455 lines
13 KiB
C++
455 lines
13 KiB
C++
/*
|
|
This file is part of Mitsuba, a physically based rendering system.
|
|
|
|
Copyright (c) 2007-2010 by Wenzel Jakob and others.
|
|
|
|
Mitsuba is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License Version 3
|
|
as published by the Free Software Foundation.
|
|
|
|
Mitsuba is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <mitsuba/render/shape.h>
|
|
#include <mitsuba/render/bsdf.h>
|
|
#include <mitsuba/render/subsurface.h>
|
|
#include <mitsuba/render/luminaire.h>
|
|
#include <mitsuba/render/trimesh.h>
|
|
#include <mitsuba/core/properties.h>
|
|
|
|
MTS_NAMESPACE_BEGIN
|
|
|
|
class Cylinder : public Shape {
|
|
private:
|
|
Transform m_objectToWorld;
|
|
Transform m_worldToObject;
|
|
Float m_radius, m_length, m_invSurfaceArea;
|
|
public:
|
|
Cylinder(const Properties &props) : Shape(props) {
|
|
/**
|
|
* There are two ways of instantiating cylinders: either,
|
|
* one can specify a linear transformation to from the
|
|
* unit sphere using the 'toWorld' parameter, or one
|
|
* can explicitly specify two points and a radius.
|
|
*/
|
|
if (props.hasProperty("p1") && props.hasProperty("p2")
|
|
&& props.hasProperty("radius")) {
|
|
Point p1 = props.getPoint("p1"), p2 = props.getPoint("p2");
|
|
Vector rel = p2 - p1;
|
|
Float radius = props.getFloat("radius");
|
|
Float length = rel.length();
|
|
|
|
m_objectToWorld =
|
|
Transform::translate(Vector(p1)) *
|
|
Transform::fromFrame(Frame(rel/length));
|
|
m_radius = radius;
|
|
m_length = length;
|
|
} else {
|
|
Transform objectToWorld = props.getTransform("toWorld", Transform());
|
|
m_radius = objectToWorld(Vector(1,0,0)).length();
|
|
m_length = objectToWorld(Vector(0,0,1)).length();
|
|
// Remove the scale from the object-to-world trasnsform
|
|
m_objectToWorld = objectToWorld * Transform::scale(
|
|
Vector(1/m_radius, 1/m_radius, 1/m_length));
|
|
}
|
|
m_worldToObject = m_objectToWorld.inverse();
|
|
m_invSurfaceArea = 1/(2*M_PI*m_radius*m_length);
|
|
Assert(m_length > 0 && m_radius > 0);
|
|
}
|
|
|
|
Cylinder(Stream *stream, InstanceManager *manager)
|
|
: Shape(stream, manager) {
|
|
m_objectToWorld = Transform(stream);
|
|
m_radius = stream->readFloat();
|
|
m_length = stream->readFloat();
|
|
m_worldToObject = m_objectToWorld.inverse();
|
|
m_invSurfaceArea = 1/(2*M_PI*m_radius*m_length);
|
|
}
|
|
|
|
void serialize(Stream *stream, InstanceManager *manager) const {
|
|
Shape::serialize(stream, manager);
|
|
m_objectToWorld.serialize(stream);
|
|
stream->writeFloat(m_radius);
|
|
stream->writeFloat(m_length);
|
|
}
|
|
|
|
bool rayIntersect(const Ray &_ray, Float mint, Float maxt, Float &t, void *temp) const {
|
|
Ray ray;
|
|
|
|
/* Transform into the local coordinate system and normalize */
|
|
m_worldToObject(_ray, ray);
|
|
|
|
const Float
|
|
ox = ray.o.x,
|
|
oy = ray.o.y,
|
|
dx = ray.d.x,
|
|
dy = ray.d.y;
|
|
|
|
const Float A = dx*dx + dy*dy;
|
|
