diff --git a/data/tests/test_bsdf.xml b/data/tests/test_bsdf.xml
index bc41638e..e3e90cff 100644
--- a/data/tests/test_bsdf.xml
+++ b/data/tests/test_bsdf.xml
@@ -6,7 +6,7 @@
Beckmann microfacet distribution -->
-
+
diff --git a/include/mitsuba/render/mipmap.h b/include/mitsuba/render/mipmap.h
index 8a974f8e..077f3ac7 100644
--- a/include/mitsuba/render/mipmap.h
+++ b/include/mitsuba/render/mipmap.h
@@ -56,7 +56,8 @@ public:
/// Construct a mip map from a HDR bitmap
static ref fromBitmap(Bitmap *bitmap,
EFilterType filterType = EEWA, EWrapMode wrapMode = ERepeat,
- Float maxAnisotropy = 8.0f);
+ Float maxAnisotropy = 8.0f,
+ Spectrum::EConversionIntent intent = Spectrum::EReflectance);
/// Do a mip-map lookup at the appropriate level
Spectrum getValue(Float u, Float v,
diff --git a/src/bsdfs/microfacet.h b/src/bsdfs/microfacet.h
index 868a1035..fac75f8d 100644
--- a/src/bsdfs/microfacet.h
+++ b/src/bsdfs/microfacet.h
@@ -469,7 +469,11 @@ public:
/**
* \brief Compute a spline representation that gives the probability
- * of sampling a transmission event e.g. in the plugin 'roughdielectric'.
+ * of choosing a reflection event when importance sampling wrt. the
+ * Fresnel coefficient between a sampled microsurface normal and the
+ * incident direction.
+ *
+ * This function is currently used by the plugin 'roughplastic'.
*
* Like \ref computeRoughTransmittance, the spline is parameterized by the
* cosine of the angle between the indident direction and the (macro-)
@@ -477,7 +481,8 @@ public:
*
* \remark This function only works for isotropic microfacet distributions
*/
- CubicSpline *computeTransmissionProbability(Float extIOR, Float intIOR, Float alpha, size_t resolution) const {
+ CubicSpline *computeTransmissionProbability(Float extIOR, Float intIOR,
+ Float alpha, Float specularSamplingWeight, size_t resolution) const {
if (isAnisotropic())
SLog(EError, "MicrofacetDistribution::computeTransmissionProbability(): only "
"supports isotropic distributions!");
@@ -496,7 +501,7 @@ public:
integrator.integrateVectorized(
boost::bind(&MicrofacetDistribution::integrand2, this,
- wi, extIOR, intIOR, alpha, _1, _2, _3),
+ wi, extIOR, intIOR, alpha, specularSamplingWeight, _1, _2, _3),
min, max, &integral, &error, &nEvals
);
@@ -545,17 +550,14 @@ protected:
/// Integrand helper function called by \ref computeTransmissionProbability
void integrand2(const Vector &wi, Float extIOR, Float intIOR, Float alpha,
- size_t nPts, const Float *in, Float *out) const {
+ Float specularSamplingWeight, size_t nPts, const Float *in, Float *out) const {
for (int i=0; i<(int) nPts; ++i) {
Normal m = sample(Point2(in[2*i], in[2*i+1]), alpha);
- Vector wo = 2 * dot(wi, m) * Vector(m) - wi;
- if (Frame::cosTheta(wo) <= 0) {
- out[i] = 0;
- continue;
- }
-
- /* Calculate the specular reflection component */
- out[i] = 1 - fresnel(dot(wi, m), extIOR, intIOR);
+ Float probSpecular = fresnel(dot(wi, m), extIOR, intIOR);
+ probSpecular = (probSpecular*specularSamplingWeight) /
+ (probSpecular*specularSamplingWeight +
+ (1-probSpecular) * (1-specularSamplingWeight));
+ out[i] = 1-probSpecular;
}
}
diff --git a/src/bsdfs/roughplastic.cpp b/src/bsdfs/roughplastic.cpp
index 78257780..faa2d790 100644
--- a/src/bsdfs/roughplastic.cpp
+++ b/src/bsdfs/roughplastic.cpp
@@ -24,6 +24,8 @@
MTS_NAMESPACE_BEGIN
+#define SPLINE_PRECOMP_NODES 200
+
/*!\plugin{roughplastic}{Rough plastic material}
* \order{8}
* \parameters{
@@ -44,7 +46,7 @@ MTS_NAMESPACE_BEGIN
* \vspace{-4mm}
* \end{enumerate}
* }
- * \parameter{alpha}{\Float\Or\Texture}{
+ * \parameter{alpha}{\Float}{
* Specifies the roughness of the unresolved surface microgeometry.
* When the Beckmann distribution is used, this parameter is equal to the
* \emph{root mean square} (RMS) slope of the microfacets.
