
|
||||
<< " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl
|
||||
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << endl
|
||||
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
|
||||
<< " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << endl
|
||||
<< "]";
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
Shader *createShader(Renderer *renderer) const;
|
||||
|
||||
MTS_DECLARE_CLASS()
|
||||
private:
|
||||
Float m_intIOR, m_extIOR;
|
||||
ref<Texture> m_specularReflectance;
|
||||
ref<Texture> m_diffuseReflectance;
|
||||
ref<Texture> m_specularReflectance;
|
||||
};
|
||||
|
||||
/* Fake glass shader -- it is really hopeless to visualize
|
||||
this material in the VPL renderer, so let's try to do at least
|
||||
something that suggests the presence of a transparent boundary */
|
||||
class SmoothPlasticShader : public Shader {
|
||||
public:
|
||||
SmoothPlasticShader(Renderer *renderer) :
|
||||
Shader(renderer, EBSDFShader) {
|
||||
m_flags = ETransparent;
|
||||
}
|
||||
|
||||
void generateCode(std::ostringstream &oss,
|
||||
const std::string &evalName,
|
||||
const std::vector<std::string> &depNames) const {
|
||||
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
|
||||
<< " return vec3(0.08);" << endl
|
||||
<< "}" << endl;
|
||||
oss << "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
|
||||
<< " return vec3(0.08);" << endl
|
||||
<< "}" << endl;
|
||||
}
|
||||
MTS_DECLARE_CLASS()
|
||||
};
|
||||
|
||||
Shader *SmoothPlastic::createShader(Renderer *renderer) const {
|
||||
return new SmoothPlasticShader(renderer);
|
||||
}
|
||||
|
||||
MTS_IMPLEMENT_CLASS(SmoothPlasticShader, false, Shader)
|
||||
MTS_IMPLEMENT_CLASS_S(SmoothPlastic, false, BSDF)
|
||||
MTS_EXPORT_PLUGIN(SmoothPlastic, "Smooth plastic BSDF");
|
||||
MTS_NAMESPACE_END
|
||||
|
|
|
@ -67,24 +67,92 @@ MTS_NAMESPACE_BEGIN
|
|||
* bitangent directions. These parameter are only valid when
|
||||
* \texttt{distribution=as}. \default{0.1}.
|
||||
* }
|
||||
* \parameter{preset}{\String}{Name of a material preset, see
|
||||
* \parameter{material}{\String}{Name of a material preset, see
|
||||
* \tblref{conductor-iors}.\!\default{\texttt{Cu} / copper}}
|
||||
* \parameter{eta}{\Spectrum}{Real part of the material's index
|
||||
* of refraction \default{based on the value of \texttt{preset}}}
|
||||
* of refraction \default{based on the value of \texttt{material}}}
|
||||
* \parameter{k}{\Spectrum}{Imaginary part of the material's index of
|
||||
* refraction, also known as absorption coefficient.
|
||||
* \default{based on the value of \texttt{preset}}}
|
||||
* \default{based on the value of \texttt{material}}}
|
||||
* \lastparameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
|
||||
* factor used to modulate the reflectance component\default{1.0}}
|
||||
* }
|
||||
* This plugin implements a realistic microfacet scattering model for rendering
|
||||
* rough conducting materials, such as metals. Microfacet theory describes rough
|
||||
* surfaces as an arrangement of unresolved and ideally specular facets, whose
|
||||
* normal directions are given by a specially chosen \emph{microfacet distribution}.
|
||||
* By accounting for shadowing and masking effects between these facets, it is
|
||||
* possible to reproduce the important off-specular reflections peaks observed
|
||||
* in real-world measurements of such materials.
|
||||
|
||||
* \renderings{
|
||||
* \rendering{Rough copper (Beckmann, $\alpha=0.1$)}
|
||||
* {bsdf_roughconductor_copper.jpg}
|
||||
* \rendering{Vertically brushed aluminium (Ashikhmin-Shirley,
|
||||
* $\alpha_u=0.05,\
|
||||
* \alpha_v=0.3$)}{bsdf_roughconductor_anisotropic_aluminium.jpg}
|
||||
* $\alpha_u=0.05,\ \alpha_v=0.3$), see
|
||||
* \lstref{roughconductor-aluminium}}
|
||||
* {bsdf_roughconductor_anisotropic_aluminium.jpg}
|
||||
* \vspace{-7mm}
|
||||
* }
|
||||
*
|
||||
* This plugin is essentially the ``roughened'' equivalent of the (smooth) plugin
|
||||
* \pluginref{conductor}. For very low values of $\alpha$, the two will
|
||||
* be very similar, though scenes using this plugin will take longer to render
|
||||
* due to the additional computational burden of tracking surface roughness.
|
||||
*
|
||||
* The implementation is based on the paper ``Microfacet Models
|
||||
* for Refraction through Rough Surfaces'' by Walter et al.
|
||||
* \cite{Walter07Microfacet}. It supports several different types of microfacet
|
||||
* distributions and has a texturable roughness parameter.
|
||||
* To faciliate the tedious task of specifying spectrally-varying index of
|
||||
* refraction information, this plugin can access a set of measured materials
|
||||
* for which visible-spectrum information was publicly available
|
||||
* (see \tblref{conductor-iors} for the full list).
|
||||
*
|
||||
* When no parameters are given, the plugin activates the default settings,
|
||||
* which describe copper with a light amount of roughness modeled using a
|
||||
* Beckmann distribution.
|
||||
*
|
||||
* To get an intuition about the effect of the surface roughness
|
||||
* parameter $\alpha$, consider the following approximate differentiation:
|
||||
* a value of $\alpha=0.001-0.01$ corresponds to a material
|
||||
* with slight imperfections on an
|
||||
* otherwise smooth surface finish, $\alpha=0.1$ is relatively rough,
|
||||
* and $\alpha=0.3-0.5$ is \emph{extremely} rough (e.g. an etched or ground
|
||||
* finish).
