added a hacky rough coating BSDF

metadata
Wenzel Jakob 2011-08-22 00:17:55 -04:00
parent 98b6b65416
commit 282682b8c4
9 changed files with 545 additions and 6 deletions

View File

@ -9,7 +9,7 @@ import os, re
def findOrderID(filename): def findOrderID(filename):
f = open(filename) f = open(filename)
for line in f.readlines(): for line in f.readlines():
match = re.match(r'.*\\order{([^}])}.*', line) match = re.match(r'.*\\order{([^}]*)}.*', line)
if match != None: if match != None:
return int(match.group(1)) return int(match.group(1))
return 1000 return 1000
@ -49,6 +49,7 @@ def traverse(target, dirname, files):
if '.cpp' == os.path.splitext(filename)[1]: if '.cpp' == os.path.splitext(filename)[1]:
fname = os.path.join(dirname, filename) fname = os.path.join(dirname, filename)
ordering = ordering + [(findOrderID(fname), fname)] ordering = ordering + [(findOrderID(fname), fname)]
print(ordering)
ordering = sorted(ordering, key = lambda entry: entry[0]) ordering = sorted(ordering, key = lambda entry: entry[0])
for entry in ordering: for entry in ordering:

View File

@ -253,6 +253,8 @@ scene.addChild(pmgr.create({
'reflectance' : Spectrum(0.4) 'reflectance' : Spectrum(0.4)
} }
})) }))
scene.configure()
\end{python} \end{python}
\subsubsection{Taking control of the logging system} \subsubsection{Taking control of the logging system}

View File

@ -15,6 +15,7 @@ plugins += env.SharedLibrary('twosided', ['twosided.cpp'])
plugins += env.SharedLibrary('mask', ['mask.cpp']) plugins += env.SharedLibrary('mask', ['mask.cpp'])
plugins += env.SharedLibrary('mixturebsdf', ['mixturebsdf.cpp']) plugins += env.SharedLibrary('mixturebsdf', ['mixturebsdf.cpp'])
plugins += env.SharedLibrary('coating', ['coating.cpp']) plugins += env.SharedLibrary('coating', ['coating.cpp'])
plugins += env.SharedLibrary('roughcoating', ['roughcoating.cpp'])
plugins += env.SharedLibrary('bump', ['bump.cpp']) plugins += env.SharedLibrary('bump', ['bump.cpp'])
# Other materials # Other materials

View File

@ -122,6 +122,10 @@ public:
/* Specifies the absorption within the layer */ /* Specifies the absorption within the layer */
m_sigmaA = new ConstantSpectrumTexture( m_sigmaA = new ConstantSpectrumTexture(
props.getSpectrum("sigmaA", Spectrum(0.0f))); props.getSpectrum("sigmaA", Spectrum(0.0f)));
if (m_intIOR < 0 || m_extIOR < 0 || m_intIOR == m_extIOR)
Log(EError, "The interior and exterior indices of "
"refraction must be positive and differ!");
} }
SmoothCoating(Stream *stream, InstanceManager *manager) SmoothCoating(Stream *stream, InstanceManager *manager)
@ -176,6 +180,8 @@ public:
if (m_nested != NULL) if (m_nested != NULL)
Log(EError, "Only a single nested BRDF can be added!"); Log(EError, "Only a single nested BRDF can be added!");
m_nested = static_cast<BSDF *>(child); m_nested = static_cast<BSDF *>(child);
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "sigmaA") {
m_sigmaA = static_cast<Texture *>(m_sigmaA);
} else { } else {
BSDF::addChild(name, child); BSDF::addChild(name, child);
} }
@ -533,8 +539,8 @@ public:
MTS_DECLARE_CLASS() MTS_DECLARE_CLASS()
private: private:
ref<const BSDF> m_nested; ref<const BSDF> m_nested;
ref<const Texture> m_sigmaA;
ref<Shader> m_nestedShader; ref<Shader> m_nestedShader;
ref<const Texture> m_sigmaA;
ref<Shader> m_sigmaAShader; ref<Shader> m_sigmaAShader;
Float m_R0, m_eta; Float m_R0, m_eta;
}; };

