582 lines
22 KiB
C++
582 lines
22 KiB
C++
/*
|
|
This file is part of Mitsuba, a physically based rendering system.
|
|
|
|
Copyright (c) 2007-2014 by Wenzel Jakob and others.
|
|
|
|
Mitsuba is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License Version 3
|
|
as published by the Free Software Foundation.
|
|
|
|
Mitsuba is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <mitsuba/core/fresolver.h>
|
|
#include <mitsuba/render/bsdf.h>
|
|
#include <mitsuba/hw/basicshader.h>
|
|
#include "microfacet.h"
|
|
#include "ior.h"
|
|
|
|
MTS_NAMESPACE_BEGIN
|
|
|
|
/*!\plugin{roughconductor}{Rough conductor material}
|
|
* \order{7}
|
|
* \icon{bsdf_roughconductor}
|
|
* \parameters{
|
|
* \parameter{distribution}{\String}{
|
|
* Specifies the type of microfacet normal distribution
|
|
* used to model the surface roughness.
|
|
* \vspace{-1mm}
|
|
* \begin{enumerate}[(i)]
|
|
* \item \code{beckmann}: Physically-based distribution derived from
|
|
* Gaussian random surfaces. This is the default.\vspace{-1.5mm}
|
|
* \item \code{ggx}: The GGX \cite{Walter07Microfacet} distribution (also known as
|
|
* Trowbridge-Reitz \cite{Trowbridge19975Average} distribution)
|
|
* was designed to better approximate the long tails observed in measurements
|
|
* of ground surfaces, which are not modeled by the Beckmann distribution.
|
|
* \vspace{-1.5mm}
|
|
* \item \code{phong}: Anisotropic Phong distribution by
|
|
* Ashikhmin and Shirley \cite{Ashikhmin2005Anisotropic}.
|
|
* In most cases, the \code{ggx} and \code{beckmann} distributions
|
|
* should be preferred, since they provide better importance sampling
|
|
* and accurate shadowing/masking computations.
|
|
* \vspace{-4mm}
|
|
* \end{enumerate}
|
|
* }
|
|
* \parameter{alpha, alphaU, alphaV}{\Float\Or\Texture}{
|
|
* Specifies the roughness of the unresolved surface micro-geometry
|
|
* along the tangent and bitangent directions. When the Beckmann
|
|
* distribution is used, this parameter is equal to the
|
|
* \emph{root mean square} (RMS) slope of the microfacets.
|
|
* \code{alpha} is a convenience parameter to initialize both
|
|
* \code{alphaU} and \code{alphaV} to the same value. \default{0.1}.
|
|
* }
|
|
* \parameter{material}{\String}{Name of a material preset, see
|
|
* \tblref{conductor-iors}.\!\default{\texttt{Cu} / copper}}
|
|
* \parameter{eta, k}{\Spectrum}{Real and imaginary components of the material's index of
|
|
* refraction \default{based on the value of \texttt{material}}}
|
|
* \parameter{extEta}{\Float\Or\String}{
|
|
* Real-valued index of refraction of the surrounding dielectric,
|
|
* or a material name of a dielectric \default{\code{air}}
|
|
* }
|
|
* \parameter{sampleVisible}{\Boolean}{
|
|
* Enables a sampling technique proposed by Heitz and D'Eon~\cite{Heitz1014Importance},
|
|
* which focuses computation on the visible parts of the microfacet normal
|
|
* distribution, considerably reducing variance in some cases.
|
|
* \default{\code{true}, i.e. use visible normal sampling}
|
|
* }
|
|
* \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
|
|
* factor that can be used to modulate the specular reflection component. Note
|
|
* that for physical realism, this parameter should never be touched. \default{1.0}}
|
|
* }
|
|
* \vspace{3mm}
|
|
* This plugin implements a realistic microfacet scattering model for rendering
|
|
* rough conducting materials, such as metals. It can be interpreted as a fancy
|
|
* version of the Cook-Torrance model and should be preferred over
|
|
* heuristic models like \pluginref{phong} and \pluginref{ward} if possible.
