mitsuba/src/bsdfs/conductor.cpp

391 lines
16 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/render/texture.h>
#include <mitsuba/core/fresolver.h>
#include <mitsuba/hw/gpuprogram.h>
MTS_NAMESPACE_BEGIN
/*!\plugin{conductor}{Smooth conductor}
* \order{5}
* \parameters{
* \parameter{material}{\String}{Name of a material preset, see
* \tblref{conductor-iors}.\!\default{\texttt{Cu} / copper}}
* \parameter{eta}{\Spectrum}{Real part of the material's index
* of refraction \default{based on the value of \texttt{material}}}
* \parameter{k}{\Spectrum}{Imaginary part of the material's index of
* refraction, also known as absorption coefficient.
* \default{based on the value of \texttt{material}}}
* \lastparameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{
* Optional factor used to modulate the reflectance component
* \default{1.0}}
* }
* \renderings{
* \rendering{Measured copper material (the default)}
* {bsdf_conductor_copper.jpg}
* \rendering{Measured gold material (\lstref{conductor-gold})}
* {bsdf_conductor_gold.jpg}
* }
* This plugin implements a perfectly smooth interface to a conducting material,
* such as a metal. For a similar model that instead describes a rough surface
* microstructure, take a look at the seperately available
* \pluginref{roughconductor} plugin.
* In contrast to dielectric materials, conductors do not transmit
* any light. Their index of refraction is complex-valued and tends to undergo
* considerable changes throughout the visible color spectrum.
*
* To faciliate the tedious task of specifying spectrally-varying index of
* refraction information, Mitsuba ships with a set of measured data for
* several materials, where visible-spectrum information was publicly
* available\footnote{
* These index of refraction values are identical to the data distributed
* with PBRT. They are originally from the Luxpop database
* (\url{www.luxpop.com}) and are based on data by Palik et al.
* \cite{Palik1998Handbook} and measurements of atomic scattering factors
* made by the Center For X-Ray Optics (CXRO) at Berkeley and the
* Lawrence Livermore National Laboratory (LLNL).
* }.
*
* Note that \tblref{conductor-iors} also includes several popular optical
* coatings, which are not actually conductors. These materials can also
* be used with this plugin, though note that the plugin will ignore any
* refraction component that the actual material might have had.
* The table also contains a few birefingent materials, which are split into
* separate measurements correponding to their two indices of
* refraction (named ``ordinary'' and ``extraordinary ray'').
*
* When using this plugin, you should ideally compile Mitsuba with support for
* spectral rendering to get the most accurate results. While it also works
* in RGB mode, the computations will be much more approximate in this case.
* Also note that this material is one-sided---that is, observed from the
* back side, it will be completely black. If this is undesirable,
* consider using the \pluginref{twosided} BRDF adapter plugin.\vspace{4mm}
*
* \begin{xml}[caption=A material configuration for a smooth conductor with
* measured gold data, label=lst:conductor-gold]
* <shape type="...">
* <bsdf type="conductor">
* <string name="material" value="Au"/>
* </bsdf>
* <shape>
* \end{xml}
* \vspace{5mm}
* It is also possible to load spectrally varying index of refraction data from
* two external files containing the real and imaginary components,
* respectively (see \secref{format-spectra} for details on the file
* format):
* \begin{xml}[caption=Rendering a smooth conductor with custom data]
* <shape type="...">
* <bsdf type="conductor">
* <spectrum name="eta" filename="conductorIOR.eta.spd"/>
* <spectrum name="k" filename="conductorIOR.k.spd"/>
* </bsdf>
* <shape>
* \end{xml}
* \vspace{1.5cm}
* \begin{table}[hb!]