View File

@ -22,7 +22,7 @@
MTS_NAMESPACE_BEGIN MTS_NAMESPACE_BEGIN
/*!\plugin{phong}{Modified Phong BRDF} /*!\plugin{phong}{Modified Phong BRDF}
* \order{10} * \order{11}
* \parameters{ * \parameters{
* \parameter{exponent}{\Float\Or\Texture}{ * \parameter{exponent}{\Float\Or\Texture}{
* Specifies the Phong exponent \default{30}. * Specifies the Phong exponent \default{30}.

View File

@ -444,5 +444,5 @@ Shader *SmoothPlastic::createShader(Renderer *renderer) const {
MTS_IMPLEMENT_CLASS(SmoothPlasticShader, false, Shader) MTS_IMPLEMENT_CLASS(SmoothPlasticShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(SmoothPlastic, false, BSDF) MTS_IMPLEMENT_CLASS_S(SmoothPlastic, false, BSDF)
MTS_EXPORT_PLUGIN(SmoothPlastic, "Smooth plastic BSDF"); MTS_EXPORT_PLUGIN(SmoothPlastic, "Smooth plastic BRDF");
MTS_NAMESPACE_END MTS_NAMESPACE_END

529
src/bsdfs/roughcoating.cpp Normal file
View File

@ -0,0 +1,529 @@
/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/hw/basicshader.h>
#include "microfacet.h"
#include "ior.h"
MTS_NAMESPACE_BEGIN
#define TRANSMITTANCE_PRECOMP_NODES 200
/*!\plugin{roughcoating}{Rough coating material}
* \order{10}
* \icon{bsdf_roughcoating}
* \parameters{
* \parameter{distribution}{\String}{
* Specifies the type of microfacet normal distribution
* used to model the surface roughness.
* \begin{enumerate}[(i)]
* \item \code{beckmann}: Physically-based distribution derived from
* Gaussian random surfaces. This is the default.
* \item \code{ggx}: New distribution proposed by
* Walter et al. \cite{Walter07Microfacet}, which is meant to better handle
* the long tails observed in measurements of ground surfaces.
* Renderings with this distribution may converge slowly.
* \item \code{phong}: Classical $\cos^p\theta$ distribution.
* Due to the underlying microfacet theory,
* the use of this distribution here leads to more realistic
* behavior than the separately available \pluginref{phong} plugin.
* \vspace{-4mm}
* \end{enumerate}
* }
* \parameter{alpha}{\Float}{
* Specifies the roughness of the unresolved surface micro-geometry.
* When the Beckmann distribution is used, this parameter is equal to the
* \emph{root mean square} (RMS) slope of the microfacets.
* \default{0.1}.
* }
* \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified
* numerically or using a known material name. \default{\texttt{bk7} / 1.5046}}
* \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
* \parameter{sigmaA}{\Spectrum\Or\Texture}{The absorption coefficient of the
* coating layer. \default{0, i.e. there is no absorption}}
* \parameter{\Unnamed}{\BSDF}{A nested BSDF model that should be coated.}
* }
*
*/
class RoughCoating : public BSDF {
public:
/// \sa refractTo()
enum EDestination {
EInterior = 0,
EExterior = 1
};
RoughCoating(const Properties &props) : BSDF(props) {
/* Specifies the internal index of refraction at the interface */
m_intIOR = lookupIOR(props, "intIOR", "bk7");
/* Specifies the external index of refraction at the interface */
m_extIOR = lookupIOR(props, "extIOR", "air");
/* Specifies the absorption within the layer */
m_sigmaA = new ConstantSpectrumTexture(
props.getSpectrum("sigmaA", Spectrum(0.0f)));
if (m_intIOR < 0 || m_extIOR < 0 || m_intIOR == m_extIOR)
Log(EError, "The interior and exterior indices of "
"refraction must be positive and differ!");
m_distribution = MicrofacetDistribution(
props.getString("distribution", "beckmann")
);
if (m_distribution.isAnisotropic())