|
|
* \renderings{
|
|
* \rendering{Rough copper (Beckmann, $\alpha=0.1$)}
|
|
* {bsdf_roughconductor_copper.jpg}
|
|
* \rendering{Vertically brushed aluminium (Anisotropic Phong,
|
|
* $\alpha_u=0.05,\ \alpha_v=0.3$), see
|
|
* \lstref{roughconductor-aluminium}}
|
|
* {bsdf_roughconductor_anisotropic_aluminium.jpg}
|
|
* }
|
|
*
|
|
* Microfacet theory describes rough surfaces as an arrangement of unresolved
|
|
* and ideally specular facets, whose normal directions are given by a
|
|
* specially chosen \emph{microfacet distribution}. By accounting for shadowing
|
|
* and masking effects between these facets, it is possible to reproduce the
|
|
* important off-specular reflections peaks observed in real-world measurements
|
|
* of such materials.
|
|
*
|
|
* This plugin is essentially the ``roughened'' equivalent of the (smooth) plugin
|
|
* \pluginref{conductor}. For very low values of $\alpha$, the two will
|
|
* be identical, though scenes using this plugin will take longer to render
|
|
* due to the additional computational burden of tracking surface roughness.
|
|
*
|
|
* The implementation is based on the paper ``Microfacet Models
|
|
* for Refraction through Rough Surfaces'' by Walter et al.
|
|
* \cite{Walter07Microfacet}. It supports three different types of microfacet
|
|
* distributions and has a texturable roughness parameter.
|
|
* To facilitate the tedious task of specifying spectrally-varying index of
|
|
* refraction information, this plugin can access a set of measured materials
|
|
* for which visible-spectrum information was publicly available
|
|
* (see \tblref{conductor-iors} for the full list).
|
|
* There is also a special material profile named \code{none}, which disables
|
|
* the computation of Fresnel reflectances and produces an idealized
|
|
* 100% reflecting mirror.
|
|
*
|
|
* When no parameters are given, the plugin activates the default settings,
|
|
* which describe copper with a medium amount of roughness modeled using a
|
|
* Beckmann distribution.
|
|
*
|
|
* To get an intuition about the effect of the surface roughness parameter
|
|
* $\alpha$, consider the following approximate classification: a value of
|
|
* $\alpha=0.001-0.01$ corresponds to a material with slight imperfections
|
|
* on an otherwise smooth surface finish, $\alpha=0.1$ is relatively rough,
|
|
* and $\alpha=0.3-0.7$ is \emph{extremely} rough (e.g. an etched or ground
|
|
* finish). Values significantly above that are probably not too realistic.
|
|
* \vspace{4mm}
|
|
* \begin{xml}[caption={A material definition for brushed aluminium}, label=lst:roughconductor-aluminium]
|
|
* <bsdf type="roughconductor">
|
|
* <string name="material" value="Al"/>
|
|
* <string name="distribution" value="phong"/>
|
|
* <float name="alphaU" value="0.05"/>
|
|
* <float name="alphaV" value="0.3"/>
|
|
* </bsdf>
|
|
* \end{xml}
|
|
*
|
|
* \subsubsection*{Technical details}
|
|
* All microfacet distributions allow the specification of two distinct
|
|
* roughness values along the tangent and bitangent directions. This can be
|
|
* used to provide a material with a ``brushed'' appearance. The alignment
|
|
* of the anisotropy will follow the UV parameterization of the underlying
|
|
* mesh. This means that such an anisotropic material cannot be applied to
|
|
* triangle meshes that are missing texture coordinates.
|
|
*
|
|
* \label{sec:visiblenormal-sampling}
|
|
* Since Mitsuba 0.5.1, this plugin uses a new importance sampling technique
|
|
* contributed by Eric Heitz and Eugene D'Eon, which restricts the sampling
|
|
* domain to the set of visible (unmasked) microfacet normals. The previous
|
|
* approach of sampling all normals is still available and can be enabled
|
|
* by setting \code{sampleVisible} to \code{false}.
|
|
* Note that this new method is only available for the \code{beckmann} and
|
|
* \code{ggx} microfacet distributions. When the \code{phong} distribution
|
|
* is selected, the parameter has no effect.
