fancy roughplastic sampling strategy, just before cleanup
parent
0803cba093
commit
bf9dc03fd8
|
@ -6,7 +6,7 @@
|
|||
Beckmann microfacet distribution -->
|
||||
<bsdf type="roughplastic">
|
||||
<string name="distribution" value="beckmann"/>
|
||||
<float name="alpha" value=".3"/>
|
||||
<float name="alpha" value=".7"/>
|
||||
</bsdf>
|
||||
|
||||
<!-- Test the smooth diffuse model -->
|
||||
|
|
|
@ -56,7 +56,8 @@ public:
|
|||
/// Construct a mip map from a HDR bitmap
|
||||
static ref<MIPMap> fromBitmap(Bitmap *bitmap,
|
||||
EFilterType filterType = EEWA, EWrapMode wrapMode = ERepeat,
|
||||
Float maxAnisotropy = 8.0f);
|
||||
Float maxAnisotropy = 8.0f,
|
||||
Spectrum::EConversionIntent intent = Spectrum::EReflectance);
|
||||
|
||||
/// Do a mip-map lookup at the appropriate level
|
||||
Spectrum getValue(Float u, Float v,
|
||||
|
|
|
@ -469,7 +469,11 @@ public:
|
|||
|
||||
/**
|
||||
* \brief Compute a spline representation that gives the probability
|
||||
* of sampling a transmission event e.g. in the plugin 'roughdielectric'.
|
||||
* of choosing a reflection event when importance sampling wrt. the
|
||||
* Fresnel coefficient between a sampled microsurface normal and the
|
||||
* incident direction.
|
||||
*
|
||||
* This function is currently used by the plugin 'roughplastic'.
|
||||
*
|
||||
* Like \ref computeRoughTransmittance, the spline is parameterized by the
|
||||
* cosine of the angle between the indident direction and the (macro-)
|
||||
|
@ -477,7 +481,8 @@ public:
|
|||
*
|
||||
* \remark This function only works for isotropic microfacet distributions
|
||||
*/
|
||||
CubicSpline *computeTransmissionProbability(Float extIOR, Float intIOR, Float alpha, size_t resolution) const {
|
||||
CubicSpline *computeTransmissionProbability(Float extIOR, Float intIOR,
|
||||
Float alpha, Float specularSamplingWeight, size_t resolution) const {
|
||||
if (isAnisotropic())
|
||||
SLog(EError, "MicrofacetDistribution::computeTransmissionProbability(): only "
|
||||
"supports isotropic distributions!");
|
||||
|
@ -496,7 +501,7 @@ public:
|
|||
|
||||
integrator.integrateVectorized(
|
||||
boost::bind(&MicrofacetDistribution::integrand2, this,
|
||||
wi, extIOR, intIOR, alpha, _1, _2, _3),
|
||||
wi, extIOR, intIOR, alpha, specularSamplingWeight, _1, _2, _3),
|
||||
min, max, &integral, &error, &nEvals
|
||||
);
|
||||
|
||||
|
@ -545,17 +550,14 @@ protected:
|
|||
|
||||
/// Integrand helper function called by \ref computeTransmissionProbability
|
||||
void integrand2(const Vector &wi, Float extIOR, Float intIOR, Float alpha,
|
||||
size_t nPts, const Float *in, Float *out) const {
|
||||
Float specularSamplingWeight, size_t nPts, const Float *in, Float *out) const {
|
||||
for (int i=0; i<(int) nPts; ++i) {
|
||||
Normal m = sample(Point2(in[2*i], in[2*i+1]), alpha);
|
||||
Vector wo = 2 * dot(wi, m) * Vector(m) - wi;
|
||||
if (Frame::cosTheta(wo) <= 0) {
|
||||
out[i] = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Calculate the specular reflection component */
|
||||
out[i] = 1 - fresnel(dot(wi, m), extIOR, intIOR);
|
||||
Float probSpecular = fresnel(dot(wi, m), extIOR, intIOR);
|
||||
probSpecular = (probSpecular*specularSamplingWeight) /
|
||||
(probSpecular*specularSamplingWeight +
|
||||
(1-probSpecular) * (1-specularSamplingWeight));
|
||||
out[i] = 1-probSpecular;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -24,6 +24,8 @@
|
|||
|
||||
MTS_NAMESPACE_BEGIN
|
||||
|
||||
#define SPLINE_PRECOMP_NODES 200
|
||||
|
||||
/*!\plugin{roughplastic}{Rough plastic material}
|
||||
* \order{8}
|
||||
* \parameters{
|
||||
|
@ -44,7 +46,7 @@ MTS_NAMESPACE_BEGIN
|
|||
* \vspace{-4mm}
|
||||
* \end{enumerate}
|
||||
* }
|
||||
* \parameter{alpha}{\Float\Or\Texture}{
|
||||
* \parameter{alpha}{\Float}{
|
||||
* Specifies the roughness of the unresolved surface microgeometry.
