/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2010 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include MTS_NAMESPACE_BEGIN class Cylinder : public Shape { private: Transform m_objectToWorld; Transform m_worldToObject; Float m_radius, m_length, m_invSurfaceArea; public: Cylinder(const Properties &props) : Shape(props) { /** * There are two ways of instantiating cylinders: either, * one can specify a linear transformation to from the * unit sphere using the 'toWorld' parameter, or one * can explicitly specify two points and a radius. */ if (props.hasProperty("p1") && props.hasProperty("p2") && props.hasProperty("radius")) { Point p1 = props.getPoint("p1"), p2 = props.getPoint("p2"); Vector rel = p2 - p1; Float radius = props.getFloat("radius"); Float length = rel.length(); m_objectToWorld = Transform::translate(Vector(p1)) * Transform::fromFrame(Frame(rel/length)); m_radius = radius; m_length = length; } else { Transform objectToWorld = props.getTransform("toWorld", Transform()); m_radius = objectToWorld(Vector(1,0,0)).length(); m_length = objectToWorld(Vector(0,0,1)).length(); // Remove the scale from the object-to-world trasnsform m_objectToWorld = objectToWorld * Transform::scale( Vector(1/m_radius, 1/m_radius, 1/m_length)); } m_worldToObject = m_objectToWorld.inverse(); m_invSurfaceArea = 1/(2*M_PI*m_radius*m_length); Assert(m_length > 0 && m_radius > 0); } Cylinder(Stream *stream, InstanceManager *manager) : Shape(stream, manager) { m_objectToWorld = Transform(stream); m_radius = stream->readFloat(); m_length = stream->readFloat(); m_worldToObject = m_objectToWorld.inverse(); m_invSurfaceArea = 1/(2*M_PI*m_radius*m_length); } void serialize(Stream *stream, InstanceManager *manager) const { Shape::serialize(stream, manager); m_objectToWorld.serialize(stream); stream->writeFloat(m_radius); stream->writeFloat(m_length); } bool rayIntersect(const Ray &_ray, Float mint, Float maxt, Float &t, void *temp) const { Ray ray; /* Transform into the local coordinate system and normalize */ m_worldToObject(_ray, ray); const Float ox = ray.o.x, oy = ray.o.y, dx = ray.d.x, dy = ray.d.y; const Float A = dx*dx + dy*dy; const Float B = 2 * (dx*ox + dy*oy); const Float C = ox*ox + oy*oy - m_radius*m_radius; Float nearT, farT; if (!solveQuadratic(A, B, C, nearT, farT)) return false; if (nearT > maxt || farT < mint) return false; const Float zPosNear = ray.o.z + ray.d.z * nearT; const Float zPosFar = ray.o.z + ray.d.z * farT; if (zPosNear >= 0 && zPosNear <= m_length && nearT >= mint) { t = nearT; } else if (zPosFar >= 0 && zPosFar <= m_length) { if (farT > maxt) return false; t = farT; } else { return false; } return true; } bool rayIntersect(const Ray &_ray, Float mint, Float maxt) const { Ray ray; /* Transform into the local coordinate system and normalize */ m_worldToObject(_ray, ray); const Float ox = ray.o.x, oy = ray.o.y, dx = ray.d.x, dy = ray.d.y; const Float A = dx*dx + dy*dy; const Float B = 2 * (dx*ox + dy*oy); const Float C = ox*ox + oy*oy - m_radius*m_radius; Float nearT, farT; if (!solveQuadratic(A, B, C, nearT, farT)) return false; if (nearT > maxt || farT < mint) return false; const Float zPosNear = ray.o.z + ray.d.z * nearT; const Float zPosFar = ray.o.z + ray.d.z * farT; if (zPosNear >= 0 && zPosNear <= m_length && nearT >= mint) { return true; } else if (zPosFar >= 0 && zPosFar <= m_length && farT <= maxt) { return true; } else { return false; } } void fillIntersectionRecord(const Ray &ray, const void *temp, Intersection &its) const { its.p = ray(its.t); Point local = m_worldToObject(its.p); Float phi = std::atan2(local.y, local.x); if (phi < 0) phi += 2*M_PI; its.uv.x = local.z / m_length; its.uv.y = phi / (2*M_PI); Vector dpdu = Vector(-local.y, local.x, 0) * (2*M_PI); Vector dpdv = Vector(0, 0, m_length); its.dpdu = m_objectToWorld(dpdu); its.dpdv = m_objectToWorld(dpdv); its.geoFrame.n = Normal(normalize(m_objectToWorld(cross(dpdu, dpdv)))); its.geoFrame.s = normalize(its.dpdu); its.geoFrame.t = normalize(its.dpdv); its.shFrame = its.geoFrame; its.wi = its.toLocal(-ray.d); its.hasUVPartials = false; its.shape = this; } Float sampleArea(ShapeSamplingRecord &sRec, const Point2 &sample) const { Point p = Point(m_radius * std::cos(sample.y), m_radius * std::sin(sample.y), sample.x * m_length); sRec.p = m_objectToWorld(p); sRec.n = normalize(m_objectToWorld(Normal(p.x, p.y, 0.0f))); return m_invSurfaceArea; } inline AABB getAABB() const { Vector x1 = m_objectToWorld(Vector(m_radius, 0, 0)); Vector x2 = m_objectToWorld(Vector(0, m_radius, 0)); Point p0 = m_objectToWorld(Point(0, 0, 0)); Point p1 = m_objectToWorld(Point(0, 0, m_length)); AABB result; /* To bound the cylinder, it is sufficient to find the smallest box containing the two circles at the endpoints. This can be done component-wise as follows */ for (int i=0; i<3; ++i) { Float range = std::sqrt(x1[i]*x1[i] + x2[i]*x2[i]); result.min[i] = std::min(std::min(result.min[i], p0[i]-range), p1[i]-range); result.max[i] = std::max(std::max(result.max[i], p0[i]+range), p1[i]+range); } return result; } /** * Compute the ellipse created by the intersection of an infinite * cylinder and a plane. Returns false in the degenerate case. * Based on: * www.geometrictools.com/Documentation/IntersectionCylinderPlane.pdf */ bool intersectCylPlane(Point planePt, Normal planeNrml, Point cylPt, Vector cylD, Float radius, Point ¢er, Vector *axes, Float *lengths) const { if (absDot(planeNrml, cylD) < Epsilon) return false; Vector B, A = cylD - dot(cylD, planeNrml)*planeNrml; Float length = A.length(); if (length != 0) { A /= length; B = cross(planeNrml, A); } else { coordinateSystem(planeNrml, A, B); } Vector delta = planePt - cylPt, deltaProj = delta - cylD*dot(delta, cylD); Float aDotD = dot(A, cylD); Float bDotD = dot(B, cylD); Float c0 = 1-aDotD*aDotD; Float c1 = 1-bDotD*bDotD; Float c2 = 2*dot(A, deltaProj); Float c3 = 2*dot(B, deltaProj); Float c4 = dot(delta, deltaProj) - radius*radius; Float lambda = (c2*c2/(4*c0) + c3*c3/(4*c1) - c4)/(c0*c1); Float alpha0 = -c2/(2*c0), beta0 = -c3/(2*c1); lengths[0] = std::sqrt(c1*lambda), lengths[1] = std::sqrt(c0*lambda); center = planePt + alpha0 * A + beta0 * B; axes[0] = A; axes[1] = B; return true; } AABB intersectCylFace(int axis, const Point &min, const Point &max, const Point &cylPt, const Vector &cylD) const { int axis1 = (axis + 1) % 3; int axis2 = (axis + 2) % 3; Normal planeNrml(0.0f); planeNrml[axis] = 1; Point ellipseCenter; Vector ellipseAxes[2]; Float ellipseLengths[2]; AABB aabb; if (!intersectCylPlane(min, planeNrml, cylPt, cylD, m_radius, ellipseCenter, ellipseAxes, ellipseLengths)) { /* Degenerate case -- return an invalid AABB. This is not a problem, since one of the other faces will provide enough information to arrive at a correct clipped AABB */ return aabb; } /* Intersect the ellipse against the sides of the AABB face */ for (int i=0; i<4; ++i) { Point p1, p2; p1[axis] = p2[axis] = min[axis]; p1[axis1] = ((i+1) & 2) ? min[axis1] : max[axis1]; p1[axis2] = ((i+0) & 2) ? min[axis2] : max[axis2]; p2[axis1] = ((i+2) & 2) ? min[axis1] : max[axis1]; p2[axis2] = ((i+1) & 2) ? min[axis2] : max[axis2]; Point2 p1l( dot(p1 - ellipseCenter, ellipseAxes[0]) / ellipseLengths[0], dot(p1 - ellipseCenter, ellipseAxes[1]) / ellipseLengths[1]); Point2 p2l( dot(p2 - ellipseCenter, ellipseAxes[0]) / ellipseLengths[0], dot(p2 - ellipseCenter, ellipseAxes[1]) / ellipseLengths[1]); Vector2 