const Float B = 2 * (dx*ox + dy*oy);
|
|
const Float C = ox*ox + oy*oy - m_radius*m_radius;
|
|
|
|
Float nearT, farT;
|
|
if (!solveQuadratic(A, B, C, nearT, farT))
|
|
return false;
|
|
|
|
if (nearT > maxt || farT < mint)
|
|
return false;
|
|
|
|
const Float zPosNear = ray.o.z + ray.d.z * nearT;
|
|
const Float zPosFar = ray.o.z + ray.d.z * farT;
|
|
if (zPosNear >= 0 && zPosNear <= m_length && nearT >= mint) {
|
|
t = nearT;
|
|
} else if (zPosFar >= 0 && zPosFar <= m_length) {
|
|
if (farT > maxt)
|
|
return false;
|
|
t = farT;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool rayIntersect(const Ray &_ray, Float mint, Float maxt) const {
|
|
Ray ray;
|
|
|
|
/* Transform into the local coordinate system and normalize */
|
|
m_worldToObject(_ray, ray);
|
|
|
|
const Float
|
|
ox = ray.o.x,
|
|
oy = ray.o.y,
|
|
dx = ray.d.x,
|
|
dy = ray.d.y;
|
|
|
|
const Float A = dx*dx + dy*dy;
|
|
const Float B = 2 * (dx*ox + dy*oy);
|
|
const Float C = ox*ox + oy*oy - m_radius*m_radius;
|
|
|
|
Float nearT, farT;
|
|
if (!solveQuadratic(A, B, C, nearT, farT))
|
|
return false;
|
|
|
|
if (nearT > maxt || farT < mint)
|
|
return false;
|
|
|
|
const Float zPosNear = ray.o.z + ray.d.z * nearT;
|
|
const Float zPosFar = ray.o.z + ray.d.z * farT;
|
|
if (zPosNear >= 0 && zPosNear <= m_length && nearT >= mint) {
|
|
return true;
|
|
} else if (zPosFar >= 0 && zPosFar <= m_length && farT <= maxt) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void fillIntersectionRecord(const Ray &ray,
|
|
const void *temp, Intersection &its) const {
|
|
its.p = ray(its.t);
|
|
|
|
Point local = m_worldToObject(its.p);
|
|
Float phi = std::atan2(local.y, local.x);
|
|
if (phi < 0)
|
|
phi += 2*M_PI;
|
|
its.uv.x = local.z / m_length;
|
|
its.uv.y = phi / (2*M_PI);
|
|
|
|
Vector dpdu = Vector(-local.y, local.x, 0) * (2*M_PI);
|
|
Vector dpdv = Vector(0, 0, m_length);
|
|
its.dpdu = m_objectToWorld(dpdu);
|
|
its.dpdv = m_objectToWorld(dpdv);
|
|
its.geoFrame.n = Normal(normalize(m_objectToWorld(cross(dpdu, dpdv))));
|
|
its.geoFrame.s = normalize(its.dpdu);
|
|
its.geoFrame.t = normalize(its.dpdv);
|
|
its.shFrame = its.geoFrame;
|
|
its.wi = its.toLocal(-ray.d);
|
|
its.hasUVPartials = false;
|
|
its.shape = this;
|
|
}
|
|
|
|
Float sampleArea(ShapeSamplingRecord &sRec, const Point2 &sample) const {
|
|
Point p = Point(m_radius * std::cos(sample.y),
|
|
m_radius * std::sin(sample.y),
|
|
sample.x * m_length);
|
|
sRec.p = m_objectToWorld(p);
|
|
sRec.n = normalize(m_objectToWorld(Normal(p.x, p.y, 0.0f)));
|
|
return m_invSurfaceArea;
|
|
}
|
|
|
|
inline AABB getAABB() const {
|
|
Vector x1 = m_objectToWorld(Vector(m_radius, 0, 0));
|
|
Vector x2 = m_objectToWorld(Vector(0, m_radius, 0));
|
|
Point p0 = m_objectToWorld(Point(0, 0, 0));
|
|
Point p1 = m_objectToWorld(Point(0, 0, m_length));
|
|
AABB result;
|
|
|
|
/* To bound the cylinder, it is sufficient to find the
|
|
smallest box containing the two circles at the endpoints.