Log(EError, "The 'roughplastic' plugin currently does not support "
"anisotropic microfacet distributions!");
m_alpha = m_distribution.transformRoughness(
props.getFloat("alpha", 0.1f));
m_specularSamplingWeight = 0.0f;
}
RoughCoating(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_distribution = MicrofacetDistribution(
(MicrofacetDistribution::EType) stream->readUInt()
);
m_nested = static_cast<BSDF *>(manager->getInstance(stream));
m_sigmaA = static_cast<Texture *>(manager->getInstance(stream));
m_roughTransmittance = static_cast<CubicSpline *>(manager->getInstance(stream));
m_alpha = stream->readFloat();
m_intIOR = stream->readFloat();
m_extIOR = stream->readFloat();
m_thickness = stream->readFloat();
configure();
}
void configure() {
unsigned int extraFlags = 0;
if (!m_sigmaA->isConstant())
extraFlags |= ESpatiallyVarying;
m_components.clear();
for (int i=0; i<m_nested->getComponentCount(); ++i)
m_components.push_back(m_nested->getType(i) | extraFlags);
m_components.push_back(EGlossyReflection | EFrontSide | EBackSide);
m_usesRayDifferentials = m_nested->usesRayDifferentials()
|| m_sigmaA->usesRayDifferentials();
/* Compute weights that further steer samples towards
the specular or nested components */
Float avgAbsorption = (m_sigmaA->getAverage()
*(-2*m_thickness)).exp().average();
m_specularSamplingWeight = 1.0f / (avgAbsorption + 1.0f);
/* Precompute the rough transmittance through the interface */
m_roughTransmittance = m_distribution.computeRoughTransmittance(
m_extIOR, m_intIOR, m_alpha, TRANSMITTANCE_PRECOMP_NODES);
BSDF::configure();
}
/// Helper function: reflect \c wi with respect to a given surface normal
inline Vector reflect(const Vector &wi, const Normal &m) const {
return 2 * dot(wi, m) * Vector(m) - wi;
}
inline Float signum(Float value) const {
return (value < 0) ? -1.0f : 1.0f;
}
/// Refraction in local coordinates
Vector refractTo(EDestination dest,
const Vector &wi) const {
Float etaI, etaT;
if (dest == EInterior) {
etaI = m_extIOR;
etaT = m_intIOR;
} else {
etaI = m_intIOR;
etaT = m_extIOR;
}
Float cosThetaI = Frame::cosTheta(wi);
bool entering = cosThetaI > 0.0f;
/* Using Snell's law, calculate the squared sine of the
angle between the normal and the transmitted ray */
Float eta = etaI / etaT,
sinThetaTSqr = eta*eta * Frame::sinTheta2(wi);
if (sinThetaTSqr >= 1.0f) {
/* Total internal reflection */
return Vector(0.0f);
} else {
Float cosThetaT = std::sqrt(1.0f - sinThetaTSqr);
/* Retain the directionality of the vector */
return Vector(eta*wi.x, eta*wi.y,
entering ? cosThetaT : -cosThetaT);
}
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || bRec.component < (int) m_components.size()-1);
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1)
&& measure == ESolidAngle;
Spectrum result(0.0f);
if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) {
/* Calculate the reflection half-vector */
const Vector H = normalize(bRec.wo+bRec.wi)
* signum(Frame::cosTheta(bRec.wo));
/* Evaluate the microsurface normal distribution */
const Float D = m_distribution.eval(H, m_alpha);
/* Fresnel term */
const Float F = fresnel(absDot(bRec.wi, H), m_extIOR, m_intIOR);
/* Smith's shadow-masking function */
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, m_alpha);
/* Calculate the specular reflection component */
Float value = F * D * G /
(4.0f * std::abs(Frame::cosTheta(bRec.wi)));
result += Spectrum(value);
}
if (hasNested) {
BSDFQueryRecord bRecInt(bRec);
bRecInt.wi = refractTo(EInterior, bRec.wi);