|
|
*
|
|
* When rendering with the Phong microfacet distribution, a conversion is
|
|
* used to turn the specified Beckmann-equivalent $\alpha$ roughness value
|
|
* into the exponent parameter of this distribution. This is done in a way,
|
|
* such that the same value $\alpha$ will produce a similar appearance across
|
|
* different microfacet distributions.
|
|
*
|
|
* When using this plugin, you should ideally compile Mitsuba with support for
|
|
* spectral rendering to get the most accurate results. While it also works
|
|
* in RGB mode, the computations will be more approximate in nature.
|
|
* Also note that this material is one-sided---that is, observed from the
|
|
* back side, it will be completely black. If this is undesirable,
|
|
* consider using the \pluginref{twosided} BRDF adapter.
|
|
*/
|
|
class RoughConductor : public BSDF {
|
|
public:
|
|
RoughConductor(const Properties &props) : BSDF(props) {
|
|
ref<FileResolver> fResolver = Thread::getThread()->getFileResolver();
|
|
|
|
m_specularReflectance = new ConstantSpectrumTexture(
|
|
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
|
|
|
|
std::string materialName = props.getString("material", "Cu");
|
|
|
|
Spectrum intEta, intK;
|
|
if (boost::to_lower_copy(materialName) == "none") {
|
|
intEta = Spectrum(0.0f);
|
|
intK = Spectrum(1.0f);
|
|
} else {
|
|
intEta.fromContinuousSpectrum(InterpolatedSpectrum(
|
|
fResolver->resolve("data/ior/" + materialName + ".eta.spd")));
|
|
intK.fromContinuousSpectrum(InterpolatedSpectrum(
|
|
fResolver->resolve("data/ior/" + materialName + ".k.spd")));
|
|
}
|
|
|
|
Float extEta = lookupIOR(props, "extEta", "air");
|
|
|
|
m_eta = props.getSpectrum("eta", intEta) / extEta;
|
|
m_k = props.getSpectrum("k", intK) / extEta;
|
|
|
|
MicrofacetDistribution distr(props);
|
|
m_type = distr.getType();
|
|
m_sampleVisible = distr.getSampleVisible();
|
|
|
|
m_alphaU = new ConstantFloatTexture(distr.getAlphaU());
|
|
if (distr.getAlphaU() == distr.getAlphaV())
|
|
m_alphaV = m_alphaU;
|
|
else
|
|
m_alphaV = new ConstantFloatTexture(distr.getAlphaV());
|
|
}
|
|
|
|
RoughConductor(Stream *stream, InstanceManager *manager)
|
|
: BSDF(stream, manager) {
|
|
m_type = (MicrofacetDistribution::EType) stream->readUInt();
|
|
m_sampleVisible = stream->readBool();
|
|
m_alphaU = static_cast<Texture *>(manager->getInstance(stream));
|
|
m_alphaV = static_cast<Texture *>(manager->getInstance(stream));
|
|
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
|
m_eta = Spectrum(stream);
|
|
m_k = Spectrum(stream);
|
|
|
|
configure();
|
|
}
|
|
|
|
void serialize(Stream *stream, InstanceManager *manager) const {
|
|
BSDF::serialize(stream, manager);
|
|
|
|
stream->writeUInt((uint32_t) m_type);
|
|
stream->writeBool(m_sampleVisible);
|
|
manager->serialize(stream, m_alphaU.get());
|
|
manager->serialize(stream, m_alphaV.get());
|
|
manager->serialize(stream, m_specularReflectance.get());
|
|
m_eta.serialize(stream);
|
|
m_k.serialize(stream);
|
|
}
|
|
|
|
void configure() {
|
|
unsigned int extraFlags = 0;
|
|
if (m_alphaU != m_alphaV)
|
|
extraFlags |= EAnisotropic;
|
|
|
|
