mitsuba/src/shapes/cylinder.cpp

534 lines
16 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2012 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/shape.h>
#include <mitsuba/render/bsdf.h>
#include <mitsuba/render/subsurface.h>
#include <mitsuba/render/emitter.h>
#include <mitsuba/render/sensor.h>
#include <mitsuba/render/medium.h>
#include <mitsuba/render/trimesh.h>
#include <mitsuba/core/properties.h>
MTS_NAMESPACE_BEGIN
/*!\plugin{cylinder}{Cylinder intersection primitive}
* \order{2}
* \parameters{
* \parameter{p0}{\Point}{
* Object-space starting point of the cylinder's centerline \default{(0, 0, 0)}
* }
* \parameter{p1}{\Point}{
* Object-space endpoint of the cylinder's centerline \default{(0, 0, 1)}
* }
* \parameter{radius}{\Float}{
* Radius of the cylinder in object-space units \default{1}
* }
* \parameter{flipNormals}{\Boolean}{
* Is the cylinder inverted, i.e. should the normal vectors
* be flipped? \default{\code{false}, i.e. the normals point outside}
* }
* \parameter{toWorld}{\Transform\Or\Animation}{
* Specifies an optional linear object-to-world transformation.
* Note that non-uniform scales are not permitted!
* \default{none (i.e. object space $=$ world space)}
* }
* }
* \renderings{
* \rendering{Cylinder with the default one-sided shading}
* {shape_cylinder_onesided}
* \rendering{Cylinder with two-sided shading, see \lstref{cylinder-twosided}}
* {shape_cylinder_twosided}
* }
* This shape plugin describes a simple cylinder intersection primitive.
* It should always be preferred over approximations modeled using
* triangles. Note that the cylinder does not have endcaps -- also,
* it's interior has inward-facing normals, which most scattering
* models in Mitsuba will treat as fully absorbing. If this is not
* desirable, consider using the \pluginref{twosided} plugin.
*
* \begin{xml}[caption={A simple example for instantiating a
* cylinder, whose interior is visible}, label=lst:cylinder-twosided]
* <shape type="cylinder">
* <float name="radius" value="0.3"/>
* <bsdf type="twosided">
* <bsdf type="diffuse"/>
* </bsdf>
* </shape>
* \end{xml}
*/
class Cylinder : public Shape {
private:
Transform m_objectToWorld;
Transform m_worldToObject;
Float m_radius, m_length, m_invSurfaceArea;
bool m_flipNormals;
public:
Cylinder(const Properties &props) : Shape(props) {
Float radius = props.getFloat("radius", 1.0f);
Point p1 = props.getPoint("p0", Point(0.0f, 0.0f, 0.0f));
Point p2 = props.getPoint("p1", Point(0.0f, 0.0f, 1.0f));
Vector d = p2 - p1;
Float length = d.length();
m_objectToWorld =
Transform::translate(Vector(p1)) *
Transform::fromFrame(Frame(d / length)) *
Transform::scale(Vector(radius, radius, length));
if (props.hasProperty("toWorld"))
m_objectToWorld = props.getTransform("toWorld") * m_objectToWorld;
/// Are the cylinder normals pointing inwards? default: no
m_flipNormals = props.getBoolean("flipNormals", false);
// Remove the scale from the object-to-world transform
m_radius = m_objectToWorld(Vector(1,0,0)).length();
m_length = m_objectToWorld(Vector(0,0,1)).length();
m_objectToWorld = m_objectToWorld * Transform::scale(
Vector(1/m_radius, 1/m_radius, 1/m_length));
m_worldToObject = m_objectToWorld.inverse();
m_invSurfaceArea = 1/(2*M_PI*m_radius*m_length);
Assert(m_length > 0 && m_radius > 0);
}
Cylinder(Stream *stream, InstanceManager *manager)
: Shape(stream, manager) {
m_objectToWorld = Transform(stream);
m_radius = stream->readFloat();
m_length = stream->readFloat();
m_flipNormals = stream->readBool();
m_worldToObject = m_objectToWorld.inverse();