|
||||
* When the Beckmann distribution is used, this parameter is equal to the
|
||||
* \emph{root mean square} (RMS) slope of the microfacets.
|
||||
|
@ -91,7 +93,7 @@ public:
|
|||
Log(EError, "The 'roughplastic' plugin does not support "
|
||||
"anisotropic microfacet distributions!");
|
||||
|
||||
m_alpha = new ConstantFloatTexture(
|
||||
m_alpha = m_distribution.transformRoughness(
|
||||
props.getFloat("alpha", 0.1f));
|
||||
|
||||
m_usesRayDifferentials = false;
|
||||
|
@ -102,15 +104,15 @@ public:
|
|||
m_distribution = MicrofacetDistribution(
|
||||
(MicrofacetDistribution::EType) stream->readUInt()
|
||||
);
|
||||
m_alpha = static_cast<Texture *>(manager->getInstance(stream));
|
||||
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
||||
m_diffuseReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
||||
m_roughTransmittance = static_cast<CubicSpline *>(manager->getInstance(stream));
|
||||
m_diffuseProb = static_cast<CubicSpline *>(manager->getInstance(stream));
|
||||
m_alpha = stream->readFloat();
|
||||
m_intIOR = stream->readFloat();
|
||||
m_extIOR = stream->readFloat();
|
||||
|
||||
m_usesRayDifferentials =
|
||||
m_alpha->usesRayDifferentials() ||
|
||||
m_specularReflectance->usesRayDifferentials() ||
|
||||
m_diffuseReflectance->usesRayDifferentials();
|
||||
|
||||
|
@ -119,8 +121,8 @@ public:
|
|||
|
||||
void configure() {
|
||||
m_components.clear();
|
||||
m_components.push_back(EGlossyReflection | EFrontSide);
|
||||
m_components.push_back(EDiffuseReflection | EFrontSide);
|
||||
m_components.push_back(EGlossyReflection | ECanUseSampler | EFrontSide);
|
||||
m_components.push_back(EDiffuseReflection | ECanUseSampler | EFrontSide);
|
||||
|
||||
/* Verify the input parameters and fix them if necessary */
|
||||
m_specularReflectance = ensureEnergyConservation(
|
||||
|
@ -128,10 +130,22 @@ public:
|
|||
m_diffuseReflectance = ensureEnergyConservation(
|
||||
m_diffuseReflectance, "diffuseReflectance", 1.0f);
|
||||
|
||||
if (m_roughTransmittance == NULL) {
|
||||
Float alpha = m_distribution.transformRoughness(m_alpha->getValue(Intersection()).average());
|
||||
m_roughTransmittance = m_distribution.computeRoughTransmittance(m_extIOR, m_intIOR, alpha, 200);
|
||||
}
|
||||
/* Compute weights that further steer samples towards
|
||||
the specular or diffuse components */
|
||||
Float dAvg = m_diffuseReflectance->getAverage().getLuminance(),
|
||||
sAvg = m_specularReflectance->getAverage().getLuminance();
|
||||
m_specularSamplingWeight = sAvg / (dAvg + sAvg);
|
||||
|
||||
/* Precompute the rough transmittance through the interface */
|
||||
m_roughTransmittance = m_distribution.computeRoughTransmittance(
|
||||
m_extIOR, m_intIOR, m_alpha, SPLINE_PRECOMP_NODES);
|
||||
|
||||
/* Precompute a spline that specifies the probability of
|
||||
sampling the diffuse component for different angles
|
||||
of incidence. */
|
||||
m_diffuseProb = m_distribution.computeTransmissionProbability(
|
||||
m_extIOR, m_intIOR, m_alpha, m_specularSamplingWeight,
|
||||
SPLINE_PRECOMP_NODES);
|
||||
|
||||
BSDF::configure();
|
||||
}
|
||||
|
@ -157,21 +171,17 @@ public:
|
|||
|
||||
Spectrum result(0.0f);
|
||||
if (sampleSpecular) {
|
||||
/* Evaluate the roughness */
|
||||
Float alpha = m_distribution.transformRoughness(
|
||||
m_alpha->getValue(bRec.its).average());
|
||||
|
||||