if (!m_alphaU->isConstant() || !m_alphaV->isConstant() ||
|
|
!m_specularReflectance->isConstant())
|
|
extraFlags |= ESpatiallyVarying;
|
|
|
|
m_components.clear();
|
|
m_components.push_back(EGlossyReflection | EFrontSide | extraFlags);
|
|
|
|
/* Verify the input parameters and fix them if necessary */
|
|
m_specularReflectance = ensureEnergyConservation(
|
|
m_specularReflectance, "specularReflectance", 1.0f);
|
|
|
|
m_usesRayDifferentials =
|
|
m_alphaU->usesRayDifferentials() ||
|
|
m_alphaV->usesRayDifferentials() ||
|
|
m_specularReflectance->usesRayDifferentials();
|
|
|
|
BSDF::configure();
|
|
}
|
|
|
|
/// Helper function: reflect \c wi with respect to a given surface normal
|
|
inline Vector reflect(const Vector &wi, const Normal &m) const {
|
|
return 2 * dot(wi, m) * Vector(m) - wi;
|
|
}
|
|
|
|
Spectrum eval(const BSDFSamplingRecord &bRec, EMeasure measure) const {
|
|
/* Stop if this component was not requested */
|
|
if (measure != ESolidAngle ||
|
|
Frame::cosTheta(bRec.wi) < 0 ||
|
|
Frame::cosTheta(bRec.wo) < 0 ||
|
|
((bRec.component != -1 && bRec.component != 0) ||
|
|
!(bRec.typeMask & EGlossyReflection)))
|
|
return Spectrum(0.0f);
|
|
|
|
/* Calculate the reflection half-vector */
|
|
Vector H = normalize(bRec.wo+bRec.wi);
|
|
|
|
/* Construct the microfacet distribution matching the
|
|
roughness values at the current surface position. */
|
|
MicrofacetDistribution distr(
|
|
m_type,
|
|
m_alphaU->eval(bRec.its).average(),
|
|
m_alphaV->eval(bRec.its).average(),
|
|
m_sampleVisible
|
|
);
|
|
|
|
/* Evaluate the microfacet normal distribution */
|
|
const Float D = distr.eval(H);
|
|
if (D == 0)
|
|
return Spectrum(0.0f);
|
|
|
|
/* Fresnel factor */
|
|
const Spectrum F = fresnelConductorExact(dot(bRec.wi, H), m_eta, m_k) *
|
|
m_specularReflectance->eval(bRec.its);
|
|
|
|
/* Smith's shadow-masking function */
|
|
const Float G = distr.G(bRec.wi, bRec.wo, H);
|
|
|
|
/* Calculate the total amount of reflection */
|
|
Float model = D * G / (4.0f * Frame::cosTheta(bRec.wi));
|
|
|
|
return F * model;
|
|
}
|
|
|
|
Float pdf(const BSDFSamplingRecord &bRec, EMeasure measure) const {
|
|
if (measure != ESolidAngle ||
|
|
Frame::cosTheta(bRec.wi) < 0 ||
|
|
Frame::cosTheta(bRec.wo) < 0 ||
|
|
((bRec.component != -1 && bRec.component != 0) ||
|
|
!(bRec.typeMask & EGlossyReflection)))
|
|
return 0.0f;
|
|
|
|
/* Calculate the reflection half-vector */
|
|
Vector H = normalize(bRec.wo+bRec.wi);
|
|
|
|
/* Construct the microfacet distribution matching the
|
|
roughness values at the current surface position. */
|
|
MicrofacetDistribution distr(
|
|
m_type,
|
|
m_alphaU->eval(bRec.its).average(),
|
|
m_alphaV->eval(bRec.its).average(),
|
|
m_sampleVisible
|
|
);
|
|
|
|
if (m_sampleVisible)
|
|
return distr.eval(H) * distr.smithG1(bRec.wi, H)
|
|
/ (4.0f * Frame::cosTheta(bRec.wi));
|
|
else
|
|
return distr.pdf(bRec.wi, H) / (4 * absDot(bRec.wo, H));
|
|
}
|
|
|
|
Spectrum sample(BSDFSamplingRecord &bRec, const Point2 &sample) const {
|
|
if (Frame::cosTheta(bRec.wi) < 0 ||
|
|
((bRec.component != -1 && bRec.component != 0) ||
|
|
!(bRec.typeMask & EGlossyReflection)))
|
|