m_invSurfaceArea = 1/(2*M_PI*m_radius*m_length);
}
void serialize(Stream *stream, InstanceManager *manager) const {
Shape::serialize(stream, manager);
m_objectToWorld.serialize(stream);
stream->writeFloat(m_radius);
stream->writeFloat(m_length);
stream->writeBool(m_flipNormals);
}
bool rayIntersect(const Ray &_ray, Float mint, Float maxt, Float &t, void *temp) const {
Ray ray;
/* Transform into the local coordinate system and normalize */
m_worldToObject(_ray, ray);
const Float
ox = ray.o.x,
oy = ray.o.y,
dx = ray.d.x,
dy = ray.d.y;
const Float A = dx*dx + dy*dy;
const Float B = 2 * (dx*ox + dy*oy);
const Float C = ox*ox + oy*oy - m_radius*m_radius;
Float nearT, farT;
if (!solveQuadratic(A, B, C, nearT, farT))
return false;
if (!(nearT <= maxt && farT >= mint)) /* NaN-aware conditionals */
return false;
const Float zPosNear = ray.o.z + ray.d.z * nearT;
const Float zPosFar = ray.o.z + ray.d.z * farT;
if (zPosNear >= 0 && zPosNear <= m_length && nearT >= mint) {
t = nearT;
} else if (zPosFar >= 0 && zPosFar <= m_length) {
if (farT > maxt)
return false;
t = farT;
} else {
return false;
}
return true;
}
bool rayIntersect(const Ray &_ray, Float mint, Float maxt) const {
Ray ray;
/* Transform into the local coordinate system and normalize */
m_worldToObject(_ray, ray);
const Float
ox = ray.o.x,
oy = ray.o.y,
dx = ray.d.x,
dy = ray.d.y;
const Float A = dx*dx + dy*dy;
const Float B = 2 * (dx*ox + dy*oy);
const Float C = ox*ox + oy*oy - m_radius*m_radius;
Float nearT, farT;
if (!solveQuadratic(A, B, C, nearT, farT))
return false;
if (nearT > maxt || farT < mint)
return false;
const Float zPosNear = ray.o.z + ray.d.z * nearT;
const Float zPosFar = ray.o.z + ray.d.z * farT;
if (zPosNear >= 0 && zPosNear <= m_length && nearT >= mint) {
return true;
} else if (zPosFar >= 0 && zPosFar <= m_length && farT <= maxt) {
return true;
} else {
return false;
}
}
void fillIntersectionRecord(const Ray &ray,
const void *temp, Intersection &its) const {
its.p = ray(its.t);
Point local = m_worldToObject(its.p);
Float phi = std::atan2(local.y, local.x);
if (phi < 0)
phi += 2*M_PI;
its.uv.x = phi / (2*M_PI);
its.uv.y = local.z / m_length;
Vector dpdu = Vector(-local.y, local.x, 0) * (2*M_PI);
Vector dpdv = Vector(0, 0, m_length);
its.shape = this;
its.dpdu = m_objectToWorld(dpdu);
its.dpdv = m_objectToWorld(dpdv);
its.geoFrame.n = Normal(normalize(cross(its.dpdu, its.dpdv)));
if (m_flipNormals)
its.geoFrame.n *= -1;
its.geoFrame.s = normalize(its.dpdu);
its.geoFrame.t = normalize(its.dpdv);
its.shFrame = its.geoFrame;
its.wi = its.toLocal(-ray.d);
its.hasUVPartials = false;
its.instance = NULL;
its.time = ray.time;
}
void samplePosition(PositionSamplingRecord &pRec, const Point2 &sample) const {
Float sinTheta, cosTheta;
math::sincos(sample.y * (2 * M_PI), &sinTheta, &cosTheta);
Point p(cosTheta*m_radius, sinTheta*m_radius, sample.x * m_length);
Normal n(cosTheta, sinTheta, 0.0f);
if (m_flipNormals)
n *= -1;
pRec.p = m_objectToWorld(p);
pRec.n = normalize(m_objectToWorld(n));
pRec.pdf = m_invSurfaceArea;
pRec.measure = EArea;
}
Float pdfPosition(const PositionSamplingRecord &pRec) const {
return m_invSurfaceArea;
}
inline AABB getAABB() const {
Vector x1 = m_objectToWorld(Vector(m_radius, 0, 0));
Vector x2 = m_objectToWorld(Vector(0, m_radius, 0));
Point p0 = m_objectToWorld(Point(0, 0, 0));
Point p1 = m_objectToWorld(Point(0, 0, m_length));
AABB result;
/* To bound the cylinder, it is sufficient to find the
smallest box containing the two circles at the endpoints.
