fancy roughplastic sampling strategy, just before cleanup

metadata
Wenzel Jakob 2011-07-11 22:36:10 +02:00
parent 0803cba093
commit bf9dc03fd8
6 changed files with 138 additions and 78 deletions

View File

@ -6,7 +6,7 @@
Beckmann microfacet distribution -->
<bsdf type="roughplastic">
<string name="distribution" value="beckmann"/>
<float name="alpha" value=".3"/>
<float name="alpha" value=".7"/>
</bsdf>
<!-- Test the smooth diffuse model -->

View File

@ -56,7 +56,8 @@ public:
/// Construct a mip map from a HDR bitmap
static ref<MIPMap> fromBitmap(Bitmap *bitmap,
EFilterType filterType = EEWA, EWrapMode wrapMode = ERepeat,
Float maxAnisotropy = 8.0f);
Float maxAnisotropy = 8.0f,
Spectrum::EConversionIntent intent = Spectrum::EReflectance);
/// Do a mip-map lookup at the appropriate level
Spectrum getValue(Float u, Float v,

View File

@ -469,7 +469,11 @@ public:
/**
* \brief Compute a spline representation that gives the probability
* of sampling a transmission event e.g. in the plugin 'roughdielectric'.
* of choosing a reflection event when importance sampling wrt. the
* Fresnel coefficient between a sampled microsurface normal and the
* incident direction.
*
* This function is currently used by the plugin 'roughplastic'.
*
* Like \ref computeRoughTransmittance, the spline is parameterized by the
* cosine of the angle between the indident direction and the (macro-)
@ -477,7 +481,8 @@ public:
*
* \remark This function only works for isotropic microfacet distributions
*/
CubicSpline *computeTransmissionProbability(Float extIOR, Float intIOR, Float alpha, size_t resolution) const {
CubicSpline *computeTransmissionProbability(Float extIOR, Float intIOR,
Float alpha, Float specularSamplingWeight, size_t resolution) const {
if (isAnisotropic())
SLog(EError, "MicrofacetDistribution::computeTransmissionProbability(): only "
"supports isotropic distributions!");
@ -496,7 +501,7 @@ public:
integrator.integrateVectorized(
boost::bind(&MicrofacetDistribution::integrand2, this,
wi, extIOR, intIOR, alpha, _1, _2, _3),
wi, extIOR, intIOR, alpha, specularSamplingWeight, _1, _2, _3),
min, max, &integral, &error, &nEvals
);
@ -545,17 +550,14 @@ protected:
/// Integrand helper function called by \ref computeTransmissionProbability
void integrand2(const Vector &wi, Float extIOR, Float intIOR, Float alpha,
size_t nPts, const Float *in, Float *out) const {
Float specularSamplingWeight, size_t nPts, const Float *in, Float *out) const {
for (int i=0; i<(int) nPts; ++i) {
Normal m = sample(Point2(in[2*i], in[2*i+1]), alpha);
Vector wo = 2 * dot(wi, m) * Vector(m) - wi;
if (Frame::cosTheta(wo) <= 0) {
out[i] = 0;
continue;
}
/* Calculate the specular reflection component */
out[i] = 1 - fresnel(dot(wi, m), extIOR, intIOR);
Float probSpecular = fresnel(dot(wi, m), extIOR, intIOR);
probSpecular = (probSpecular*specularSamplingWeight) /
(probSpecular*specularSamplingWeight +
(1-probSpecular) * (1-specularSamplingWeight));
out[i] = 1-probSpecular;
}
}