bRecInt.wo = refractTo(EInterior, bRec.wo);
Spectrum nestedResult = m_nested->eval(bRecInt, measure) *
m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi))) *
m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wo)));
Spectrum sigmaA = m_sigmaA->getValue(bRec.its) * m_thickness;
if (!sigmaA.isZero())
nestedResult *= (-sigmaA *
(1/std::abs(Frame::cosTheta(bRecInt.wi)) +
1/std::abs(Frame::cosTheta(bRecInt.wo)))).exp();
if (measure == ESolidAngle) {
Float eta = m_extIOR / m_intIOR;
/* Solid angle compression & irradiance conversion factors */
nestedResult *= eta * eta *
Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo)
/ (Frame::cosTheta(bRecInt.wi) * Frame::cosTheta(bRecInt.wo));
}
result += nestedResult;
}
return result;
}
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || bRec.component < (int) m_components.size()-1);
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1)
&& measure == ESolidAngle;
/* Calculate the reflection half-vector */
const Vector H = normalize(bRec.wo+bRec.wi)
* signum(Frame::cosTheta(bRec.wo));
Float probNested, probSpecular;
if (hasSpecular && hasNested) {
/* Find the probability of sampling the specular component */
probSpecular = 1-m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi)));
/* Reallocate samples */
probSpecular = (probSpecular*m_specularSamplingWeight) /
(probSpecular*m_specularSamplingWeight +
(1-probSpecular) * (1-m_specularSamplingWeight));
probNested = 1 - probSpecular;
} else {
probNested = probSpecular = 1.0f;
}
Float result = 0.0f;
if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) {
/* Jacobian of the half-direction transform */
const Float dwh_dwo = 1.0f / (4.0f * dot(bRec.wo, H));
/* Evaluate the microsurface normal distribution */
const Float prob = m_distribution.pdf(H, m_alpha);
result = prob * dwh_dwo * probSpecular;
}
if (hasNested) {
BSDFQueryRecord bRecInt(bRec);
bRecInt.wi = refractTo(EInterior, bRec.wi);
bRecInt.wo = refractTo(EInterior, bRec.wo);
Float pdf = m_nested->pdf(bRecInt, measure);
if (measure == ESolidAngle) {
Float eta = m_extIOR / m_intIOR;
pdf *= eta * eta * Frame::cosTheta(bRec.wo)
/ Frame::cosTheta(bRecInt.wo);
}
result += pdf * probNested;
}
return result;
}
inline Spectrum sample(BSDFQueryRecord &bRec, Float &_pdf, const Point2 &_sample) const {
bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || bRec.component < (int) m_components.size()-1);
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1);
bool choseSpecular = hasSpecular;
Point2 sample(_sample);
Float probSpecular;
if (hasSpecular && hasNested) {
/* Find the probability of sampling the diffuse component */
probSpecular = 1 - m_roughTransmittance->eval(Frame::cosTheta(bRec.wi));
/* Reallocate samples */
probSpecular = (probSpecular*m_specularSamplingWeight) /
(probSpecular*m_specularSamplingWeight +
(1-probSpecular) * (1-m_specularSamplingWeight));
if (sample.x <= probSpecular) {
sample.x /= probSpecular;
} else {
sample.x = (sample.x - probSpecular) / (1 - probSpecular);
choseSpecular = false;
}
}
if (choseSpecular) {
/* Perfect specular reflection based on the microsurface normal */
Normal m = m_distribution.sample(sample, m_alpha);
bRec.wo = reflect(bRec.wi, m);
bRec.sampledComponent = m_components.size()-1;
bRec.sampledType = EGlossyReflection;
/* Side check */
if (Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
} else {
bRec.sampledComponent = 1;
bRec.sampledType = EDiffuseReflection;
bRec.wo = squareToHemispherePSA(sample);