This can be done component-wise as follows */
for (int i=0; i<3; ++i) {
Float range = std::sqrt(x1[i]*x1[i] + x2[i]*x2[i]);
result.min[i] = std::min(std::min(result.min[i],
p0[i]-range), p1[i]-range);
result.max[i] = std::max(std::max(result.max[i],
p0[i]+range), p1[i]+range);
}
return result;
}
/**
* Compute the ellipse created by the intersection of an infinite
* cylinder and a plane. Returns false in the degenerate case.
* Based on:
* www.geometrictools.com/Documentation/IntersectionCylinderPlane.pdf
*/
bool intersectCylPlane(Point planePt, Normal planeNrml,
Point cylPt, Vector cylD, Float radius, Point &center,
Vector *axes, Float *lengths) const {
if (absDot(planeNrml, cylD) < Epsilon)
return false;
Vector B, A = cylD - dot(cylD, planeNrml)*planeNrml;
Float length = A.length();
if (length != 0) {
A /= length;
B = cross(planeNrml, A);
} else {
coordinateSystem(planeNrml, A, B);
}
Vector delta = planePt - cylPt,
deltaProj = delta - cylD*dot(delta, cylD);
Float aDotD = dot(A, cylD);
Float bDotD = dot(B, cylD);
Float c0 = 1-aDotD*aDotD;
Float c1 = 1-bDotD*bDotD;
Float c2 = 2*dot(A, deltaProj);
Float c3 = 2*dot(B, deltaProj);
Float c4 = dot(delta, deltaProj) - radius*radius;
Float lambda = (c2*c2/(4*c0) + c3*c3/(4*c1) - c4)/(c0*c1);
Float alpha0 = -c2/(2*c0),
beta0 = -c3/(2*c1);
lengths[0] = std::sqrt(c1*lambda),
lengths[1] = std::sqrt(c0*lambda);
center = planePt + alpha0 * A + beta0 * B;
axes[0] = A;
axes[1] = B;
return true;
}
AABB intersectCylFace(int axis,
const Point &min, const Point &max,
const Point &cylPt, const Vector &cylD) const {
int axis1 = (axis + 1) % 3;
int axis2 = (axis + 2) % 3;
Normal planeNrml(0.0f);
planeNrml[axis] = 1;
Point ellipseCenter;
Vector ellipseAxes[2];
Float ellipseLengths[2];
AABB aabb;
if (!intersectCylPlane(min, planeNrml, cylPt, cylD, m_radius,
ellipseCenter, ellipseAxes, ellipseLengths)) {
/* Degenerate case -- return an invalid AABB. This is
not a problem, since one of the other faces will provide
enough information to arrive at a correct clipped AABB */
return aabb;
}
/* Intersect the ellipse against the sides of the AABB face */
for (int i=0; i<4; ++i) {
Point p1, p2;
p1[axis] = p2[axis] = min[axis];
p1[axis1] = ((i+1) & 2) ? min[axis1] : max[axis1];
p1[axis2] = ((i+0) & 2) ? min[axis2] : max[axis2];
p2[axis1] = ((i+2) & 2) ? min[axis1] : max[axis1];
p2[axis2] = ((i+1) & 2) ? min[axis2] : max[axis2];
Point2 p1l(
dot(p1 - ellipseCenter, ellipseAxes[0]) / ellipseLengths[0],
dot(p1 - ellipseCenter, ellipseAxes[1]) / ellipseLengths[1]);
Point2 p2l(
dot(p2 - ellipseCenter, ellipseAxes[0]) / ellipseLengths[0],