|
|
This can be done component-wise as follows */
|
|
|
|
for (int i=0; i<3; ++i) {
|
|
Float range = std::sqrt(x1[i]*x1[i] + x2[i]*x2[i]);
|
|
|
|
result.min[i] = std::min(std::min(result.min[i],
|
|
p0[i]-range), p1[i]-range);
|
|
result.max[i] = std::max(std::max(result.max[i],
|
|
p0[i]+range), p1[i]+range);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Compute the ellipse created by the intersection of an infinite
|
|
* cylinder and a plane. Returns false in the degenerate case.
|
|
* Based on:
|
|
* www.geometrictools.com/Documentation/IntersectionCylinderPlane.pdf
|
|
*/
|
|
bool intersectCylPlane(Point planePt, Normal planeNrml,
|
|
Point cylPt, Vector cylD, Float radius, Point ¢er,
|
|
Vector *axes, Float *lengths) const {
|
|
if (absDot(planeNrml, cylD) < Epsilon)
|
|
return false;
|
|
|
|
Vector B, A = cylD - dot(cylD, planeNrml)*planeNrml;
|
|
|
|
Float length = A.length();
|
|
if (length != 0) {
|
|
A /= length;
|
|
B = cross(planeNrml, A);
|
|
} else {
|
|
coordinateSystem(planeNrml, A, B);
|
|
}
|
|
|
|
Vector delta = planePt - cylPt,
|
|
deltaProj = delta - cylD*dot(delta, cylD);
|
|
|
|
Float aDotD = dot(A, cylD);
|
|
Float bDotD = dot(B, cylD);
|
|
Float c0 = 1-aDotD*aDotD;
|
|
Float c1 = 1-bDotD*bDotD;
|
|
Float c2 = 2*dot(A, deltaProj);
|
|
Float c3 = 2*dot(B, deltaProj);
|
|
Float c4 = dot(delta, deltaProj) - radius*radius;
|
|
|
|
Float lambda = (c2*c2/(4*c0) + c3*c3/(4*c1) - c4)/(c0*c1);
|
|
|
|
Float alpha0 = -c2/(2*c0),
|
|
beta0 = -c3/(2*c1);
|
|
|
|
lengths[0] = std::sqrt(c1*lambda),
|
|
lengths[1] = std::sqrt(c0*lambda);
|
|
|
|
center = planePt + alpha0 * A + beta0 * B;
|
|
axes[0] = A;
|
|
axes[1] = B;
|
|
return true;
|
|
}
|
|
|
|
AABB intersectCylFace(int axis,
|
|
const Point &min, const Point &max,
|
|
const Point &cylPt, const Vector &cylD) const {
|
|
int axis1 = (axis + 1) % 3;
|
|
int axis2 = (axis + 2) % 3;
|
|
|
|
Normal planeNrml(0.0f);
|
|
planeNrml[axis] = 1;
|
|
|
|
Point ellipseCenter;
|
|
Vector ellipseAxes[2];
|
|
Float ellipseLengths[2];
|
|
|
|
AABB aabb;
|
|
if (!intersectCylPlane(min, planeNrml, cylPt, cylD, m_radius,
|
|
ellipseCenter, ellipseAxes, ellipseLengths)) {
|
|
/* Degenerate case -- return an invalid AABB. This is
|
|
not a problem, since one of the other faces will provide
|
|
enough information to arrive at a correct clipped AABB */
|
|
return aabb;
|
|
}
|
|
|
|
/* Intersect the ellipse against the sides of the AABB face */
|
|
for (int i=0; i<4; ++i) {
|
|
Point p1, p2;
|
|
p1[axis] = p2[axis] = min[axis];
|
|
p1[axis1] = ((i+1) & 2) ? min[axis1] : max[axis1];
|
|
p1[axis2] = ((i+0) & 2) ? min[axis2] : max[axis2];
|
|
p2[axis1] = ((i+2) & 2) ? min[axis1] : max[axis1];
|
|
p2[axis2] = ((i+1) & 2) ? min[axis2] : max[axis2];