View File

@ -24,6 +24,8 @@
MTS_NAMESPACE_BEGIN
#define SPLINE_PRECOMP_NODES 200
/*!\plugin{roughplastic}{Rough plastic material}
* \order{8}
* \parameters{
@ -44,7 +46,7 @@ MTS_NAMESPACE_BEGIN
* \vspace{-4mm}
* \end{enumerate}
* }
* \parameter{alpha}{\Float\Or\Texture}{
* \parameter{alpha}{\Float}{
* Specifies the roughness of the unresolved surface microgeometry.
* When the Beckmann distribution is used, this parameter is equal to the
* \emph{root mean square} (RMS) slope of the microfacets.
@ -91,7 +93,7 @@ public:
Log(EError, "The 'roughplastic' plugin does not support "
"anisotropic microfacet distributions!");
m_alpha = new ConstantFloatTexture(
m_alpha = m_distribution.transformRoughness(
props.getFloat("alpha", 0.1f));
m_usesRayDifferentials = false;
@ -102,15 +104,15 @@ public:
m_distribution = MicrofacetDistribution(
(MicrofacetDistribution::EType) stream->readUInt()
);
m_alpha = static_cast<Texture *>(manager->getInstance(stream));
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_diffuseReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_roughTransmittance = static_cast<CubicSpline *>(manager->getInstance(stream));
m_diffuseProb = static_cast<CubicSpline *>(manager->getInstance(stream));
m_alpha = stream->readFloat();
m_intIOR = stream->readFloat();
m_extIOR = stream->readFloat();
m_usesRayDifferentials =
m_alpha->usesRayDifferentials() ||
m_specularReflectance->usesRayDifferentials() ||
m_diffuseReflectance->usesRayDifferentials();
@ -119,8 +121,8 @@ public:
void configure() {
m_components.clear();
m_components.push_back(EGlossyReflection | EFrontSide);
m_components.push_back(EDiffuseReflection | EFrontSide);
m_components.push_back(EGlossyReflection | ECanUseSampler | EFrontSide);
m_components.push_back(EDiffuseReflection | ECanUseSampler | EFrontSide);
/* Verify the input parameters and fix them if necessary */
m_specularReflectance = ensureEnergyConservation(
@ -128,10 +130,22 @@ public:
m_diffuseReflectance = ensureEnergyConservation(
m_diffuseReflectance, "diffuseReflectance", 1.0f);
if (m_roughTransmittance == NULL) {
Float alpha = m_distribution.transformRoughness(m_alpha->getValue(Intersection()).average());
m_roughTransmittance = m_distribution.computeRoughTransmittance(m_extIOR, m_intIOR, alpha, 200);
}
/* Compute weights that further steer samples towards
the specular or diffuse components */
Float dAvg = m_diffuseReflectance->getAverage().getLuminance(),
sAvg = m_specularReflectance->getAverage().getLuminance();
m_specularSamplingWeight = sAvg / (dAvg + sAvg);
/* Precompute the rough transmittance through the interface */
m_roughTransmittance = m_distribution.computeRoughTransmittance(
m_extIOR, m_intIOR, m_alpha, SPLINE_PRECOMP_NODES);
/* Precompute a spline that specifies the probability of
sampling the diffuse component for different angles
of incidence. */
m_diffuseProb = m_distribution.computeTransmissionProbability(
m_extIOR, m_intIOR, m_alpha, m_specularSamplingWeight,
SPLINE_PRECOMP_NODES);
BSDF::configure();
}
@ -157,21 +171,17 @@ public:
Spectrum result(0.0f);
if (sampleSpecular) {
/* Evaluate the roughness */
Float alpha = m_distribution.transformRoughness(
m_alpha->getValue(bRec.its).average());
/* Calculate the reflection half-vector */
const Vector H = normalize(bRec.wo+bRec.wi);
/* Evaluate the microsurface normal distribution */
const Float D = m_distribution.eval(H, alpha);
const Float D = m_distribution.eval(H, m_alpha);
/* Fresnel term */
const Float F = fresnel(dot(bRec.wi, H), m_extIOR, m_intIOR);
/* Smith's shadow-masking function */
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, alpha);
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, m_alpha);
/* Calculate the specular reflection component */
Float value = F * D * G /
@ -201,32 +211,48 @@ public:
return 0.0f;
/* Calculate the reflection half-vector */
Vector H = normalize(bRec.wo+bRec.wi);
const Vector H = normalize(bRec.wo+bRec.wi);
Float roughTransmittance = 0.0f;
if (sampleDiffuse && sampleSpecular)
roughTransmittance = m_roughTransmittance->eval(
Frame::cosTheta(bRec.wi));
Float probSpecular, probDiffuse;
if (sampleSpecular && sampleDiffuse) {
if (bRec.sampler && false) {
/* Fancy sampling strategy */
probSpecular = fresnel(dot(bRec.wi, H), m_extIOR, m_intIOR);
/* Reallocate samples */
probSpecular = (probSpecular*m_specularSamplingWeight) /
(probSpecular*m_specularSamplingWeight +
(1-probSpecular) * (1-m_specularSamplingWeight));
probDiffuse = m_diffuseProb->eval(Frame::cosTheta(bRec.wi));
} else {
/* Basic sampling strategy that only needs 2 random numbers */
probSpecular = 1 - m_roughTransmittance->eval(Frame::cosTheta(bRec.wi));
/* Reallocate samples */
probSpecular = (probSpecular*m_specularSamplingWeight) /
(probSpecular*m_specularSamplingWeight +