return Spectrum(0.0f);
|
|
|
|
/* Construct the microfacet distribution matching the
|
|
roughness values at the current surface position. */
|
|
MicrofacetDistribution distr(
|
|
m_type,
|
|
m_alphaU->eval(bRec.its).average(),
|
|
m_alphaV->eval(bRec.its).average(),
|
|
m_sampleVisible
|
|
);
|
|
|
|
/* Sample M, the microfacet normal */
|
|
Float pdf;
|
|
Normal m = distr.sample(bRec.wi, sample, pdf);
|
|
|
|
if (pdf == 0)
|
|
return Spectrum(0.0f);
|
|
|
|
/* Perfect specular reflection based on the microfacet normal */
|
|
bRec.wo = reflect(bRec.wi, m);
|
|
bRec.eta = 1.0f;
|
|
bRec.sampledComponent = 0;
|
|
bRec.sampledType = EGlossyReflection;
|
|
|
|
/* Side check */
|
|
if (Frame::cosTheta(bRec.wo) <= 0)
|
|
return Spectrum(0.0f);
|
|
|
|
Spectrum F = fresnelConductorExact(dot(bRec.wi, m),
|
|
m_eta, m_k) * m_specularReflectance->eval(bRec.its);
|
|
|
|
Float weight;
|
|
if (m_sampleVisible) {
|
|
weight = distr.smithG1(bRec.wo, m);
|
|
} else {
|
|
weight = distr.eval(m) * distr.G(bRec.wi, bRec.wo, m)
|
|
* dot(bRec.wi, m) / (pdf * Frame::cosTheta(bRec.wi));
|
|
}
|
|
|
|
return F * weight;
|
|
}
|
|
|
|
Spectrum sample(BSDFSamplingRecord &bRec, Float &pdf, const Point2 &sample) const {
|
|
if (Frame::cosTheta(bRec.wi) < 0 ||
|
|
((bRec.component != -1 && bRec.component != 0) ||
|
|
!(bRec.typeMask & EGlossyReflection)))
|
|
return Spectrum(0.0f);
|
|
|
|
/* Construct the microfacet distribution matching the
|
|
roughness values at the current surface position. */
|
|
MicrofacetDistribution distr(
|
|
m_type,
|
|
m_alphaU->eval(bRec.its).average(),
|
|
m_alphaV->eval(bRec.its).average(),
|
|
m_sampleVisible
|
|
);
|
|
|
|
/* Sample M, the microfacet normal */
|
|
Normal m = distr.sample(bRec.wi, sample, pdf);
|
|
|
|
if (pdf == 0)
|
|
return Spectrum(0.0f);
|
|
|
|
/* Perfect specular reflection based on the microfacet normal */
|
|
bRec.wo = reflect(bRec.wi, m);
|
|
bRec.eta = 1.0f;
|
|
bRec.sampledComponent = 0;
|
|
bRec.sampledType = EGlossyReflection;
|
|
|
|
/* Side check */
|
|
if (Frame::cosTheta(bRec.wo) <= 0)
|
|
return Spectrum(0.0f);
|
|
|
|
Spectrum F = fresnelConductorExact(dot(bRec.wi, m),
|
|
m_eta, m_k) * m_specularReflectance->eval(bRec.its);
|
|
|
|
Float weight;
|
|
if (m_sampleVisible) {
|
|
weight = distr.smithG1(bRec.wo, m);
|
|
} else {
|
|
weight = distr.eval(m) * distr.G(bRec.wi, bRec.wo, m)
|
|
* dot(bRec.wi, m) / (pdf * Frame::cosTheta(bRec.wi));
|
|
}
|
|
|
|
/* Jacobian of the half-direction mapping */
|
|
pdf /= 4.0f * dot(bRec.wo, m);
|
|
|
|
return F * weight;
|
|
}
|
|
|
|
void addChild(const std::string &name, ConfigurableObject *child) {
|
|
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
|
|
if (name == "alpha")
|
|
m_alphaU = m_alphaV = static_cast<Texture *>(child);
|
|
else if (name == "alphaU")
|
|
m_alphaU = static_cast<Texture *>(child);
|
|
else if (name == "alphaV")
|
|
m_alphaV = static_cast<Texture *>(child);
|
|
else if (name == "specularReflectance")
|
|
m_specularReflectance = static_cast<Texture *>(child);
|
|
else
|
|
BSDF::addChild(name, child);
|
|
} else {
|
|
BSDF::addChild(name, child);
|
|
}
|
|
}
|
|
|
|