|
|
|
|
Point2 p1l(
|
|
dot(p1 - ellipseCenter, ellipseAxes[0]) / ellipseLengths[0],
|
|
dot(p1 - ellipseCenter, ellipseAxes[1]) / ellipseLengths[1]);
|
|
Point2 p2l(
|
|
dot(p2 - ellipseCenter, ellipseAxes[0]) / ellipseLengths[0],
|
|
dot(p2 - ellipseCenter, ellipseAxes[1]) / ellipseLengths[1]);
|
|
|
|
Vector2 rel = p2l-p1l;
|
|
Float A = dot(rel, rel);
|
|
Float B = 2*dot(Vector2(p1l), rel);
|
|
Float C = dot(Vector2(p1l), Vector2(p1l))-1;
|
|
|
|
Float x0, x1;
|
|
if (solveQuadratic(A, B, C, x0, x1)) {
|
|
if (x0 >= 0 && x0 <= 1)
|
|
aabb.expandBy(p1+(p2-p1)*x0);
|
|
if (x1 >= 0 && x1 <= 1)
|
|
aabb.expandBy(p1+(p2-p1)*x1);
|
|
}
|
|
}
|
|
|
|
ellipseAxes[0] *= ellipseLengths[0];
|
|
ellipseAxes[1] *= ellipseLengths[1];
|
|
AABB faceBounds(min, max);
|
|
|
|
/* Find the componentwise maxima of the ellipse */
|
|
for (int i=0; i<2; ++i) {
|
|
int j = (i==0) ? axis1 : axis2;
|
|
Float alpha = ellipseAxes[0][j];
|
|
Float beta = ellipseAxes[1][j];
|
|
Float ratio = beta/alpha, tmp = std::sqrt(1+ratio*ratio);
|
|
Float cosTheta = 1/tmp, sinTheta = ratio/tmp;
|
|
Point p1 = ellipseCenter + cosTheta*ellipseAxes[0] + sinTheta*ellipseAxes[1];
|
|
Point p2 = ellipseCenter - cosTheta*ellipseAxes[0] - sinTheta*ellipseAxes[1];
|
|
|
|
if (faceBounds.contains(p1))
|
|
aabb.expandBy(p1);
|
|
if (faceBounds.contains(p2))
|
|
aabb.expandBy(p2);
|
|
}
|
|
|
|
return aabb;
|
|
}
|
|
|
|
AABB getClippedAABB(const AABB &box) const {
|
|
/* Compute a base bounding box */
|
|
AABB base(getAABB());
|
|
base.clip(box);
|
|
|
|
Point cylPt = m_objectToWorld(Point(0, 0, 0));
|
|
Vector cylD(m_objectToWorld(Vector(0, 0, 1)));
|
|
|
|
/* Now forget about the cylinder ends and
|
|
intersect an infinite cylinder with each AABB face */
|
|
AABB clippedAABB;
|
|
clippedAABB.expandBy(intersectCylFace(0,
|
|
Point(base.min.x, base.min.y, base.min.z),
|
|
Point(base.min.x, base.max.y, base.max.z),
|
|
cylPt, cylD));
|
|
|
|
clippedAABB.expandBy(intersectCylFace(0,
|
|
Point(base.max.x, base.min.y, base.min.z),
|
|
Point(base.max.x, base.max.y, base.max.z),
|
|
cylPt, cylD));
|
|
|
|
clippedAABB.expandBy(intersectCylFace(1,
|
|
Point(base.min.x, base.min.y, base.min.z),
|
|
Point(base.max.x, base.min.y, base.max.z),
|
|
cylPt, cylD));
|
|
|
|
clippedAABB.expandBy(intersectCylFace(1,
|
|
Point(base.min.x, base.max.y, base.min.z),
|
|
Point(base.max.x, base.max.y, base.max.z),
|
|
cylPt, cylD));
|
|
|
|
clippedAABB.expandBy(intersectCylFace(2,
|
|
Point(base.min.x, base.min.y, base.min.z),
|
|
Point(base.max.x, base.max.y, base.min.z),
|
|
cylPt, cylD));
|
|
|
|
clippedAABB.expandBy(intersectCylFace(2,
|
|
Point(base.min.x, base.min.y, base.max.z),
|
|
Point(base.max.x, base.max.y, base.max.z),