(1-probSpecular) * (1-m_specularSamplingWeight));
probDiffuse = 1 - probSpecular;
}
} else {
probDiffuse = probSpecular = 1.0f;
}
Float result = 0.0f;
if (sampleSpecular) {
/* Evaluate the roughness */
Float alpha = m_distribution.transformRoughness(
m_alpha->getValue(bRec.its).average());
/* Jacobian of the half-direction transform */
Float dwh_dwo = 1.0f / (4.0f * dot(bRec.wo, H));
const Float dwh_dwo = 1.0f / (4.0f * dot(bRec.wo, H));
/* Evaluate the microsurface normal distribution */
Float prob = m_distribution.pdf(H, alpha);
const Float prob = m_distribution.pdf(H, m_alpha);
result += prob * dwh_dwo *
(sampleDiffuse ? (1-roughTransmittance) : 1.0f);
result = prob * dwh_dwo * probSpecular;
}
if (sampleDiffuse)
result += Frame::cosTheta(bRec.wo) * INV_PI *
(sampleSpecular ? roughTransmittance : 1.0f);
result += Frame::cosTheta(bRec.wo) * INV_PI * probDiffuse;
return result;
}
@ -240,30 +266,57 @@ public:
if (Frame::cosTheta(bRec.wi) <= 0 || (!sampleSpecular && !sampleDiffuse))
return Spectrum(0.0f);
bool choseReflection = sampleSpecular;
bool choseSpecular = sampleSpecular;
Normal m;
Point2 sample(_sample);
if (sampleSpecular && sampleDiffuse) {
Float roughTransmittance = m_roughTransmittance->eval(
Frame::cosTheta(bRec.wi));
if (sample.x < roughTransmittance) {
sample.x /= roughTransmittance;
choseReflection = false;
if (bRec.sampler && false) {
/**
* We have access to a sampler -- use a good sampling
* technique, which is somewhat wasteful in terms of
* random numbers
*/
m = m_distribution.sample(sample, m_alpha);
Float probSpecular = fresnel(dot(bRec.wi, m), m_extIOR, m_intIOR);
/* Reallocate samples */
probSpecular = (probSpecular*m_specularSamplingWeight) /
(probSpecular*m_specularSamplingWeight +
(1-probSpecular) * (1-m_specularSamplingWeight));
if (bRec.sampler->next1D() > probSpecular) {
choseSpecular = false;
sample = bRec.sampler->next2D();
}
} else {
sample.x = (sample.x - roughTransmittance)
/ (1 - roughTransmittance);
/**
* Basic strategy -- use a clamped Fresnel coefficient
* wrt. the macro-surface normal to choose between
* diffuse and specular component.
*/
Float probSpecular = 1 - m_roughTransmittance->eval(Frame::cosTheta(bRec.wi));
/* Reallocate samples */
probSpecular = (probSpecular*m_specularSamplingWeight) /
(probSpecular*m_specularSamplingWeight +
(1-probSpecular) * (1-m_specularSamplingWeight));
if (sample.x < probSpecular) {
sample.x /= probSpecular;
m = m_distribution.sample(sample, m_alpha);
} else {
sample.x = (sample.x - probSpecular) / (1 - probSpecular);
choseSpecular = false;
}
}
} else if (choseSpecular) {
m = m_distribution.sample(sample, m_alpha);
}
if (choseReflection) {
/* Evaluate the roughness */
Float alpha = m_distribution.transformRoughness(
m_alpha->getValue(bRec.its).average());
/* Sample M, the microsurface normal */
const Normal m = m_distribution.sample(sample, alpha);
if (choseSpecular) {
/* Perfect specular reflection based on the microsurface normal */
bRec.wo = reflect(bRec.wi, m);
bRec.sampledComponent = 0;
@ -288,10 +341,7 @@ public:
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "alpha") {
m_alpha = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_alpha->usesRayDifferentials();
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
m_specularReflectance = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "diffuseReflectance") {
@ -316,10 +366,11 @@ public:
BSDF::serialize(stream, manager);
stream->writeUInt((uint32_t) m_distribution.getType());
manager->serialize(stream, m_alpha.get());
manager->serialize(stream, m_specularReflectance.get());
manager->serialize(stream, m_diffuseReflectance.get());
manager->serialize(stream, m_roughTransmittance.get());
manager->serialize(stream, m_diffuseProb.get());
stream->writeFloat(m_alpha);
stream->writeFloat(m_intIOR);
stream->writeFloat(m_extIOR);
}
@ -329,9 +380,11 @@ public:
oss << "RoughPlastic[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " distribution = " << m_distribution.toString() << "," << endl
<< " alpha = " << indent(m_alpha->toString()) << "," << endl
<< " alpha = " << m_alpha << "," << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
<< " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
<< " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl
<< " intIOR = " << m_intIOR << "," << endl
<< " extIOR = " << m_extIOR << endl
<< "]";
@ -344,10 +397,11 @@ public:
private:
MicrofacetDistribution m_distribution;
ref<CubicSpline> m_roughTransmittance;
ref<CubicSpline> m_diffuseProb;
ref<Texture> m_diffuseReflectance;
ref<Texture> m_specularReflectance;
ref<Texture> m_alpha;
Float m_intIOR, m_extIOR;
Float m_alpha, m_intIOR, m_extIOR;
Float m_specularSamplingWeight;
};
/* Fake plastic shader -- it is really hopeless to visualize