dot(p2 - ellipseCenter, ellipseAxes[1]) / ellipseLengths[1]);
Vector2 rel = p2l-p1l;
Float A = dot(rel, rel);
Float B = 2*dot(Vector2(p1l), rel);
Float C = dot(Vector2(p1l), Vector2(p1l))-1;
Float x0, x1;
if (solveQuadratic(A, B, C, x0, x1)) {
if (x0 >= 0 && x0 <= 1)
aabb.expandBy(p1+(p2-p1)*x0);
if (x1 >= 0 && x1 <= 1)
aabb.expandBy(p1+(p2-p1)*x1);
}
}
ellipseAxes[0] *= ellipseLengths[0];
ellipseAxes[1] *= ellipseLengths[1];
AABB faceBounds(min, max);
/* Find the componentwise maxima of the ellipse */
for (int i=0; i<2; ++i) {
int j = (i==0) ? axis1 : axis2;
Float alpha = ellipseAxes[0][j];
Float beta = ellipseAxes[1][j];
Float ratio = beta/alpha, tmp = std::sqrt(1+ratio*ratio);
Float cosTheta = 1/tmp, sinTheta = ratio/tmp;
Point p1 = ellipseCenter + cosTheta*ellipseAxes[0] + sinTheta*ellipseAxes[1];
Point p2 = ellipseCenter - cosTheta*ellipseAxes[0] - sinTheta*ellipseAxes[1];
if (faceBounds.contains(p1))
aabb.expandBy(p1);
if (faceBounds.contains(p2))
aabb.expandBy(p2);
}
return aabb;
}
AABB getClippedAABB(const AABB &box) const {
/* Compute a base bounding box */
AABB base(getAABB());
base.clip(box);
Point cylPt = m_objectToWorld(Point(0, 0, 0));
Vector cylD(m_objectToWorld(Vector(0, 0, 1)));
/* Now forget about the cylinder ends and
intersect an infinite cylinder with each AABB face */
AABB clippedAABB;
clippedAABB.expandBy(intersectCylFace(0,
Point(base.min.x, base.min.y, base.min.z),
Point(base.min.x, base.max.y, base.max.z),
cylPt, cylD));
clippedAABB.expandBy(intersectCylFace(0,
Point(base.max.x, base.min.y, base.min.z),
Point(base.max.x, base.max.y, base.max.z),
cylPt, cylD));
clippedAABB.expandBy(intersectCylFace(1,
Point(base.min.x, base.min.y, base.min.z),
Point(base.max.x, base.min.y, base.max.z),
cylPt, cylD));
clippedAABB.expandBy(intersectCylFace(1,
Point(base.min.x, base.max.y, base.min.z),
Point(base.max.x, base.max.y, base.max.z),
cylPt, cylD));
clippedAABB.expandBy(intersectCylFace(2,
Point(base.min.x, base.min.y, base.min.z),
Point(base.max.x, base.max.y, base.min.z),
cylPt, cylD));
clippedAABB.expandBy(intersectCylFace(2,
Point(base.min.x, base.min.y, base.max.z),
Point(base.max.x, base.max.y, base.max.z),
cylPt, cylD));
clippedAABB.clip(box);
return clippedAABB;
}
ref<TriMesh> createTriMesh() {
/// Choice of discretization
const size_t phiSteps = 20;
const Float dPhi = (2*M_PI) / phiSteps;
ref<TriMesh> mesh = new TriMesh("Cylinder approximation",
phiSteps*2, phiSteps*2, true, false, false);
Point *vertices = mesh->getVertexPositions();
Normal *normals = mesh->getVertexNormals();