* \centering
* \scriptsize
* \begin{tabular}{>{\ttfamily}llp{1mm}>{\ttfamily}ll}
* \toprule
* \rmfamily\textbf{Preset(s)} & \textbf{Description} &&
* \rmfamily\textbf{Preset(s)} & \textbf{Description}\\
* \cmidrule{1-2} \cmidrule{4-5}
* a-C & Amorphous carbon && Na\_palik & Sodium \\
* Ag & Silver && Nb, Nb\_palik & Niobium \\
* Al & Aluminium && Ni\_palik & Nickel \\
* AlAs, AlAs\_palik & Cubic aluminium arsenide && Rh, Rh\_palik & Rhodium \\
* AlSb, AlSb\_palik & Cubic aluminium antimonide && Se, Se\_palik & Selenium (ord. ray) \\
* Au & Gold && Se-e, Se-e\_palik & Selenium (extr. ray) \\
* Be, Be\_palik & Polycrystalline beryllium && SiC, SiC\_palik & Hexagonal silicon carbide \\
* Cr & Chromium && SnTe, SnTe\_palik & Tin telluride\\
* CsI, CsI\_palik & Cubic caesium iodide && Ta, Ta\_palik & Tantalum \\
* Cu, Cu\_palik & Copper && Te, Te\_palik & Trigonal tellurium (ord. ray) \\
* Cu2O, Cu2O\_palik & Copper (I) oxide && Te-e, Te-e\_palik & Trigonal tellurium (extr. ray) \\
* CuO, CuO\_palik & Copper (II) oxide && ThF4, ThF4\_palik & Polycryst. thorium (IV) fluoride \\
* d-C, d-C\_palik & Cubic diamond && TiC, TiC\_palik & Polycrystalline titanium carbide \\
* Hg, Hg\_palik & Mercury && TiN, TiN\_palik & Titanium nitride \\
* HgTe, HgTe\_palik & Mercury telluride && TiO2, TiO2\_palik & Tetragonal titan. dioxide (ord. ray) \\
* Ir, Ir\_palik & Iridium && TiO2-e, TiO2-e\_palik & Tetragonal titan. dioxide (extr. ray) \\
* K, K\_palik & Polycrystalline potassium && VC, VC\_palik & Vanadium carbide \\
* Li, Li\_palik & Lithium && V\_palik & Vanadium \\
* MgO, MgO\_palik & Magnesium oxide && VN, VN\_palik & Vanadium nitride \\
* Mo, Mo\_palik & Molybdenum && W & Tungsten\\
* \bottomrule
* \end{tabular}
* \caption{
* \label{tbl:conductor-iors}
* This table lists all supported materials that can be passed into the
* \pluginref{conductor} and \pluginref{roughconductor} plugins. Note that
* some of them are not actually conductors---this is not a problem,
* they can be used regardless (though only the reflection component and
* no transmission will be simulated). In most cases, there are
* multiple entries for each material, which represent measurements by
* different authors.
* }
* \end{table}
*/
class SmoothConductor : public BSDF {
public:
SmoothConductor(const Properties &props) : BSDF(props) {
ref<FileResolver> fResolver = Thread::getThread()->getFileResolver();
m_specularReflectance = new ConstantSpectrumTexture(
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
std::string material = props.getString("material", "Cu");
Spectrum materialEta, materialK;
materialEta.fromContinuousSpectrum(InterpolatedSpectrum(
fResolver->resolve("data/ior/" + material + ".eta.spd")));
materialK.fromContinuousSpectrum(InterpolatedSpectrum(
fResolver->resolve("data/ior/" + material + ".k.spd")));
m_eta = props.getSpectrum("eta", materialEta);
m_k = props.getSpectrum("k", materialK);
m_components.push_back(EDeltaReflection | EFrontSide);
m_usesRayDifferentials = false;
}
SmoothConductor(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_eta = Spectrum(stream);
m_k = Spectrum(stream);
m_components.push_back(EDeltaReflection | EFrontSide);
m_usesRayDifferentials =
m_specularReflectance->usesRayDifferentials();
}
virtual ~SmoothConductor() { }
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
manager->serialize(stream, m_specularReflectance.get());
m_eta.serialize(stream);
m_k.serialize(stream);
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
m_specularReflectance = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
} else {
BSDF::addChild(name, child);
}
}
void configure() {
BSDF::configure();
/* Verify the input parameters and fix them if necessary */
m_specularReflectance = ensureEnergyConservation(
m_specularReflectance, "specularReflectance", 1.0f);
}
/// Reflection in local coordinates
inline Vector reflect(const Vector &wi) const {
return Vector(-wi.x, -wi.y, wi.z);
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
/* Verify that the provided direction pair matches an ideal
specular reflection; tolerate some roundoff errors */
if (!sampleReflection || measure != EDiscrete ||
Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0 ||
std::abs(1 - dot(reflect(bRec.wi), bRec.wo)) > Epsilon)
return Spectrum(0.0f);
return m_specularReflectance->getValue(bRec.its) *
fresnelConductor(Frame::cosTheta(bRec.wi), m_eta, m_k);
}
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
/* Verify that the provided direction pair matches an ideal
specular reflection; tolerate some roundoff errors */
if (!sampleReflection || measure != EDiscrete ||
Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0 ||
std::abs(1 - dot(reflect(bRec.wi), bRec.wo)) > Epsilon)
return 0.0f;
return 1.0f;
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
if (!sampleReflection || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
return m_specularReflectance->getValue(bRec.its) *
fresnelConductor(Frame::cosTheta(bRec.wi), m_eta, m_k);
}
Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &sample) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
if (!sampleReflection || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
pdf = 1;
return m_specularReflectance->getValue(bRec.its) *
fresnelConductor(Frame::cosTheta(bRec.wi), m_eta, m_k);
}
std::string toString() const {
std::ostringstream oss;
oss << "SmoothConductor[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " eta = " << m_eta.toString() << "," << endl
<< " k = " << m_k.toString() << "," << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << endl
<< "]";
return oss.str();
}
Shader *createShader(Renderer *renderer) const;
MTS_DECLARE_CLASS()
private:
ref<Texture> m_specularReflectance;
Spectrum m_eta;
Spectrum m_k;
};
/* Smooth conductor shader -- it is really hopeless to visualize
this material in the VPL renderer, so let's try to do at least
something that suggests the presence of a specularly-reflecting
conductor.