}
/* Guard against numerical imprecisions */
_pdf = pdf(bRec, ESolidAngle);
if (_pdf == 0)
return Spectrum(0.0f);
else
return eval(bRec, ESolidAngle) / _pdf;
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
Float pdf;
return RoughCoating::sample(bRec, pdf, sample);
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
stream->writeUInt((uint32_t) m_distribution.getType());
manager->serialize(stream, m_nested.get());
manager->serialize(stream, m_sigmaA.get());
manager->serialize(stream, m_roughTransmittance.get());
stream->writeFloat(m_alpha);
stream->writeFloat(m_intIOR);
stream->writeFloat(m_extIOR);
stream->writeFloat(m_thickness);
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(BSDF))) {
if (m_nested != NULL)
Log(EError, "Only a single nested BRDF can be added!");
m_nested = static_cast<BSDF *>(child);
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "sigmaA") {
m_sigmaA = static_cast<Texture *>(m_sigmaA);
} else {
BSDF::addChild(name, child);
}
}
std::string toString() const {
std::ostringstream oss;
oss << "RoughCoating[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " distribution = " << m_distribution.toString() << "," << endl
<< " alpha = " << m_alpha << "," << endl
<< " sigmaA = " << m_sigmaA->toString() << "," << endl
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
<< " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl
<< " intIOR = " << m_intIOR << "," << endl
<< " extIOR = " << m_extIOR << "," << endl
<< " nested = " << indent(m_nested.toString()) << endl
<< "]";
return oss.str();
}
// Shader *createShader(Renderer *renderer) const;
MTS_DECLARE_CLASS()
private:
MicrofacetDistribution m_distribution;
ref<CubicSpline> m_roughTransmittance;
ref<Texture> m_sigmaA;
ref<BSDF> m_nested;
Float m_alpha, m_intIOR, m_extIOR;
Float m_specularSamplingWeight;
Float m_thickness;
};
#if 0
/**
* GLSL port of the rough coating shader. This version is much more
* approximate -- it only supports the Beckmann distribution,
* does everything in RGB, uses a cheaper shadowing-masking term, and
* it also makes use of the Schlick approximation to the Fresnel
* reflectance of dielectrics. When the roughness is lower than
* \alpha < 0.2, the shader clamps it to 0.2 so that it will still perform
* reasonably well in a VPL-based preview.
*/
class RoughCoatingShader : public Shader {
public:
RoughCoatingShader(Renderer *renderer,
const BSDF *nested,
const Texture *sigmaA,
Float alpha, Float extIOR,
Float intIOR) : Shader(renderer, EBSDFShader),
m_nested(nested),
m_sigmaA(sigmaA),
m_alpha(alpha), m_extIOR(extIOR), m_intIOR(intIOR) {
m_nestedShader = renderer->registerShaderForResource(m_nested.get());
m_sigmaAShader = renderer->registerShaderForResource(m_sigmaA.get());
m_alpha = std::max(m_alpha, (Float) 0.2f);
m_R0 = fresnel(1.0f, m_extIOR, m_intIOR);
}
bool isComplete() const {
return m_nestedShader.get() != NULL
&& m_sigmaAShader.get() != NULL;
}
void putDependencies(std::vector<Shader *> &deps) {
deps.push_back(m_nestedShader.get());
deps.push_back(m_sigmaAShader.get());
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_nested.get());
renderer->unregisterShaderForResource(m_sigmaA.get());
}
void resolve(const GPUProgram *program, const std::string &evalName, std::vector<int> &parameterIDs) const {
parameterIDs.push_back(program->getParameterID(evalName + "_alpha", false));
parameterIDs.push_back(program->getParameterID(evalName + "_R0", false));
}