/* Calculate the reflection half-vector */
|
||||
const Vector H = normalize(bRec.wo+bRec.wi);
|
||||
|
||||
/* Evaluate the microsurface normal distribution */
|
||||
const Float D = m_distribution.eval(H, alpha);
|
||||
const Float D = m_distribution.eval(H, m_alpha);
|
||||
|
||||
/* Fresnel term */
|
||||
const Float F = fresnel(dot(bRec.wi, H), m_extIOR, m_intIOR);
|
||||
|
||||
/* Smith's shadow-masking function */
|
||||
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, alpha);
|
||||
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, m_alpha);
|
||||
|
||||
/* Calculate the specular reflection component */
|
||||
Float value = F * D * G /
|
||||
|
@ -199,34 +209,50 @@ public:
|
|||
Frame::cosTheta(bRec.wo) <= 0 ||
|
||||
(!sampleSpecular && !sampleDiffuse))
|
||||
return 0.0f;
|
||||
|
||||
/* Calculate the reflection half-vector */
|
||||
Vector H = normalize(bRec.wo+bRec.wi);
|
||||
|
||||
Float roughTransmittance = 0.0f;
|
||||
if (sampleDiffuse && sampleSpecular)
|
||||
roughTransmittance = m_roughTransmittance->eval(
|
||||
Frame::cosTheta(bRec.wi));
|
||||
/* Calculate the reflection half-vector */
|
||||
const Vector H = normalize(bRec.wo+bRec.wi);
|
||||
|
||||
Float probSpecular, probDiffuse;
|
||||
if (sampleSpecular && sampleDiffuse) {
|
||||
if (bRec.sampler && false) {
|
||||
/* Fancy sampling strategy */
|
||||
probSpecular = fresnel(dot(bRec.wi, H), m_extIOR, m_intIOR);
|
||||
|
||||
/* Reallocate samples */
|
||||
probSpecular = (probSpecular*m_specularSamplingWeight) /
|
||||
(probSpecular*m_specularSamplingWeight +
|
||||
(1-probSpecular) * (1-m_specularSamplingWeight));
|
||||
|
||||
probDiffuse = m_diffuseProb->eval(Frame::cosTheta(bRec.wi));
|
||||
} else {
|
||||
/* Basic sampling strategy that only needs 2 random numbers */
|
||||
probSpecular = 1 - m_roughTransmittance->eval(Frame::cosTheta(bRec.wi));
|
||||
|
||||
/* Reallocate samples */
|
||||
probSpecular = (probSpecular*m_specularSamplingWeight) /
|
||||
(probSpecular*m_specularSamplingWeight +
|
||||
(1-probSpecular) * (1-m_specularSamplingWeight));
|
||||
|
||||
probDiffuse = 1 - probSpecular;
|
||||
}
|
||||
} else {
|
||||
probDiffuse = probSpecular = 1.0f;
|
||||
}
|
||||
|
||||
Float result = 0.0f;
|
||||
if (sampleSpecular) {
|
||||
/* Evaluate the roughness */
|
||||
Float alpha = m_distribution.transformRoughness(
|
||||
m_alpha->getValue(bRec.its).average());
|
||||
|
||||
/* Jacobian of the half-direction transform */
|
||||
Float dwh_dwo = 1.0f / (4.0f * dot(bRec.wo, H));
|
||||
const Float dwh_dwo = 1.0f / (4.0f * dot(bRec.wo, H));
|
||||
|
||||
/* Evaluate the microsurface normal distribution */
|
||||
Float prob = m_distribution.pdf(H, alpha);
|
||||
const Float prob = m_distribution.pdf(H, m_alpha);
|
||||
|
||||
result += prob * dwh_dwo *
|
||||
(sampleDiffuse ? (1-roughTransmittance) : 1.0f);
|
||||
result = prob * dwh_dwo * probSpecular;
|
||||
}
|
||||
|
||||
if (sampleDiffuse)
|
||||
result += Frame::cosTheta(bRec.wo) * INV_PI *
|
||||
(sampleSpecular ? roughTransmittance : 1.0f);
|
||||
result += Frame::cosTheta(bRec.wo) * INV_PI * probDiffuse;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -240,30 +266,57 @@ public:
|
|||
if (Frame::cosTheta(bRec.wi) <= 0 || (!sampleSpecular && !sampleDiffuse))
|
||||
return Spectrum(0.0f);
|
||||
|
||||
bool choseReflection = sampleSpecular;
|
||||
|
||||