@@ -91,7 +93,7 @@ public:
Log(EError, "The 'roughplastic' plugin does not support "
"anisotropic microfacet distributions!");
- m_alpha = new ConstantFloatTexture(
+ m_alpha = m_distribution.transformRoughness(
props.getFloat("alpha", 0.1f));
m_usesRayDifferentials = false;
@@ -102,15 +104,15 @@ public:
m_distribution = MicrofacetDistribution(
(MicrofacetDistribution::EType) stream->readUInt()
);
- m_alpha = static_cast(manager->getInstance(stream));
m_specularReflectance = static_cast(manager->getInstance(stream));
m_diffuseReflectance = static_cast(manager->getInstance(stream));
m_roughTransmittance = static_cast(manager->getInstance(stream));
+ m_diffuseProb = static_cast(manager->getInstance(stream));
+ m_alpha = stream->readFloat();
m_intIOR = stream->readFloat();
m_extIOR = stream->readFloat();
m_usesRayDifferentials =
- m_alpha->usesRayDifferentials() ||
m_specularReflectance->usesRayDifferentials() ||
m_diffuseReflectance->usesRayDifferentials();
@@ -119,8 +121,8 @@ public:
void configure() {
m_components.clear();
- m_components.push_back(EGlossyReflection | EFrontSide);
- m_components.push_back(EDiffuseReflection | EFrontSide);
+ m_components.push_back(EGlossyReflection | ECanUseSampler | EFrontSide);
+ m_components.push_back(EDiffuseReflection | ECanUseSampler | EFrontSide);
/* Verify the input parameters and fix them if necessary */
m_specularReflectance = ensureEnergyConservation(
@@ -128,10 +130,22 @@ public:
m_diffuseReflectance = ensureEnergyConservation(
m_diffuseReflectance, "diffuseReflectance", 1.0f);
- if (m_roughTransmittance == NULL) {
- Float alpha = m_distribution.transformRoughness(m_alpha->getValue(Intersection()).average());
- m_roughTransmittance = m_distribution.computeRoughTransmittance(m_extIOR, m_intIOR, alpha, 200);
- }
+ /* Compute weights that further steer samples towards
+ the specular or diffuse components */
+ Float dAvg = m_diffuseReflectance->getAverage().getLuminance(),
+ sAvg = m_specularReflectance->getAverage().getLuminance();
+ m_specularSamplingWeight = sAvg / (dAvg + sAvg);
+
+ /* Precompute the rough transmittance through the interface */
+ m_roughTransmittance = m_distribution.computeRoughTransmittance(
+ m_extIOR, m_intIOR, m_alpha, SPLINE_PRECOMP_NODES);
+
+ /* Precompute a spline that specifies the probability of
+ sampling the diffuse component for different angles
+ of incidence. */
+ m_diffuseProb = m_distribution.computeTransmissionProbability(
+ m_extIOR, m_intIOR, m_alpha, m_specularSamplingWeight,
+ SPLINE_PRECOMP_NODES);
BSDF::configure();
}
@@ -157,21 +171,17 @@ public:
Spectrum result(0.0f);
if (sampleSpecular) {
- /* Evaluate the roughness */
- Float alpha = m_distribution.transformRoughness(
- m_alpha->getValue(bRec.its).average());
-
/* Calculate the reflection half-vector */
const Vector H = normalize(bRec.wo+bRec.wi);
/* Evaluate the microsurface normal distribution */
- const Float D = m_distribution.eval(H, alpha);
+ const Float D = m_distribution.eval(H, m_alpha);
/* Fresnel term */
const Float F = fresnel(dot(bRec.wi, H), m_extIOR, m_intIOR);
/* Smith's shadow-masking function */
- const Float G = m_distribution.G(bRec.wi, bRec.wo, H, alpha);
+ const Float G = m_distribution.G(bRec.wi, bRec.wo, H, m_alpha);
/* Calculate the specular reflection component */
Float value = F * D * G /
@@ -199,34 +209,50 @@ public:
