mitsuba/src/bsdfs/dielectric.cpp

528 lines
19 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/render/texture.h>
#include "ior.h"
MTS_NAMESPACE_BEGIN
/*!\plugin{dielectric}{Smooth dielectric material}
* \order{4}
* \parameters{
* \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified
* numerically or using a known material name. \default{\texttt{bk7} / 1.5046}}
* \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
* \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
* factor used to modulate the reflectance component\default{1.0}}
* \lastparameter{specular\showbreak Transmittance}{\Spectrum\Or\Texture}{Optional
* factor used to modulate the transmittance component\default{1.0}}
* }
*
* \renderings{
* \medrendering{Air$\leftrightarrow$Water (IOR: 1.33) interface.
* See \lstref{dielectric-water}.}{bsdf_dielectric_water}
* \medrendering{Air$\leftrightarrow$Diamond (IOR: 2.419)}{bsdf_dielectric_diamond}
* \medrendering{Air$\leftrightarrow$Glass (IOR: 1.504) interface and absorption within.
* See \lstref{dielectric-glass}.}{bsdf_dielectric_glass}
* }
*
* This plugin models an interface between two dielectric materials having mismatched
* indices of refraction (for instance, water and air). Exterior and interior IOR values
* can be specified independently, where ``exterior'' refers to the side that contains
* the surface normal. When no parameters are given, the plugin activates the defaults, which
* describe a borosilicate glass BK7/air interface.
*
* In this model, the microscopic structure of the surface is assumed to be perfectly
* smooth, resulting in a degenerate\footnote{Meaning that for any given incoming ray of light,
* the model always scatters into a discrete set of directions, as opposed to a continuum.}
* BSDF described by a Dirac delta distribution. For a similar model that instead describes a
* rough surface microstructure, take a look at the \pluginref{roughdielectric} plugin.
*
* \begin{xml}[caption=A simple air-to-water interface, label=lst:dielectric-water]
* <shape type="...">
* <bsdf type="dielectric">
* <string name="intIOR" value="water"/>
* <string name="extIOR" value="air"/>
* </bsdf>
* <shape>
* \end{xml}
*
* When using this model, it is crucial that the scene contains
* meaningful and mutally compatible indices of refraction changes---see
* \figref{glass-explanation} for a description of what this entails.
*
* In many cases, we will want to additionally describe the \emph{medium} within a
* dielectric material. This requires the use of a rendering technique that is
* aware of media (e.g. the volumetric path tracer). An example of how one might
* describe a slightly absorbing piece of glass is given on the next page:
* \newpage
* \begin{xml}[caption=A glass material with absorption (based on the
* Beer-Lambert law). This material can only be used by an integrator
* that is aware of participating media., label=lst:dielectric-glass]
* <shape type="...">
* <bsdf type="dielectric">
* <float name="intIOR" value="1.504"/>
* <float name="extIOR" value="1.0"/>
* </bsdf>
*
* <medium type="homogeneous" name="interior">
* <rgb name="sigmaS" value="0, 0, 0"/>
* <rgb name="sigmaA" value="4, 4, 2"/>
* </medium>
* <shape>
* \end{xml}
* \vspace{1cm}
*
* \begin{table}[h!]
* \centering
* \begin{tabular}{>{\ttfamily}p{5cm}r@{.}lp{.8cm}>{\ttfamily}p{5cm}r@{.}l}
* \toprule
* \rmfamily \textbf{Name} & \multicolumn{2}{l}{\textbf{Value}}& &
* \rmfamily \textbf{Name} & \multicolumn{2}{l}{\textbf{Value}}\\
* \cmidrule{1-3} \cmidrule{5-7}
* vacuum & 1 & 0 & &
* bromine & 1 & 661\\
* helium & 1 & 00004 & &
* water ice & 1 & 31\\
* hydrogen & 1 & 00013& &
* fused quartz & 1 & 458\\[-.8mm]
* \cmidrule{5-7}\\[-5.5mm]
* air & 1 & 00028& &
* pyrex & 1 & 470\\
* carbon dioxide & 1 & 00045& &
* acrylic glass & 1 & 49\\[-.8mm]
* \cmidrule{1-3}\\[-5.5mm]
* water & 1 & 3330& &
* polypropylene & 1 & 49\\
* acetone & 1 & 36 & &
* bk7 & 1 & 5046\\
* ethanol & 1 & 361& &
* sodium chloride & 1 & 544\\
* carbon tetrachloride & 1 & 461& &
* amber & 1 & 55\\
* glycerol & 1 & 4729& &
* pet & 1 & 575\\
* benzene & 1 & 501& &
* diamond & 2 & 419\\
* silicone oil & 1 & 52045\\
* \bottomrule
* \end{tabular}
* \caption{
* \label{tbl:dielectric-iors}
* This table lists all supported material names along with
* along with their associated index of refraction at standard
* conditions. These material names can be used with the plugins
* \pluginref{dielectric},\
* \pluginref{roughdielectric},\
* \pluginref{plastic}, as well as
* \pluginref{roughplastic}.