|
|
cylPt, cylD));
|
|
|
|
clippedAABB.clip(box);
|
|
return clippedAABB;
|
|
}
|
|
|
|
ref<TriMesh> createTriMesh() {
|
|
/// Choice of discretization
|
|
const size_t phiSteps = 20;
|
|
const Float dPhi = (2*M_PI) / phiSteps;
|
|
|
|
ref<TriMesh> mesh = new TriMesh("Cylinder approximation",
|
|
phiSteps*2, phiSteps*2, true, false, false);
|
|
|
|
Point *vertices = mesh->getVertexPositions();
|
|
Normal *normals = mesh->getVertexNormals();
|
|
Triangle *triangles = mesh->getTriangles();
|
|
size_t triangleIdx = 0, vertexIdx = 0;
|
|
|
|
for (size_t phi=0; phi<phiSteps; ++phi) {
|
|
Float sinPhi = std::sin(phi * dPhi);
|
|
Float cosPhi = std::cos(phi * dPhi);
|
|
int idx0 = vertexIdx, idx1 = idx0+1;
|
|
int idx2 = (vertexIdx+2) % (2*phiSteps), idx3 = idx2+1;
|
|
normals[vertexIdx] = m_objectToWorld(Normal(cosPhi, sinPhi, 0));
|
|
vertices[vertexIdx++] = m_objectToWorld(Point(cosPhi*m_radius, sinPhi*m_radius, 0));
|
|
normals[vertexIdx] = m_objectToWorld(Normal(cosPhi, sinPhi, 0));
|
|
vertices[vertexIdx++] = m_objectToWorld(Point(cosPhi*m_radius, sinPhi*m_radius, m_length));
|
|
|
|
triangles[triangleIdx].idx[0] = idx0;
|
|
triangles[triangleIdx].idx[1] = idx2;
|
|
triangles[triangleIdx].idx[2] = idx1;
|
|
triangleIdx++;
|
|
triangles[triangleIdx].idx[0] = idx1;
|
|
triangles[triangleIdx].idx[1] = idx2;
|
|
triangles[triangleIdx].idx[2] = idx3;
|
|
triangleIdx++;
|
|
}
|
|
|
|
mesh->setBSDF(m_bsdf);
|
|
mesh->setLuminaire(m_luminaire);
|
|
mesh->configure();
|
|
|
|
return mesh.get();
|
|
}
|
|
|
|
#if 0
|
|
AABB getAABB() const {
|
|
const Point a = m_objectToWorld(Point(0, 0, 0));
|
|
const Point b = m_objectToWorld(Point(0, 0, m_length));
|
|
|
|
const Float r = m_radius;
|
|
AABB result;
|
|
result.expandBy(a - Vector(r, r, r));
|
|
result.expandBy(a + Vector(r, r, r));
|
|
result.expandBy(b - Vector(r, r, r));
|
|
result.expandBy(b + Vector(r, r, r));
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
Float getSurfaceArea() const {
|
|
return 2*M_PI*m_radius*m_length;
|
|
}
|
|
|
|
std::string toString() const {
|
|
std::ostringstream oss;
|
|
oss << "Cylinder[" << endl
|
|
<< " radius = " << m_radius << ", " << endl
|
|
<< " length = " << m_length << ", " << endl
|
|
<< " objectToWorld = " << indent(m_objectToWorld.toString()) << "," << endl
|
|
<< " bsdf = " << indent(m_bsdf.toString()) << "," << endl
|
|
<< " luminaire = " << indent(m_luminaire.toString()) << "," << endl
|
|
<< " subsurface = " << indent(m_subsurface.toString())
|
|
<< "]";
|
|
return oss.str();
|
|
}
|
|
|
|
MTS_DECLARE_CLASS()
|
|
};
|
|
|
|
MTS_IMPLEMENT_CLASS_S(Cylinder, false, Shape)
|
|
MTS_EXPORT_PLUGIN(Cylinder, "Cylinder intersection primitive");
|
|
MTS_NAMESPACE_END
|