Frame::cosTheta(bRec.wo) <= 0 ||
(!sampleSpecular && !sampleDiffuse))
return 0.0f;
-
- /* Calculate the reflection half-vector */
- Vector H = normalize(bRec.wo+bRec.wi);
- Float roughTransmittance = 0.0f;
- if (sampleDiffuse && sampleSpecular)
- roughTransmittance = m_roughTransmittance->eval(
- Frame::cosTheta(bRec.wi));
+ /* Calculate the reflection half-vector */
+ const Vector H = normalize(bRec.wo+bRec.wi);
+
+ Float probSpecular, probDiffuse;
+ if (sampleSpecular && sampleDiffuse) {
+ if (bRec.sampler && false) {
+ /* Fancy sampling strategy */
+ probSpecular = fresnel(dot(bRec.wi, H), m_extIOR, m_intIOR);
+
+ /* Reallocate samples */
+ probSpecular = (probSpecular*m_specularSamplingWeight) /
+ (probSpecular*m_specularSamplingWeight +
+ (1-probSpecular) * (1-m_specularSamplingWeight));
+
+ probDiffuse = m_diffuseProb->eval(Frame::cosTheta(bRec.wi));
+ } else {
+ /* Basic sampling strategy that only needs 2 random numbers */
+ probSpecular = 1 - m_roughTransmittance->eval(Frame::cosTheta(bRec.wi));
+
+ /* Reallocate samples */
+ probSpecular = (probSpecular*m_specularSamplingWeight) /
+ (probSpecular*m_specularSamplingWeight +
+ (1-probSpecular) * (1-m_specularSamplingWeight));
+
+ probDiffuse = 1 - probSpecular;
+ }
+ } else {
+ probDiffuse = probSpecular = 1.0f;
+ }
Float result = 0.0f;
if (sampleSpecular) {
- /* Evaluate the roughness */
- Float alpha = m_distribution.transformRoughness(
- m_alpha->getValue(bRec.its).average());
-
/* Jacobian of the half-direction transform */
- Float dwh_dwo = 1.0f / (4.0f * dot(bRec.wo, H));
+ const Float dwh_dwo = 1.0f / (4.0f * dot(bRec.wo, H));
/* Evaluate the microsurface normal distribution */
- Float prob = m_distribution.pdf(H, alpha);
+ const Float prob = m_distribution.pdf(H, m_alpha);
- result += prob * dwh_dwo *
- (sampleDiffuse ? (1-roughTransmittance) : 1.0f);
+ result = prob * dwh_dwo * probSpecular;
}
if (sampleDiffuse)
- result += Frame::cosTheta(bRec.wo) * INV_PI *
- (sampleSpecular ? roughTransmittance : 1.0f);
+ result += Frame::cosTheta(bRec.wo) * INV_PI * probDiffuse;
return result;
}
@@ -240,30 +266,57 @@ public:
if (Frame::cosTheta(bRec.wi) <= 0 || (!sampleSpecular && !sampleDiffuse))
return Spectrum(0.0f);
- bool choseReflection = sampleSpecular;
+ bool choseSpecular = sampleSpecular;
+ Normal m;
Point2 sample(_sample);
+
if (sampleSpecular && sampleDiffuse) {
- Float roughTransmittance = m_roughTransmittance->eval(
- Frame::cosTheta(bRec.wi));
- if (sample.x < roughTransmittance) {
- sample.x /= roughTransmittance;
- choseReflection = false;
+ if (bRec.sampler && false) {
+ /**
+ * We have access to a sampler -- use a good sampling
+ * technique, which is somewhat wasteful in terms of
+ * random numbers
+ */
+ m = m_distribution.sample(sample, m_alpha);
+
+ Float probSpecular = fresnel(dot(bRec.wi, m), m_extIOR, m_intIOR);
+
+ /* Reallocate samples */
+ probSpecular = (probSpecular*m_specularSamplingWeight) /
+ (probSpecular*m_specularSamplingWeight +
+ (1-probSpecular) * (1-m_specularSamplingWeight));
+
+ if (bRec.sampler->next1D() > probSpecular) {
+ choseSpecular = false;
+ sample = bRec.sampler->next2D();
+ }
} else {
- sample.x = (sample.x - roughTransmittance)
- / (1 - roughTransmittance);
+ /**
+ * Basic strategy -- use a clamped Fresnel coefficient
+ * wrt. the macro-surface normal to choose between
+ * diffuse and specular component.