bool choseSpecular = sampleSpecular;
|
||||
Normal m;
|
||||
Point2 sample(_sample);
|
||||
|
||||
if (sampleSpecular && sampleDiffuse) {
|
||||
Float roughTransmittance = m_roughTransmittance->eval(
|
||||
Frame::cosTheta(bRec.wi));
|
||||
if (sample.x < roughTransmittance) {
|
||||
sample.x /= roughTransmittance;
|
||||
choseReflection = false;
|
||||
if (bRec.sampler && false) {
|
||||
/**
|
||||
* We have access to a sampler -- use a good sampling
|
||||
* technique, which is somewhat wasteful in terms of
|
||||
* random numbers
|
||||
*/
|
||||
m = m_distribution.sample(sample, m_alpha);
|
||||
|
||||
Float probSpecular = fresnel(dot(bRec.wi, m), m_extIOR, m_intIOR);
|
||||
|
||||
/* Reallocate samples */
|
||||
probSpecular = (probSpecular*m_specularSamplingWeight) /
|
||||
(probSpecular*m_specularSamplingWeight +
|
||||
(1-probSpecular) * (1-m_specularSamplingWeight));
|
||||
|
||||
if (bRec.sampler->next1D() > probSpecular) {
|
||||
choseSpecular = false;
|
||||
sample = bRec.sampler->next2D();
|
||||
}
|
||||
} else {
|
||||
sample.x = (sample.x - roughTransmittance)
|
||||
/ (1 - roughTransmittance);
|
||||
/**
|
||||
* Basic strategy -- use a clamped Fresnel coefficient
|
||||
* wrt. the macro-surface normal to choose between
|
||||
* diffuse and specular component.
|
||||
*/
|
||||
Float probSpecular = 1 - m_roughTransmittance->eval(Frame::cosTheta(bRec.wi));
|
||||
|
||||
/* Reallocate samples */
|
||||
probSpecular = (probSpecular*m_specularSamplingWeight) /
|
||||
(probSpecular*m_specularSamplingWeight +
|
||||
(1-probSpecular) * (1-m_specularSamplingWeight));
|
||||
|
||||
if (sample.x < probSpecular) {
|
||||
sample.x /= probSpecular;
|
||||
m = m_distribution.sample(sample, m_alpha);
|
||||
} else {
|
||||
sample.x = (sample.x - probSpecular) / (1 - probSpecular);
|
||||
choseSpecular = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (choseReflection) {
|
||||
/* Evaluate the roughness */
|
||||
Float alpha = m_distribution.transformRoughness(
|
||||
m_alpha->getValue(bRec.its).average());
|
||||
|
||||
/* Sample M, the microsurface normal */
|
||||
const Normal m = m_distribution.sample(sample, alpha);
|
||||
|
||||
} else if (choseSpecular) {
|
||||
m = m_distribution.sample(sample, m_alpha);
|
||||
}
|
||||
|
||||
if (choseSpecular) {
|
||||
/* Perfect specular reflection based on the microsurface normal */
|
||||
bRec.wo = reflect(bRec.wi, m);
|
||||
bRec.sampledComponent = 0;
|
||||
|
@ -288,10 +341,7 @@ public:
|
|||
}
|
||||
|
||||
void addChild(const std::string &name, ConfigurableObject *child) {
|
||||
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "alpha") {
|
||||
m_alpha = static_cast<Texture *>(child);
|
||||
m_usesRayDifferentials |= m_alpha->usesRayDifferentials();
|
||||
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
|
||||
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
|
||||
m_specularReflectance = static_cast<Texture *>(child);
|
||||
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
|
||||
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "diffuseReflectance") {
|
||||
|
@ -316,10 +366,11 @@ public:
|
|||
BSDF::serialize(stream, manager);
|
||||
|
||||
stream->writeUInt((uint32_t) m_distribution.getType());
|
||||
manager->serialize(stream, m_alpha.get());
|
||||
manager->serialize(stream, m_specularReflectance.get());
|
||||