Triangle *triangles = mesh->getTriangles();
size_t triangleIdx = 0, vertexIdx = 0;
for (size_t phi=0; phi<phiSteps; ++phi) {
Float sinPhi = std::sin(phi * dPhi);
Float cosPhi = std::cos(phi * dPhi);
uint32_t idx0 = (uint32_t) vertexIdx, idx1 = idx0+1;
uint32_t idx2 = (vertexIdx+2) % (2*phiSteps), idx3 = idx2+1;
normals[vertexIdx] = m_objectToWorld(Normal(cosPhi, sinPhi, 0) * (m_flipNormals ? (Float) -1 : (Float) 1));
vertices[vertexIdx++] = m_objectToWorld(Point(cosPhi*m_radius, sinPhi*m_radius, 0));
normals[vertexIdx] = m_objectToWorld(Normal(cosPhi, sinPhi, 0) * (m_flipNormals ? (Float) -1 : (Float) 1));
vertices[vertexIdx++] = m_objectToWorld(Point(cosPhi*m_radius, sinPhi*m_radius, m_length));
triangles[triangleIdx].idx[0] = idx0;
triangles[triangleIdx].idx[1] = idx2;
triangles[triangleIdx].idx[2] = idx1;
triangleIdx++;
triangles[triangleIdx].idx[0] = idx1;
triangles[triangleIdx].idx[1] = idx2;
triangles[triangleIdx].idx[2] = idx3;
triangleIdx++;
}
mesh->copyAttachments(this);
mesh->configure();
return mesh.get();
}
#if 0
AABB getAABB() const {
const Point a = m_objectToWorld(Point(0, 0, 0));
const Point b = m_objectToWorld(Point(0, 0, m_length));
const Float r = m_radius;
AABB result;
result.expandBy(a - Vector(r, r, r));
result.expandBy(a + Vector(r, r, r));
result.expandBy(b - Vector(r, r, r));
result.expandBy(b + Vector(r, r, r));
return result;
}
#endif
Float getSurfaceArea() const {
return 2*M_PI*m_radius*m_length;
}
void getNormalDerivative(const Intersection &its,
Vector &dndu, Vector &dndv, bool shadingFrame) const {
dndu = its.dpdu / (m_radius * (m_flipNormals ? -1 : 1));
dndv = Vector(0.0f);
}
size_t getPrimitiveCount() const {
return 1;
}
size_t getEffectivePrimitiveCount() const {
return 1;
}
std::string toString() const {
std::ostringstream oss;
oss << "Cylinder[" << endl
<< " radius = " << m_radius << "," << endl
<< " length = " << m_length << "," << endl
<< " objectToWorld = " << indent(m_objectToWorld.toString()) << "," << endl
<< " bsdf = " << indent(m_bsdf.toString()) << "," << endl;
if (isMediumTransition())
oss << " interiorMedium = " << indent(m_interiorMedium.toString()) << "," << endl
<< " exteriorMedium = " << indent(m_exteriorMedium.toString()) << "," << endl;
oss << " emitter = " << indent(m_emitter.toString()) << "," << endl
<< " sensor = " << indent(m_sensor.toString()) << "," << endl
<< " subsurface = " << indent(m_subsurface.toString())
<< "]";
return oss.str();
}
MTS_DECLARE_CLASS()
};
MTS_IMPLEMENT_CLASS_S(Cylinder, false, Shape)
MTS_EXPORT_PLUGIN(Cylinder, "Cylinder intersection primitive");
MTS_NAMESPACE_END