+ */
+ Float probSpecular = 1 - m_roughTransmittance->eval(Frame::cosTheta(bRec.wi));
+
+ /* Reallocate samples */
+ probSpecular = (probSpecular*m_specularSamplingWeight) /
+ (probSpecular*m_specularSamplingWeight +
+ (1-probSpecular) * (1-m_specularSamplingWeight));
+
+ if (sample.x < probSpecular) {
+ sample.x /= probSpecular;
+ m = m_distribution.sample(sample, m_alpha);
+ } else {
+ sample.x = (sample.x - probSpecular) / (1 - probSpecular);
+ choseSpecular = false;
+ }
}
- }
-
- if (choseReflection) {
- /* Evaluate the roughness */
- Float alpha = m_distribution.transformRoughness(
- m_alpha->getValue(bRec.its).average());
-
- /* Sample M, the microsurface normal */
- const Normal m = m_distribution.sample(sample, alpha);
-
+ } else if (choseSpecular) {
+ m = m_distribution.sample(sample, m_alpha);
+ }
+ if (choseSpecular) {
/* Perfect specular reflection based on the microsurface normal */
bRec.wo = reflect(bRec.wi, m);
bRec.sampledComponent = 0;
@@ -288,10 +341,7 @@ public:
}
void addChild(const std::string &name, ConfigurableObject *child) {
- if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "alpha") {
- m_alpha = static_cast(child);
- m_usesRayDifferentials |= m_alpha->usesRayDifferentials();
- } else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
+ if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
m_specularReflectance = static_cast(child);
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "diffuseReflectance") {
@@ -316,10 +366,11 @@ public:
BSDF::serialize(stream, manager);
stream->writeUInt((uint32_t) m_distribution.getType());
- manager->serialize(stream, m_alpha.get());
manager->serialize(stream, m_specularReflectance.get());
manager->serialize(stream, m_diffuseReflectance.get());
manager->serialize(stream, m_roughTransmittance.get());
+ manager->serialize(stream, m_diffuseProb.get());
+ stream->writeFloat(m_alpha);
stream->writeFloat(m_intIOR);
stream->writeFloat(m_extIOR);
}
@@ -329,9 +380,11 @@ public:
oss << "RoughPlastic[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " distribution = " << m_distribution.toString() << "," << endl
- << " alpha = " << indent(m_alpha->toString()) << "," << endl
+ << " alpha = " << m_alpha << "," << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
<< " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl
+ << " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
+ << " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl
<< " intIOR = " << m_intIOR << "," << endl
<< " extIOR = " << m_extIOR << endl
<< "]";
@@ -344,10 +397,11 @@ public:
private:
MicrofacetDistribution m_distribution;
ref m_roughTransmittance;
+ ref m_diffuseProb;
ref m_diffuseReflectance;
ref m_specularReflectance;
- ref m_alpha;
- Float m_intIOR, m_extIOR;
+ Float m_alpha, m_intIOR, m_extIOR;
+ Float m_specularSamplingWeight;
};
/* Fake plastic shader -- it is really hopeless to visualize
diff --git a/src/librender/mipmap.cpp b/src/librender/mipmap.cpp
index 78103416..42311b30 100644
--- a/src/librender/mipmap.cpp
+++ b/src/librender/mipmap.cpp
@@ -154,7 +154,8 @@ Spectrum MIPMap::getMaximum() const {
}
ref MIPMap::fromBitmap(Bitmap *bitmap, EFilterType filterType,
- EWrapMode wrapMode, Float maxAnisotropy) {
+ EWrapMode wrapMode, Float maxAnisotropy,
+ Spectrum::EConversionIntent intent) {
int width = bitmap->getWidth();
int height = bitmap->getHeight();
float *data = bitmap->getFloatData();
@@ -165,9 +166,9 @@ ref MIPMap::fromBitmap(Bitmap *bitmap, EFilterType filterType,
float r = data[(y*width+x)*4+0];
float g = data[(y*width+x)*4+1];
float b = data[(y*width+x)*4+2];
- s.fromLinearRGB(r, g, b);
- s.clampNegative();
/* Convert to a spectral representation */
+ s.fromLinearRGB(r, g, b, intent);
+ s.clampNegative();
pixels[y*width+x] = s;
}
}
diff --git a/src/luminaires/envmap.cpp b/src/luminaires/envmap.cpp
index 36dab570..ee8db5b6 100644
--- a/src/luminaires/envmap.cpp
+++ b/src/luminaires/envmap.cpp
@@ -44,7 +44,8 @@ public:
ref is = new FileStream(m_path, FileStream::EReadOnly);
ref bitmap = new Bitmap(Bitmap::EEXR, is);
- m_mipmap = MIPMap::fromBitmap(bitmap);
+ m_mipmap = MIPMap::fromBitmap(bitmap, MIPMap::ETrilinear,
+ MIPMap::ERepeat, 0.0f, Spectrum::EIlluminant);
m_average = m_mipmap->triangle(m_mipmap->getLevels()-1, 0, 0) * m_intensityScale;
m_type = EOnSurface;
}
@@ -60,7 +61,8 @@ public:
stream->copyTo(mStream, size);
mStream->setPos(0);
ref bitmap = new Bitmap(Bitmap::EEXR, mStream);
- m_mipmap = MIPMap::fromBitmap(bitmap);
+ m_mipmap = MIPMap::fromBitmap(bitmap, MIPMap::ETrilinear,
+ MIPMap::ERepeat, 0.0f, Spectrum::EIlluminant);
m_average = m_mipmap->triangle(m_mipmap->getLevels()-1, 0, 0) * m_intensityScale;
m_surfaceArea = 4 * m_bsphere.radius * m_bsphere.radius * M_PI;
m_invSurfaceArea = 1/m_surfaceArea;