manager->serialize(stream, m_diffuseReflectance.get());
|
||||
manager->serialize(stream, m_roughTransmittance.get());
|
||||
manager->serialize(stream, m_diffuseProb.get());
|
||||
stream->writeFloat(m_alpha);
|
||||
stream->writeFloat(m_intIOR);
|
||||
stream->writeFloat(m_extIOR);
|
||||
}
|
||||
|
@ -329,9 +380,11 @@ public:
|
|||
oss << "RoughPlastic[" << endl
|
||||
<< " name = \"" << getName() << "\"," << endl
|
||||
<< " distribution = " << m_distribution.toString() << "," << endl
|
||||
<< " alpha = " << indent(m_alpha->toString()) << "," << endl
|
||||
<< " alpha = " << m_alpha << "," << endl
|
||||
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
|
||||
<< " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl
|
||||
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
|
||||
<< " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl
|
||||
<< " intIOR = " << m_intIOR << "," << endl
|
||||
<< " extIOR = " << m_extIOR << endl
|
||||
<< "]";
|
||||
|
@ -344,10 +397,11 @@ public:
|
|||
private:
|
||||
MicrofacetDistribution m_distribution;
|
||||
ref<CubicSpline> m_roughTransmittance;
|
||||
ref<CubicSpline> m_diffuseProb;
|
||||
ref<Texture> m_diffuseReflectance;
|
||||
ref<Texture> m_specularReflectance;
|
||||
ref<Texture> m_alpha;
|
||||
Float m_intIOR, m_extIOR;
|
||||
Float m_alpha, m_intIOR, m_extIOR;
|
||||
Float m_specularSamplingWeight;
|
||||
};
|
||||
|
||||
/* Fake plastic shader -- it is really hopeless to visualize
|
||||
|
|
|
@ -154,7 +154,8 @@ Spectrum MIPMap::getMaximum() const {
|
|||
}
|
||||
|
||||
ref<MIPMap> MIPMap::fromBitmap(Bitmap *bitmap, EFilterType filterType,
|
||||
EWrapMode wrapMode, Float maxAnisotropy) {
|
||||
EWrapMode wrapMode, Float maxAnisotropy,
|
||||
Spectrum::EConversionIntent intent) {
|
||||
int width = bitmap->getWidth();
|
||||
int height = bitmap->getHeight();
|
||||
float *data = bitmap->getFloatData();
|
||||
|
@ -165,9 +166,9 @@ ref<MIPMap> MIPMap::fromBitmap(Bitmap *bitmap, EFilterType filterType,
|
|||
float r = data[(y*width+x)*4+0];
|
||||
float g = data[(y*width+x)*4+1];
|
||||
float b = data[(y*width+x)*4+2];
|
||||
s.fromLinearRGB(r, g, b);
|
||||
s.clampNegative();
|
||||
/* Convert to a spectral representation */
|
||||
s.fromLinearRGB(r, g, b, intent);
|
||||
s.clampNegative();
|
||||
pixels[y*width+x] = s;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -44,7 +44,8 @@ public:
|
|||
ref<Stream> is = new FileStream(m_path, FileStream::EReadOnly);
|
||||
ref<Bitmap> bitmap = new Bitmap(Bitmap::EEXR, is);
|
||||
|
||||
m_mipmap = MIPMap::fromBitmap(bitmap);
|
||||
m_mipmap = MIPMap::fromBitmap(bitmap, MIPMap::ETrilinear,
|
||||
MIPMap::ERepeat, 0.0f, Spectrum::EIlluminant);
|
||||
m_average = m_mipmap->triangle(m_mipmap->getLevels()-1, 0, 0) * m_intensityScale;
|
||||
m_type = EOnSurface;
|
||||
}
|
||||
|
@ -60,7 +61,8 @@ public:
|
|||
stream->copyTo(mStream, size);
|
||||
mStream->setPos(0);
|
||||
ref<Bitmap> bitmap = new Bitmap(Bitmap::EEXR, mStream);
|
||||
m_mipmap = MIPMap::fromBitmap(bitmap);
|
||||
m_mipmap = MIPMap::fromBitmap(bitmap, MIPMap::ETrilinear,
|
||||
MIPMap::ERepeat, 0.0f, Spectrum::EIlluminant);
|
||||
m_average = m_mipmap->triangle(m_mipmap->getLevels()-1, 0, 0) * m_intensityScale;
|
||||
m_surfaceArea = 4 * m_bsphere.radius * m_bsphere.radius * M_PI;
|
||||
m_invSurfaceArea = 1/m_surfaceArea;
|
||||
|
|
Loading…
Reference in New Issue