|
||||
* \vspace{-2mm}
|
||||
* \subsubsection*{Techical details}\vspace{-2mm}
|
||||
* When rendering with the Ashikhmin-Shirley or Phong microfacet
|
||||
* distributions, a conversion is used to turn the specified
|
||||
* $\alpha$ roughness value into the exponents of these distributions.
|
||||
* This is done in a way, such that the different
|
||||
* distributions all produce a similar appearance for the same value of
|
||||
* $\alpha$.
|
||||
*
|
||||
* The Ashikhmin-Shirley microfacet distribution allows the specification
|
||||
* of two distinct roughness values along the tangent and bitangent
|
||||
* directions. This can be used to provide a material with a ``brushed''
|
||||
* appearance. The alignment of the anisotropy will follow the UV
|
||||
* parameterization of the underlying mesh in this case. This means that
|
||||
* such an anisotropic material cannot be applied to triangle meshes that
|
||||
* are missing texture coordinates.
|
||||
*
|
||||
* When using this plugin, you should ideally compile Mitsuba with support for
|
||||
* spectral rendering to get the most accurate results. While it also works
|
||||
* in RGB mode, the computations will be much more approximate in this case.
|
||||
* Also note that this material is one-sided---that is, observed from the
|
||||
* back side, it will be completely black. If this is undesirable,
|
||||
* consider using the \pluginref{twosided} BRDF adapter plugin.
|
||||
*
|
||||
* \begin{xml}[caption={A material definition for brushed aluminium}, label=lst:roughconductor-aluminium]
|
||||
* <bsdf type="roughconductor">
|
||||
* <string name="material" value="Cu"/>
|
||||
* <string name="distribution" value="as"/>
|
||||
* <float name="alphaU" value="0.05"/>
|
||||
* <float name="alphaV" value="0.3"/>
|
||||
* </bsdf>
|
||||
* \end{xml}
|
||||
*
|
||||
*/
|
||||
class RoughConductor : public BSDF {
|
||||
public:
|
||||
|
@ -94,15 +162,15 @@ public:
|
|||
m_specularReflectance = new ConstantSpectrumTexture(
|
||||
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
|
||||
|
||||
std::string preset = props.getString("preset", "Cu");
|
||||
Spectrum presetEta, presetK;
|
||||
presetEta.fromContinuousSpectrum(InterpolatedSpectrum(
|
||||
fResolver->resolve("data/ior/" + preset + ".eta.spd")));
|
||||
presetK.fromContinuousSpectrum(InterpolatedSpectrum(
|
||||
fResolver->resolve("data/ior/" + preset + ".k.spd")));
|
||||
std::string material = props.getString("material", "Cu");
|
||||
Spectrum materialEta, materialK;
|
||||
materialEta.fromContinuousSpectrum(InterpolatedSpectrum(
|
||||
fResolver->resolve("data/ior/" + material + ".eta.spd")));
|
||||
materialK.fromContinuousSpectrum(InterpolatedSpectrum(
|
||||
fResolver->resolve("data/ior/" + material + ".k.spd")));
|
||||
|
||||
m_eta = props.getSpectrum("eta", presetEta);
|
||||
m_k = props.getSpectrum("k", presetK);
|
||||
m_eta = props.getSpectrum("eta", materialEta);
|
||||
m_k = props.getSpectrum("k", materialK);
|
||||
|
||||
m_distribution = MicrofacetDistribution(
|
||||
props.getString("distribution", "beckmann")
|
||||
|
@ -156,7 +224,7 @@ public:
|
|||
m_components.push_back(
|
||||
EGlossyReflection | EFrontSide | extraFlags);
|
||||
|
||||
/* Verify the input parameter and fix them if necessary */
|
||||
/* Verify the input parameters and fix them if necessary */
|
||||
m_specularReflectance = ensureEnergyConservation(
|
||||
m_specularReflectance, "specularReflectance", 1.0f);
|
||||
|
||||
|
|
|
@ -241,7 +241,7 @@ public:
|
|||
m_components.push_back(
|
||||
EGlossyTransmission | EFrontSide | EBackSide | ECanUseSampler | extraFlags);
|
||||
|
||||
/* Verify the input parameter and fix them if necessary */
|
||||
/* Verify the input parameters and fix them if necessary */
|
||||
m_specularReflectance = ensureEnergyConservation(
|
||||
m_specularReflectance, "specularReflectance", 1.0f);
|
||||
m_specularTransmittance = ensureEnergyConservation(
|
||||
|
|
|
@ -173,9 +173,11 @@ public:
|
|||
mismatch = true;
|
||||
}
|
||||
|
||||
if (mismatch)
|
||||
Log(EWarn, "Potential inconsistency (3): f/pdf=%s (method 1), f/pdf=%s (methdod 2), sampled f/pdf=%s",
|
||||
if (mismatch) {
|
||||
Log(EWarn, "Potential inconsistency (3): f/pdf=%s (method 1), f/pdf=%s (method 2), sampled f/pdf=%s",
|
||||
sampled2.toString().c_str(), evaluated.toString().c_str(), sampled.toString().c_str());
|
||||
Log(EWarn, " f=%s, f2=%s, pdf=%f, pdf2=%f", f.toString().c_str(), f.toString().c_str(), pdfVal, pdfVal2);
|
||||
}
|
||||
|
||||
#if defined(MTS_DEBUG_FP)
|
||||
disableFPExceptions();
|
||||
|
|
Loading…
Reference in New Issue