rel = p2l-p1l; Float A = dot(rel, rel); Float B = 2*dot(Vector2(p1l), rel); Float C = dot(Vector2(p1l), Vector2(p1l))-1; Float x0, x1; if (solveQuadratic(A, B, C, x0, x1)) { if (x0 >= 0 && x0 <= 1) aabb.expandBy(p1+(p2-p1)*x0); if (x1 >= 0 && x1 <= 1) aabb.expandBy(p1+(p2-p1)*x1); } } ellipseAxes[0] *= ellipseLengths[0]; ellipseAxes[1] *= ellipseLengths[1]; AABB faceBounds(min, max); /* Find the componentwise maxima of the ellipse */ for (int i=0; i<2; ++i) { int j = (i==0) ? axis1 : axis2; Float alpha = ellipseAxes[0][j]; Float beta = ellipseAxes[1][j]; Float ratio = beta/alpha, tmp = std::sqrt(1+ratio*ratio); Float cosTheta = 1/tmp, sinTheta = ratio/tmp; Point p1 = ellipseCenter + cosTheta*ellipseAxes[0] + sinTheta*ellipseAxes[1]; Point p2 = ellipseCenter - cosTheta*ellipseAxes[0] - sinTheta*ellipseAxes[1]; if (faceBounds.contains(p1)) aabb.expandBy(p1); if (faceBounds.contains(p2)) aabb.expandBy(p2); } return aabb; } AABB getClippedAABB(const AABB &box) const { /* Compute a base bounding box */ AABB base(getAABB()); base.clip(box); Point cylPt = m_objectToWorld(Point(0, 0, 0)); Vector cylD(m_objectToWorld(Vector(0, 0, 1))); /* Now forget about the cylinder ends and intersect an infinite cylinder with each AABB face */ AABB clippedAABB; clippedAABB.expandBy(intersectCylFace(0, Point(base.min.x, base.min.y, base.min.z), Point(base.min.x, base.max.y, base.max.z), cylPt, cylD)); clippedAABB.expandBy(intersectCylFace(0, Point(base.max.x, base.min.y, base.min.z), Point(base.max.x, base.max.y, base.max.z), cylPt, cylD)); clippedAABB.expandBy(intersectCylFace(1, Point(base.min.x, base.min.y, base.min.z), Point(base.max.x, base.min.y, base.max.z), cylPt, cylD)); clippedAABB.expandBy(intersectCylFace(1, Point(base.min.x, base.max.y, base.min.z), Point(base.max.x, base.max.y, base.max.z), cylPt, cylD)); clippedAABB.expandBy(intersectCylFace(2, Point(base.min.x, base.min.y, base.min.z), Point(base.max.x, base.max.y, base.min.z), cylPt, cylD)); clippedAABB.expandBy(intersectCylFace(2, Point(base.min.x, base.min.y, base.max.z), Point(base.max.x, base.max.y, base.max.z), cylPt, cylD)); clippedAABB.clip(box); return clippedAABB; } ref createTriMesh() { /// Choice of discretization const size_t phiSteps = 20; const Float dPhi = (2*M_PI) / phiSteps; ref mesh = new TriMesh("Cylinder approximation", phiSteps*2, phiSteps*2, true, false, false); Point *vertices = mesh->getVertexPositions(); Normal *normals = mesh->getVertexNormals(); Triangle *triangles = mesh->getTriangles(); size_t triangleIdx = 0, vertexIdx = 0; for (size_t phi=0; phisetBSDF(m_bsdf); mesh->setLuminaire(m_luminaire); mesh->configure(); return mesh.get(); } #if 0 AABB getAABB() const { const Point a = m_objectToWorld(Point(0, 0, 0)); const Point b = m_objectToWorld(Point(0, 0, m_length)); const Float r = m_radius; AABB result; result.expandBy(a - Vector(r, r, r)); result.expandBy(a + Vector(r, r, r)); result.expandBy(b - Vector(r, r, r)); result.expandBy(b + Vector(r, r, r)); return result; } #endif Float getSurfaceArea() const { return 2*M_PI*m_radius*m_length; } std::string toString() const { std::ostringstream oss; oss << "Cylinder[" << endl << " radius = " << m_radius << ", " << endl << " length = " << m_length << ", " << endl << " objectToWorld = " << indent(m_objectToWorld.toString()) << "," << endl << " bsdf = " << indent(m_bsdf.toString()) << "," << endl << " luminaire = " << indent(m_luminaire.toString()) << "," << endl << " subsurface = " << indent(m_subsurface.toString()) << "]"; return oss.str(); } MTS_DECLARE_CLASS() }; MTS_IMPLEMENT_CLASS_S(Cylinder, false, Shape) MTS_EXPORT_PLUGIN(Cylinder, "Cylinder intersection primitive"); MTS_NAMESPACE_END