* }
* \end{table}
*/
class SmoothDielectric : public BSDF {
public:
SmoothDielectric(const Properties &props) : BSDF(props) {
/* Specifies the internal index of refraction at the interface */
m_intIOR = lookupIOR(props, "intIOR", "bk7");
/* Specifies the external index of refraction at the interface */
m_extIOR = lookupIOR(props, "extIOR", "air");
m_specularReflectance = new ConstantSpectrumTexture(
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
m_specularTransmittance = new ConstantSpectrumTexture(
props.getSpectrum("specularTransmittance", Spectrum(1.0f)));
m_components.push_back(EDeltaReflection | EFrontSide | EBackSide);
m_components.push_back(EDeltaTransmission | EFrontSide | EBackSide);
m_usesRayDifferentials = false;
}
SmoothDielectric(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_intIOR = stream->readFloat();
m_extIOR = stream->readFloat();
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_specularTransmittance = static_cast<Texture *>(manager->getInstance(stream));
m_components.push_back(EDeltaReflection | EFrontSide | EBackSide);
m_components.push_back(EDeltaTransmission | EFrontSide | EBackSide);
m_usesRayDifferentials =
m_specularReflectance->usesRayDifferentials() ||
m_specularTransmittance->usesRayDifferentials();
}
virtual ~SmoothDielectric() { }
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
stream->writeFloat(m_intIOR);
stream->writeFloat(m_extIOR);
manager->serialize(stream, m_specularReflectance.get());
manager->serialize(stream, m_specularTransmittance.get());
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
m_specularReflectance = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularTransmittance") {
m_specularTransmittance = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_specularTransmittance->usesRayDifferentials();
} else {
BSDF::addChild(name, child);
}
}
void configure() {
BSDF::configure();
/* Verify the input parameters and fix them if necessary */
m_specularReflectance = ensureEnergyConservation(
m_specularReflectance, "specularReflectance", 1.0f);
m_specularTransmittance = ensureEnergyConservation(
m_specularTransmittance, "specularTransmittance", 1.0f);
}
/// Reflection in local coordinates
inline Vector reflect(const Vector &wi) const {
return Vector(-wi.x, -wi.y, wi.z);
}
/// Refraction in local coordinates (reuses computed information)
inline Vector refract(const Vector &wi, Float eta, Float cosThetaT) const {
return Vector(-eta*wi.x, -eta*wi.y, cosThetaT);
}
/// Refraction in local coordinates (full version)
inline Vector refract(const Vector &wi) const {
Float cosThetaI = Frame::cosTheta(wi),
etaI = m_extIOR,
etaT = m_intIOR;
bool entering = cosThetaI > 0.0f;
/* Determine the respective indices of refraction */
if (!entering)
std::swap(etaI, etaT);
/* Using Snell's law, calculate the squared sine of the
angle between the normal and the transmitted ray */
Float eta = etaI / etaT,
sinThetaTSqr = eta*eta * Frame::sinTheta2(wi);
Float cosThetaT = 0;
if (sinThetaTSqr >= 1.0f) {
/* Total internal reflection */
return Vector(0.0f);
} else {
cosThetaT = std::sqrt(1.0f - sinThetaTSqr);
if (entering)
cosThetaT = -cosThetaT;
}
return Vector(-eta*wi.x, -eta*wi.y, cosThetaT);
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool sampleTransmission = (bRec.typeMask & EDeltaTransmission)
&& (bRec.component == -1 || bRec.component == 1);
/* Check if the provided direction pair matches an ideal
specular reflection; tolerate some roundoff errors */
bool reflection = std::abs(1 - dot(reflect(bRec.wi), bRec.wo)) < Epsilon;
if (measure != EDiscrete || (reflection && !sampleReflection))
return Spectrum(0.0f);
if (!reflection) {