Float getRoughness(const Intersection &its, int component) const {
|
|
return 0.5f * (m_alphaU->eval(its).average()
|
|
+ m_alphaV->eval(its).average());
|
|
}
|
|
|
|
std::string toString() const {
|
|
std::ostringstream oss;
|
|
oss << "RoughConductor[" << endl
|
|
<< " id = \"" << getID() << "\"," << endl
|
|
<< " distribution = " << MicrofacetDistribution::distributionName(m_type) << "," << endl
|
|
<< " sampleVisible = " << m_sampleVisible << "," << endl
|
|
<< " alphaU = " << indent(m_alphaU->toString()) << "," << endl
|
|
<< " alphaV = " << indent(m_alphaV->toString()) << "," << endl
|
|
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
|
|
<< " eta = " << m_eta.toString() << "," << endl
|
|
<< " k = " << m_k.toString() << endl
|
|
<< "]";
|
|
return oss.str();
|
|
}
|
|
|
|
Shader *createShader(Renderer *renderer) const;
|
|
|
|
MTS_DECLARE_CLASS()
|
|
private:
|
|
MicrofacetDistribution::EType m_type;
|
|
ref<Texture> m_specularReflectance;
|
|
ref<Texture> m_alphaU, m_alphaV;
|
|
bool m_sampleVisible;
|
|
Spectrum m_eta, m_k;
|
|
};
|
|
|
|
/**
|
|
* GLSL port of the rough conductor shader. This version is much more
|
|
* approximate -- it only supports the Ashikhmin-Shirley distribution,
|
|
* does everything in RGB, and it uses the Schlick approximation to the
|
|
* Fresnel reflectance of conductors. When the roughness is lower than
|
|
* \alpha < 0.2, the shader clamps it to 0.2 so that it will still perform
|
|
* reasonably well in a VPL-based preview.
|
|
*/
|
|
class RoughConductorShader : public Shader {
|
|
public:
|
|
RoughConductorShader(Renderer *renderer, const Texture *specularReflectance,
|
|
const Texture *alphaU, const Texture *alphaV, const Spectrum &eta,
|
|
const Spectrum &k) : Shader(renderer, EBSDFShader),
|
|
m_specularReflectance(specularReflectance), m_alphaU(alphaU), m_alphaV(alphaV){
|
|
m_specularReflectanceShader = renderer->registerShaderForResource(m_specularReflectance.get());
|
|
m_alphaUShader = renderer->registerShaderForResource(m_alphaU.get());
|
|
m_alphaVShader = renderer->registerShaderForResource(m_alphaV.get());
|
|
|
|
/* Compute the reflectance at perpendicular incidence */
|
|
m_R0 = fresnelConductorExact(1.0f, eta, k);
|
|
}
|
|
|
|
bool isComplete() const {
|
|
return m_specularReflectanceShader.get() != NULL &&
|
|
m_alphaUShader.get() != NULL &&
|
|
m_alphaVShader.get() != NULL;
|
|
}
|
|
|
|
void putDependencies(std::vector<Shader *> &deps) {
|
|
deps.push_back(m_specularReflectanceShader.get());
|
|
deps.push_back(m_alphaUShader.get());
|
|
deps.push_back(m_alphaVShader.get());
|
|
}
|
|
|
|
void cleanup(Renderer *renderer) {
|
|
renderer->unregisterShaderForResource(m_specularReflectance.get());
|
|
renderer->unregisterShaderForResource(m_alphaU.get());
|
|
renderer->unregisterShaderForResource(m_alphaV.get());
|
|
}
|
|
|
|
void resolve(const GPUProgram *program, const std::string &evalName, std::vector<int> ¶meterIDs) const {
|
|
parameterIDs.push_back(program->getParameterID(evalName + "_R0", false));
|
|
}
|
|
|
|
void bind(GPUProgram *program, const std::vector<int> ¶meterIDs, int &textureUnitOffset) const {
|
|