The code below is an isotropic version of the shader in
roughconductor.cpp, with \alpha fixed to 0.4f
*/
class SmoothConductorShader : public Shader {
public:
SmoothConductorShader(Renderer *renderer, const Texture *specularReflectance,
const Spectrum &eta, const Spectrum &k) : Shader(renderer, EBSDFShader),
m_specularReflectance(specularReflectance) {
m_specularReflectanceShader = renderer->registerShaderForResource(m_specularReflectance.get());
/* Compute the reflectance at perpendicular incidence */
m_R0 = fresnelConductor(1.0f, eta, k);
m_alpha = 0.4f;
}
bool isComplete() const {
return m_specularReflectanceShader.get() != NULL;
}
void putDependencies(std::vector<Shader *> &deps) {
deps.push_back(m_specularReflectanceShader.get());
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_specularReflectance.get());
}
void resolve(const GPUProgram *program, const std::string &evalName, std::vector<int> &parameterIDs) const {
parameterIDs.push_back(program->getParameterID(evalName + "_R0", false));
}
void bind(GPUProgram *program, const std::vector<int> &parameterIDs, int &textureUnitOffset) const {
program->setParameter(parameterIDs[0], m_R0);
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "uniform vec3 " << evalName << "_R0;" << endl
<< endl
<< "float " << evalName << "_D(vec3 m, float alpha) {" << endl
<< " alpha = 2 / (alpha * alpha) - 2;" << endl
<< " return (alpha + 2) * 0.15915 * pow(cosTheta(m), alpha);" << endl
<< "}" << endl
<< endl
<< "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl
<< " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl
<< " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl
<< " return 0.0;" << endl
<< " float nDotM = cosTheta(m);" << endl
<< " return min(1.0, min(" << endl
<< " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl
<< " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_schlick(vec3 wi) {" << endl
<< " float ct = cosTheta(wi), ctSqr = ct*ct," << endl
<< " ct5 = ctSqr*ctSqr*ct;" << endl
<< " return " << evalName << "_R0 + (vec3(1.0) - " << evalName << "_R0) * ct5;" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " if (cosTheta(wi) <= 0 || cosTheta(wo) <= 0)" << endl
<< " return vec3(0.0);" << endl
<< " vec3 H = normalize(wi + wo);" << endl
<< " vec3 reflectance = " << depNames[0] << "(uv);" << endl
<< " float D = " << evalName << "_D(H, " << m_alpha << ")" << ";" << endl
<< " float G = " << evalName << "_G(H, wi, wo);" << endl
<< " vec3 Fr = " << evalName << "_schlick(wi);" << endl
<< " return reflectance * Fr * (D * G / (4*cosTheta(wi)));" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " return " << evalName << "_R0 * 0.31831 * cosTheta(wo);"<< endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
private:
ref<const Texture> m_specularReflectance;
ref<Shader> m_specularReflectanceShader;
Spectrum m_R0;
Float m_alpha;
};
Shader *SmoothConductor::createShader(Renderer *renderer) const {
return new SmoothConductorShader(renderer,
m_specularReflectance.get(), m_eta, m_k);
}
MTS_IMPLEMENT_CLASS(SmoothConductorShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(SmoothConductor, false, BSDF)
MTS_EXPORT_PLUGIN(SmoothConductor, "Smooth conductor");
MTS_NAMESPACE_END