/* Check if the provided direction pair matches an ideal
specular refraction; tolerate some roundoff errors */
bool refraction = std::abs(1 - dot(refract(bRec.wi), bRec.wo)) < Epsilon;
if (!refraction || !sampleTransmission)
return Spectrum(0.0f);
}
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
if (reflection) {
return m_specularReflectance->getValue(bRec.its) * Fr;
} else {
Float etaI = m_extIOR, etaT = m_intIOR;
bool entering = Frame::cosTheta(bRec.wi) > 0.0f;
if (!entering)
std::swap(etaI, etaT);
Float factor = (bRec.quantity == ERadiance)
? (etaI*etaI) / (etaT*etaT) : 1.0f;
return m_specularTransmittance->getValue(bRec.its) * factor * (1 - Fr);
}
}
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool sampleTransmission = (bRec.typeMask & EDeltaTransmission)
&& (bRec.component == -1 || bRec.component == 1);
/* Check if the provided direction pair matches an ideal
specular reflection; tolerate some roundoff errors */
bool reflection = std::abs(1 - dot(reflect(bRec.wi), bRec.wo)) < Epsilon;
if (measure != EDiscrete || (reflection && !sampleReflection))
return 0.0f;
if (!reflection) {
/* Check if the provided direction pair matches an ideal
specular refraction; tolerate some roundoff errors */
bool refraction = std::abs(1 - dot(refract(bRec.wi), bRec.wo)) < Epsilon;
if (!refraction || !sampleTransmission)
return 0.0f;
}
if (sampleTransmission && sampleReflection) {
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
return reflection ? Fr : (1 - Fr);
} else {
return 1.0f;
}
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool sampleTransmission = (bRec.typeMask & EDeltaTransmission)
&& (bRec.component == -1 || bRec.component == 1);
if (!sampleTransmission && !sampleReflection)
return Spectrum(0.0f);
Float cosThetaI = Frame::cosTheta(bRec.wi),
etaI = m_extIOR,
etaT = m_intIOR;
bool entering = cosThetaI > 0.0f;
/* Determine the respective indices of refraction */
if (!entering)
std::swap(etaI, etaT);
/* Using Snell's law, calculate the squared sine of the
angle between the normal and the transmitted ray */
Float eta = etaI / etaT,
sinThetaTSqr = eta*eta * Frame::sinTheta2(bRec.wi);
Float Fr, cosThetaT = 0;
if (sinThetaTSqr >= 1.0f) {
/* Total internal reflection */
Fr = 1.0f;
} else {
cosThetaT = std::sqrt(1.0f - sinThetaTSqr);
/* Compute the Fresnel refletance */
Fr = fresnelDielectric(std::abs(cosThetaI),
cosThetaT, etaI, etaT);
if (entering)
cosThetaT = -cosThetaT;
}
if (sampleTransmission && sampleReflection) {
/* Importance sample wrt. the Fresnel reflectance */
if (sample.x <= Fr) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
return m_specularReflectance->getValue(bRec.its);
} else {
bRec.sampledComponent = 1;
bRec.sampledType = EDeltaTransmission;
/* Given cos(N, transmittedRay), compute the
transmitted direction */
bRec.wo = refract(bRec.wi, eta, cosThetaT);
/* When transporting radiance, account for the solid angle
change at boundaries with different indices of refraction. */
return m_specularTransmittance->getValue(bRec.its)
* (bRec.quantity == ERadiance ? (eta*eta) : (Float) 1);
}
} else if (sampleReflection) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
return m_specularReflectance->getValue(bRec.its) * Fr;
} else {
bRec.sampledComponent = 1;
bRec.sampledType = EDeltaTransmission;
if (Fr == 1.0f) /* Total internal reflection */
return Spectrum(0.0f);
bRec.wo = refract(bRec.wi, eta, cosThetaT);
/* When transporting radiance, account for the solid angle
change at boundaries with different indices of refraction. */
return m_specularTransmittance->getValue(bRec.its)
* ((1-Fr) * (bRec.quantity == ERadiance ? (eta*eta) : (Float) 1));
}
}
Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &sample) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool sampleTransmission = (bRec.typeMask & EDeltaTransmission)
&& (bRec.component == -1 || bRec.component == 1);
if (!sampleTransmission && !sampleReflection)
return Spectrum(0.0f);
Float cosThetaI = Frame::cosTheta(bRec.wi),
etaI = m_extIOR,
etaT = m_intIOR;
bool entering = cosThetaI > 0.0f;
/* Determine the respective indices of refraction */
if (!entering)
std::swap(etaI, etaT);
/* Using Snell's law, calculate the squared sine of the
angle between the normal and the transmitted ray */
Float eta = etaI / etaT,
sinThetaTSqr = eta*eta * Frame::sinTheta2(bRec.wi);
Float Fr, cosThetaT = 0;
if (sinThetaTSqr >= 1.0f) {
/* Total internal reflection */
Fr = 1.0f;
} else {
cosThetaT = std::sqrt(1.0f - sinThetaTSqr);
/* Compute the Fresnel refletance */
Fr = fresnelDielectric(std::abs(cosThetaI),
cosThetaT, etaI, etaT);
if (entering)
cosThetaT = -cosThetaT;
}
if (sampleTransmission && sampleReflection) {
if (sample.x <= Fr) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
pdf = Fr;
return m_specularReflectance->getValue(bRec.its) * Fr;
} else {
bRec.sampledComponent = 1;
bRec.sampledType = EDeltaTransmission;
/* Given cos(N, transmittedRay), compute the
transmitted direction */
bRec.wo = refract(bRec.wi, eta, cosThetaT);
pdf = 1-Fr;
/* When transporting radiance, account for the solid angle
change at boundaries with different indices of refraction. */
return m_specularTransmittance->getValue(bRec.its)
* (1-Fr) * (bRec.quantity == ERadiance ? (eta*eta) : (Float) 1);
}
} else if (sampleReflection) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
pdf = 1;
return m_specularReflectance->getValue(bRec.its) * Fr;
} else {
bRec.sampledComponent = 1;
bRec.sampledType = EDeltaTransmission;
if (Fr == 1.0f) /* Total internal reflection */
return Spectrum(0.0f);
bRec.wo = refract(bRec.wi, eta, cosThetaT);
pdf = 1;
/* When transporting radiance, account for the solid angle
change at boundaries with different indices of refraction. */
return m_specularTransmittance->getValue(bRec.its)
* ((1-Fr) * (bRec.quantity == ERadiance ? (eta*eta) : (Float) 1));
}
}
std::string toString() const {
std::ostringstream oss;
oss << "SmoothDielectric[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " intIOR = " << m_intIOR << "," << endl
<< " extIOR = " << m_extIOR << "," << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
<< " specularTransmittance = " << indent(m_specularTransmittance->toString()) << endl
<< "]";
return oss.str();
}
Shader *createShader(Renderer *renderer) const;
MTS_DECLARE_CLASS()
private:
Float m_intIOR, m_extIOR;
ref<Texture> m_specularTransmittance;
ref<Texture> m_specularReflectance;
};
/* Fake glass shader -- it is really hopeless to visualize
this material in the VPL renderer, so let's try to do at least
something that suggests the presence of a transparent boundary */
class SmoothDielectricShader : public Shader {
public:
SmoothDielectricShader(Renderer *renderer) :
Shader(renderer, EBSDFShader) {
m_flags = ETransparent;
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " return vec3(0.08);" << endl
<< "}" << endl;
oss << "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " return vec3(0.08);" << endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
};
Shader *SmoothDielectric::createShader(Renderer *renderer) const {
return new SmoothDielectricShader(renderer);
}
MTS_IMPLEMENT_CLASS(SmoothDielectricShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(SmoothDielectric, false, BSDF)
MTS_EXPORT_PLUGIN(SmoothDielectric, "Smooth dielectric BSDF");
MTS_NAMESPACE_END