View File

@ -154,7 +154,8 @@ Spectrum MIPMap::getMaximum() const {
}
ref<MIPMap> MIPMap::fromBitmap(Bitmap *bitmap, EFilterType filterType,
EWrapMode wrapMode, Float maxAnisotropy) {
EWrapMode wrapMode, Float maxAnisotropy,
Spectrum::EConversionIntent intent) {
int width = bitmap->getWidth();
int height = bitmap->getHeight();
float *data = bitmap->getFloatData();
@ -165,9 +166,9 @@ ref<MIPMap> MIPMap::fromBitmap(Bitmap *bitmap, EFilterType filterType,
float r = data[(y*width+x)*4+0];
float g = data[(y*width+x)*4+1];
float b = data[(y*width+x)*4+2];
s.fromLinearRGB(r, g, b);
s.clampNegative();
/* Convert to a spectral representation */
s.fromLinearRGB(r, g, b, intent);
s.clampNegative();
pixels[y*width+x] = s;
}
}

View File

@ -44,7 +44,8 @@ public:
ref<Stream> is = new FileStream(m_path, FileStream::EReadOnly);
ref<Bitmap> bitmap = new Bitmap(Bitmap::EEXR, is);
m_mipmap = MIPMap::fromBitmap(bitmap);
m_mipmap = MIPMap::fromBitmap(bitmap, MIPMap::ETrilinear,
MIPMap::ERepeat, 0.0f, Spectrum::EIlluminant);
m_average = m_mipmap->triangle(m_mipmap->getLevels()-1, 0, 0) * m_intensityScale;
m_type = EOnSurface;
}
@ -60,7 +61,8 @@ public:
stream->copyTo(mStream, size);
mStream->setPos(0);
ref<Bitmap> bitmap = new Bitmap(Bitmap::EEXR, mStream);
m_mipmap = MIPMap::fromBitmap(bitmap);
m_mipmap = MIPMap::fromBitmap(bitmap, MIPMap::ETrilinear,
MIPMap::ERepeat, 0.0f, Spectrum::EIlluminant);
m_average = m_mipmap->triangle(m_mipmap->getLevels()-1, 0, 0) * m_intensityScale;
m_surfaceArea = 4 * m_bsphere.radius * m_bsphere.radius * M_PI;
m_invSurfaceArea = 1/m_surfaceArea;