program->setParameter(parameterIDs[0], m_R0);
|
|
}
|
|
|
|
void generateCode(std::ostringstream &oss,
|
|
const std::string &evalName,
|
|
const std::vector<std::string> &depNames) const {
|
|
oss << "uniform vec3 " << evalName << "_R0;" << endl
|
|
<< endl
|
|
<< "float " << evalName << "_D(vec3 m, float alphaU, float alphaV) {" << endl
|
|
<< " float ct = cosTheta(m), ds = 1-ct*ct;" << endl
|
|
<< " if (ds <= 0.0)" << endl
|
|
<< " return 0.0f;" << endl
|
|
<< " alphaU = 2 / (alphaU * alphaU) - 2;" << endl
|
|
<< " alphaV = 2 / (alphaV * alphaV) - 2;" << endl
|
|
<< " float exponent = (alphaU*m.x*m.x + alphaV*m.y*m.y)/ds;" << endl
|
|
<< " return sqrt((alphaU+2) * (alphaV+2)) * 0.15915 * pow(ct, exponent);" << endl
|
|
<< "}" << endl
|
|
<< endl
|
|
<< "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl
|
|
<< " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl
|
|
<< " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl
|
|
<< " return 0.0;" << endl
|
|
<< " float nDotM = cosTheta(m);" << endl
|
|
<< " return min(1.0, min(" << endl
|
|
<< " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl
|
|
<< " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl
|
|
<< "}" << endl
|
|
<< endl
|
|
<< "vec3 " << evalName << "_schlick(float ct) {" << endl
|
|
<< " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl
|
|
<< " return " << evalName << "_R0 + (vec3(1.0) - " << evalName << "_R0) * ct5;" << endl
|
|
<< "}" << endl
|
|
<< endl
|
|
<< "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
|
|
<< " if (cosTheta(wi) <= 0 || cosTheta(wo) <= 0)" << endl
|
|
<< " return vec3(0.0);" << endl
|
|
<< " vec3 H = normalize(wi + wo);" << endl
|
|
<< " vec3 reflectance = " << depNames[0] << "(uv);" << endl
|
|
<< " float alphaU = max(0.2, " << depNames[1] << "(uv).r);" << endl
|
|
<< " float alphaV = max(0.2, " << depNames[2] << "(uv).r);" << endl
|
|
<< " float D = " << evalName << "_D(H, alphaU, alphaV)" << ";" << endl
|
|
<< " float G = " << evalName << "_G(H, wi, wo);" << endl
|
|
<< " vec3 F = " << evalName << "_schlick(1-dot(wi, H));" << endl
|
|
<< " return reflectance * F * (D * G / (4*cosTheta(wi)));" << endl
|
|
<< "}" << endl
|
|
<< endl
|
|
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
|
|
<< " if (cosTheta(wi) < 0.0 || cosTheta(wo) < 0.0)" << endl
|
|
<< " return vec3(0.0);" << endl
|
|
<< " return " << evalName << "_R0 * inv_pi * inv_pi * cosTheta(wo);"<< endl
|
|
<< "}" << endl;
|
|
}
|
|
MTS_DECLARE_CLASS()
|
|
private:
|
|
ref<const Texture> m_specularReflectance;
|
|
ref<const Texture> m_alphaU;
|
|
ref<const Texture> m_alphaV;
|
|
ref<Shader> m_specularReflectanceShader;
|
|
ref<Shader> m_alphaUShader;
|
|
ref<Shader> m_alphaVShader;
|
|
Spectrum m_R0;
|
|
};
|
|
|
|
Shader *RoughConductor::createShader(Renderer *renderer) const {
|
|
return new RoughConductorShader(renderer,
|
|
m_specularReflectance.get(), m_alphaU.get(), m_alphaV.get(), m_eta, m_k);
|
|
}
|
|
|
|
MTS_IMPLEMENT_CLASS(RoughConductorShader, false, Shader)
|
|
MTS_IMPLEMENT_CLASS_S(RoughConductor, false, BSDF)
|
|
MTS_EXPORT_PLUGIN(RoughConductor, "Rough conductor BRDF");
|
|
MTS_NAMESPACE_END
|