void bind(GPUProgram *program, const std::vector<int> &parameterIDs, int &textureUnitOffset) const {
program->setParameter(parameterIDs[0], m_alpha);
program->setParameter(parameterIDs[1], m_R0);
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "uniform float " << evalName << "_alpha;" << endl
<< "uniform float " << evalName << "_R0;" << endl
<< endl
<< "float " << evalName << "_D(vec3 m) {" << endl
<< " float ct = cosTheta(m);" << endl
<< " if (cosTheta(m) <= 0.0)" << endl
<< " return 0.0;" << endl
<< " float ex = tanTheta(m) / " << evalName << "_alpha;" << endl
<< " return exp(-(ex*ex)) / (pi * " << evalName << "_alpha" << endl
<< " * " << evalName << "_alpha * pow(cosTheta(m), 4.0));" << endl
<< "}" << endl
<< endl
<< "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl
<< " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl
<< " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl
<< " return 0.0;" << endl
<< " float nDotM = cosTheta(m);" << endl
<< " return min(1.0, min(" << endl
<< " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl
<< " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl
<< "}" << endl
<< endl
<< endl
<< "float " << evalName << "_schlick(float ct) {" << endl
<< " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl
<< " return " << evalName << "_R0 + (1.0 - " << evalName << "_R0) * ct5;" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " if (cosTheta(wi) <= 0 || cosTheta(wo) <= 0)" << endl
<< " return vec3(0.0);" << endl
<< " vec3 H = normalize(wi + wo);" << endl
<< " vec3 specRef = " << depNames[0] << "(uv);" << endl
<< " vec3 diffuseRef = " << depNames[1] << "(uv);" << endl
<< " float D = " << evalName << "_D(H)" << ";" << endl
<< " float G = " << evalName << "_G(H, wi, wo);" << endl
<< " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl
<< " return specRef * (F * D * G / (4*cosTheta(wi))) + " << endl
<< " diffuseRef * ((1-F) * cosTheta(wo) * 0.31831);" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " vec3 diffuseRef = " << depNames[1] << "(uv);" << endl
<< " return diffuseRef * 0.31831 * cosTheta(wo);"<< endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
private:
ref<const BSDF> m_nested;
ref<Shader> m_nestedShader;
ref<const Texture> m_sigmaA;
ref<Shader> m_sigmaAShader;
Float m_alpha, m_extIOR, m_intIOR, m_R0;
};
Shader *RoughCoating::createShader(Renderer *renderer) const {
return new RoughCoatingShader(renderer, m_nested.get(),
m_sigmaA.get(), m_alpha, m_extIOR, m_intIOR);
}
MTS_IMPLEMENT_CLASS(RoughCoatingShader, false, Shader)
#endif
MTS_IMPLEMENT_CLASS_S(RoughCoating, false, BSDF)
MTS_EXPORT_PLUGIN(RoughCoating, "Rough coating BSDF");
MTS_NAMESPACE_END

View File

@ -532,5 +532,5 @@ Shader *RoughPlastic::createShader(Renderer *renderer) const {
MTS_IMPLEMENT_CLASS(RoughPlasticShader, false, Shader) MTS_IMPLEMENT_CLASS(RoughPlasticShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(RoughPlastic, false, BSDF) MTS_IMPLEMENT_CLASS_S(RoughPlastic, false, BSDF)
MTS_EXPORT_PLUGIN(RoughPlastic, "Rough plastic BSDF"); MTS_EXPORT_PLUGIN(RoughPlastic, "Rough plastic BRDF");
MTS_NAMESPACE_END MTS_NAMESPACE_END

View File

@ -23,7 +23,7 @@
MTS_NAMESPACE_BEGIN MTS_NAMESPACE_BEGIN
/*!\plugin{ward}{Anisotropic Ward BRDF} /*!\plugin{ward}{Anisotropic Ward BRDF}
* \order{11} * \order{12}
* \parameters{ * \parameters{
* \parameter{variant}{\String}{ * \parameter{variant}{\String}{
* Determines the variant of the Ward model to use: * Determines the variant of the Ward model to use: