diff --git a/doc/gendoc.py b/doc/gendoc.py index 6b63fb60..21f1e8bc 100755 --- a/doc/gendoc.py +++ b/doc/gendoc.py @@ -9,7 +9,7 @@ import os, re def findOrderID(filename): f = open(filename) for line in f.readlines(): - match = re.match(r'.*\\order{([^}])}.*', line) + match = re.match(r'.*\\order{([^}]*)}.*', line) if match != None: return int(match.group(1)) return 1000 @@ -49,6 +49,7 @@ def traverse(target, dirname, files): if '.cpp' == os.path.splitext(filename)[1]: fname = os.path.join(dirname, filename) ordering = ordering + [(findOrderID(fname), fname)] + print(ordering) ordering = sorted(ordering, key = lambda entry: entry[0]) for entry in ordering: diff --git a/doc/python.tex b/doc/python.tex index e45756cc..c47a8026 100644 --- a/doc/python.tex +++ b/doc/python.tex @@ -253,6 +253,8 @@ scene.addChild(pmgr.create({ 'reflectance' : Spectrum(0.4) } })) + +scene.configure() \end{python} \subsubsection{Taking control of the logging system} diff --git a/src/bsdfs/SConscript b/src/bsdfs/SConscript index 75587c59..6a60a79c 100644 --- a/src/bsdfs/SConscript +++ b/src/bsdfs/SConscript @@ -15,6 +15,7 @@ plugins += env.SharedLibrary('twosided', ['twosided.cpp']) plugins += env.SharedLibrary('mask', ['mask.cpp']) plugins += env.SharedLibrary('mixturebsdf', ['mixturebsdf.cpp']) plugins += env.SharedLibrary('coating', ['coating.cpp']) +plugins += env.SharedLibrary('roughcoating', ['roughcoating.cpp']) plugins += env.SharedLibrary('bump', ['bump.cpp']) # Other materials diff --git a/src/bsdfs/coating.cpp b/src/bsdfs/coating.cpp index 7fd3acde..5b4f9f93 100644 --- a/src/bsdfs/coating.cpp +++ b/src/bsdfs/coating.cpp @@ -122,6 +122,10 @@ public: /* Specifies the absorption within the layer */ m_sigmaA = new ConstantSpectrumTexture( props.getSpectrum("sigmaA", Spectrum(0.0f))); + + if (m_intIOR < 0 || m_extIOR < 0 || m_intIOR == m_extIOR) + Log(EError, "The interior and exterior indices of " + "refraction must be positive and differ!"); } SmoothCoating(Stream *stream, InstanceManager *manager) @@ -176,6 +180,8 @@ public: if (m_nested != NULL) Log(EError, "Only a single nested BRDF can be added!"); m_nested = static_cast(child); + } else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "sigmaA") { + m_sigmaA = static_cast(m_sigmaA); } else { BSDF::addChild(name, child); } @@ -533,8 +539,8 @@ public: MTS_DECLARE_CLASS() private: ref m_nested; - ref m_sigmaA; ref m_nestedShader; + ref m_sigmaA; ref m_sigmaAShader; Float m_R0, m_eta; }; diff --git a/src/bsdfs/phong.cpp b/src/bsdfs/phong.cpp index 7a3c4e5f..c0598812 100644 --- a/src/bsdfs/phong.cpp +++ b/src/bsdfs/phong.cpp @@ -22,7 +22,7 @@ MTS_NAMESPACE_BEGIN /*!\plugin{phong}{Modified Phong BRDF} - * \order{10} + * \order{11} * \parameters{ * \parameter{exponent}{\Float\Or\Texture}{ * Specifies the Phong exponent \default{30}. diff --git a/src/bsdfs/plastic.cpp b/src/bsdfs/plastic.cpp index a04c9097..d13bef76 100644 --- a/src/bsdfs/plastic.cpp +++ b/src/bsdfs/plastic.cpp @@ -444,5 +444,5 @@ Shader *SmoothPlastic::createShader(Renderer *renderer) const { MTS_IMPLEMENT_CLASS(SmoothPlasticShader, false, Shader) MTS_IMPLEMENT_CLASS_S(SmoothPlastic, false, BSDF) -MTS_EXPORT_PLUGIN(SmoothPlastic, "Smooth plastic BSDF"); +MTS_EXPORT_PLUGIN(SmoothPlastic, "Smooth plastic BRDF"); MTS_NAMESPACE_END diff --git a/src/bsdfs/roughcoating.cpp b/src/bsdfs/roughcoating.cpp new file mode 100644 index 00000000..819a0509 --- /dev/null +++ b/src/bsdfs/roughcoating.cpp @@ -0,0 +1,529 @@ +/* + This file is part of Mitsuba, a physically based rendering system. + + Copyright (c) 2007-2011 by Wenzel Jakob and others. + + Mitsuba is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License Version 3 + as published by the Free Software Foundation. + + Mitsuba is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +*/ + +#include +#include +#include "microfacet.h" +#include "ior.h" + +MTS_NAMESPACE_BEGIN + +#define TRANSMITTANCE_PRECOMP_NODES 200 + +/*!\plugin{roughcoating}{Rough coating material} + * \order{10} + * \icon{bsdf_roughcoating} + * \parameters{ + * \parameter{distribution}{\String}{ + * Specifies the type of microfacet normal distribution + * used to model the surface roughness. + * \begin{enumerate}[(i)] + * \item \code{beckmann}: Physically-based distribution derived from + * Gaussian random surfaces. This is the default. + * \item \code{ggx}: New distribution proposed by + * Walter et al. \cite{Walter07Microfacet}, which is meant to better handle + * the long tails observed in measurements of ground surfaces. + * Renderings with this distribution may converge slowly. + * \item \code{phong}: Classical $\cos^p\theta$ distribution. + * Due to the underlying microfacet theory, + * the use of this distribution here leads to more realistic + * behavior than the separately available \pluginref{phong} plugin. + * \vspace{-4mm} + * \end{enumerate} + * } + * \parameter{alpha}{\Float}{ + * Specifies the roughness of the unresolved surface micro-geometry. + * When the Beckmann distribution is used, this parameter is equal to the + * \emph{root mean square} (RMS) slope of the microfacets. + * \default{0.1}. + * } + * \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified + * numerically or using a known material name. \default{\texttt{bk7} / 1.5046}} + * \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified + * numerically or using a known material name. \default{\texttt{air} / 1.000277}} + * \parameter{sigmaA}{\Spectrum\Or\Texture}{The absorption coefficient of the + * coating layer. \default{0, i.e. there is no absorption}} + * \parameter{\Unnamed}{\BSDF}{A nested BSDF model that should be coated.} + * } + * + */ +class RoughCoating : public BSDF { +public: + /// \sa refractTo() + enum EDestination { + EInterior = 0, + EExterior = 1 + }; + + RoughCoating(const Properties &props) : BSDF(props) { + /* Specifies the internal index of refraction at the interface */ + m_intIOR = lookupIOR(props, "intIOR", "bk7"); + + /* Specifies the external index of refraction at the interface */ + m_extIOR = lookupIOR(props, "extIOR", "air"); + + /* Specifies the absorption within the layer */ + m_sigmaA = new ConstantSpectrumTexture( + props.getSpectrum("sigmaA", Spectrum(0.0f))); + + if (m_intIOR < 0 || m_extIOR < 0 || m_intIOR == m_extIOR) + Log(EError, "The interior and exterior indices of " + "refraction must be positive and differ!"); + + m_distribution = MicrofacetDistribution( + props.getString("distribution", "beckmann") + ); + + if (m_distribution.isAnisotropic()) + Log(EError, "The 'roughplastic' plugin currently does not support " + "anisotropic microfacet distributions!"); + + m_alpha = m_distribution.transformRoughness( + props.getFloat("alpha", 0.1f)); + + m_specularSamplingWeight = 0.0f; + } + + RoughCoating(Stream *stream, InstanceManager *manager) + : BSDF(stream, manager) { + m_distribution = MicrofacetDistribution( + (MicrofacetDistribution::EType) stream->readUInt() + ); + m_nested = static_cast(manager->getInstance(stream)); + m_sigmaA = static_cast(manager->getInstance(stream)); + m_roughTransmittance = static_cast(manager->getInstance(stream)); + m_alpha = stream->readFloat(); + m_intIOR = stream->readFloat(); + m_extIOR = stream->readFloat(); + m_thickness = stream->readFloat(); + + configure(); + } + + void configure() { + unsigned int extraFlags = 0; + if (!m_sigmaA->isConstant()) + extraFlags |= ESpatiallyVarying; + + m_components.clear(); + for (int i=0; igetComponentCount(); ++i) + m_components.push_back(m_nested->getType(i) | extraFlags); + + m_components.push_back(EGlossyReflection | EFrontSide | EBackSide); + + m_usesRayDifferentials = m_nested->usesRayDifferentials() + || m_sigmaA->usesRayDifferentials(); + + /* Compute weights that further steer samples towards + the specular or nested components */ + Float avgAbsorption = (m_sigmaA->getAverage() + *(-2*m_thickness)).exp().average(); + + m_specularSamplingWeight = 1.0f / (avgAbsorption + 1.0f); + + /* Precompute the rough transmittance through the interface */ + m_roughTransmittance = m_distribution.computeRoughTransmittance( + m_extIOR, m_intIOR, m_alpha, TRANSMITTANCE_PRECOMP_NODES); + + BSDF::configure(); + } + + /// Helper function: reflect \c wi with respect to a given surface normal + inline Vector reflect(const Vector &wi, const Normal &m) const { + return 2 * dot(wi, m) * Vector(m) - wi; + } + + inline Float signum(Float value) const { + return (value < 0) ? -1.0f : 1.0f; + } + + /// Refraction in local coordinates + Vector refractTo(EDestination dest, + const Vector &wi) const { + Float etaI, etaT; + if (dest == EInterior) { + etaI = m_extIOR; + etaT = m_intIOR; + } else { + etaI = m_intIOR; + etaT = m_extIOR; + } + + Float cosThetaI = Frame::cosTheta(wi); + bool entering = cosThetaI > 0.0f; + + /* Using Snell's law, calculate the squared sine of the + angle between the normal and the transmitted ray */ + Float eta = etaI / etaT, + sinThetaTSqr = eta*eta * Frame::sinTheta2(wi); + + if (sinThetaTSqr >= 1.0f) { + /* Total internal reflection */ + return Vector(0.0f); + } else { + Float cosThetaT = std::sqrt(1.0f - sinThetaTSqr); + + /* Retain the directionality of the vector */ + return Vector(eta*wi.x, eta*wi.y, + entering ? cosThetaT : -cosThetaT); + } + } + + Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const { + bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) + && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); + bool hasSpecular = (bRec.typeMask & EGlossyReflection) + && (bRec.component == -1 || bRec.component == (int) m_components.size()-1) + && measure == ESolidAngle; + + Spectrum result(0.0f); + if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) { + /* Calculate the reflection half-vector */ + const Vector H = normalize(bRec.wo+bRec.wi) + * signum(Frame::cosTheta(bRec.wo)); + + /* Evaluate the microsurface normal distribution */ + const Float D = m_distribution.eval(H, m_alpha); + + /* Fresnel term */ + const Float F = fresnel(absDot(bRec.wi, H), m_extIOR, m_intIOR); + + /* Smith's shadow-masking function */ + const Float G = m_distribution.G(bRec.wi, bRec.wo, H, m_alpha); + + /* Calculate the specular reflection component */ + Float value = F * D * G / + (4.0f * std::abs(Frame::cosTheta(bRec.wi))); + + result += Spectrum(value); + } + + if (hasNested) { + BSDFQueryRecord bRecInt(bRec); + bRecInt.wi = refractTo(EInterior, bRec.wi); + bRecInt.wo = refractTo(EInterior, bRec.wo); + + Spectrum nestedResult = m_nested->eval(bRecInt, measure) * + m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi))) * + m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wo))); + + Spectrum sigmaA = m_sigmaA->getValue(bRec.its) * m_thickness; + if (!sigmaA.isZero()) + nestedResult *= (-sigmaA * + (1/std::abs(Frame::cosTheta(bRecInt.wi)) + + 1/std::abs(Frame::cosTheta(bRecInt.wo)))).exp(); + + if (measure == ESolidAngle) { + Float eta = m_extIOR / m_intIOR; + /* Solid angle compression & irradiance conversion factors */ + nestedResult *= eta * eta * + Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo) + / (Frame::cosTheta(bRecInt.wi) * Frame::cosTheta(bRecInt.wo)); + } + + result += nestedResult; + } + + return result; + } + + Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const { + bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) + && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); + bool hasSpecular = (bRec.typeMask & EGlossyReflection) + && (bRec.component == -1 || bRec.component == (int) m_components.size()-1) + && measure == ESolidAngle; + + /* Calculate the reflection half-vector */ + const Vector H = normalize(bRec.wo+bRec.wi) + * signum(Frame::cosTheta(bRec.wo)); + + Float probNested, probSpecular; + if (hasSpecular && hasNested) { + /* Find the probability of sampling the specular component */ + probSpecular = 1-m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi))); + + /* Reallocate samples */ + probSpecular = (probSpecular*m_specularSamplingWeight) / + (probSpecular*m_specularSamplingWeight + + (1-probSpecular) * (1-m_specularSamplingWeight)); + + probNested = 1 - probSpecular; + } else { + probNested = probSpecular = 1.0f; + } + + Float result = 0.0f; + if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) { + /* Jacobian of the half-direction transform */ + const Float dwh_dwo = 1.0f / (4.0f * dot(bRec.wo, H)); + + /* Evaluate the microsurface normal distribution */ + const Float prob = m_distribution.pdf(H, m_alpha); + + result = prob * dwh_dwo * probSpecular; + } + + if (hasNested) { + BSDFQueryRecord bRecInt(bRec); + bRecInt.wi = refractTo(EInterior, bRec.wi); + bRecInt.wo = refractTo(EInterior, bRec.wo); + + Float pdf = m_nested->pdf(bRecInt, measure); + + if (measure == ESolidAngle) { + Float eta = m_extIOR / m_intIOR; + pdf *= eta * eta * Frame::cosTheta(bRec.wo) + / Frame::cosTheta(bRecInt.wo); + } + + result += pdf * probNested; + } + + return result; + } + + inline Spectrum sample(BSDFQueryRecord &bRec, Float &_pdf, const Point2 &_sample) const { + bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) + && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); + bool hasSpecular = (bRec.typeMask & EGlossyReflection) + && (bRec.component == -1 || bRec.component == (int) m_components.size()-1); + + bool choseSpecular = hasSpecular; + Point2 sample(_sample); + + Float probSpecular; + if (hasSpecular && hasNested) { + /* Find the probability of sampling the diffuse component */ + probSpecular = 1 - m_roughTransmittance->eval(Frame::cosTheta(bRec.wi)); + + /* Reallocate samples */ + probSpecular = (probSpecular*m_specularSamplingWeight) / + (probSpecular*m_specularSamplingWeight + + (1-probSpecular) * (1-m_specularSamplingWeight)); + + if (sample.x <= probSpecular) { + sample.x /= probSpecular; + } else { + sample.x = (sample.x - probSpecular) / (1 - probSpecular); + choseSpecular = false; + } + } + + if (choseSpecular) { + /* Perfect specular reflection based on the microsurface normal */ + Normal m = m_distribution.sample(sample, m_alpha); + bRec.wo = reflect(bRec.wi, m); + bRec.sampledComponent = m_components.size()-1; + bRec.sampledType = EGlossyReflection; + + /* Side check */ + if (Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) <= 0) + return Spectrum(0.0f); + } else { + bRec.sampledComponent = 1; + bRec.sampledType = EDiffuseReflection; + bRec.wo = squareToHemispherePSA(sample); + } + + /* Guard against numerical imprecisions */ + _pdf = pdf(bRec, ESolidAngle); + + if (_pdf == 0) + return Spectrum(0.0f); + else + return eval(bRec, ESolidAngle) / _pdf; + } + + Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const { + Float pdf; + return RoughCoating::sample(bRec, pdf, sample); + } + + void serialize(Stream *stream, InstanceManager *manager) const { + BSDF::serialize(stream, manager); + + stream->writeUInt((uint32_t) m_distribution.getType()); + manager->serialize(stream, m_nested.get()); + manager->serialize(stream, m_sigmaA.get()); + manager->serialize(stream, m_roughTransmittance.get()); + stream->writeFloat(m_alpha); + stream->writeFloat(m_intIOR); + stream->writeFloat(m_extIOR); + stream->writeFloat(m_thickness); + } + + void addChild(const std::string &name, ConfigurableObject *child) { + if (child->getClass()->derivesFrom(MTS_CLASS(BSDF))) { + if (m_nested != NULL) + Log(EError, "Only a single nested BRDF can be added!"); + m_nested = static_cast(child); + } else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "sigmaA") { + m_sigmaA = static_cast(m_sigmaA); + } else { + BSDF::addChild(name, child); + } + } + + std::string toString() const { + std::ostringstream oss; + oss << "RoughCoating[" << endl + << " name = \"" << getName() << "\"," << endl + << " distribution = " << m_distribution.toString() << "," << endl + << " alpha = " << m_alpha << "," << endl + << " sigmaA = " << m_sigmaA->toString() << "," << endl + << " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl + << " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl + << " intIOR = " << m_intIOR << "," << endl + << " extIOR = " << m_extIOR << "," << endl + << " nested = " << indent(m_nested.toString()) << endl + << "]"; + return oss.str(); + } + +// Shader *createShader(Renderer *renderer) const; + + MTS_DECLARE_CLASS() +private: + MicrofacetDistribution m_distribution; + ref m_roughTransmittance; + ref m_sigmaA; + ref m_nested; + Float m_alpha, m_intIOR, m_extIOR; + Float m_specularSamplingWeight; + Float m_thickness; +}; +#if 0 +/** + * GLSL port of the rough coating shader. This version is much more + * approximate -- it only supports the Beckmann distribution, + * does everything in RGB, uses a cheaper shadowing-masking term, and + * it also makes use of the Schlick approximation to the Fresnel + * reflectance of dielectrics. When the roughness is lower than + * \alpha < 0.2, the shader clamps it to 0.2 so that it will still perform + * reasonably well in a VPL-based preview. + */ +class RoughCoatingShader : public Shader { +public: + RoughCoatingShader(Renderer *renderer, + const BSDF *nested, + const Texture *sigmaA, + Float alpha, Float extIOR, + Float intIOR) : Shader(renderer, EBSDFShader), + m_nested(nested), + m_sigmaA(sigmaA), + m_alpha(alpha), m_extIOR(extIOR), m_intIOR(intIOR) { + m_nestedShader = renderer->registerShaderForResource(m_nested.get()); + m_sigmaAShader = renderer->registerShaderForResource(m_sigmaA.get()); + m_alpha = std::max(m_alpha, (Float) 0.2f); + m_R0 = fresnel(1.0f, m_extIOR, m_intIOR); + } + + bool isComplete() const { + return m_nestedShader.get() != NULL + && m_sigmaAShader.get() != NULL; + } + + void putDependencies(std::vector &deps) { + deps.push_back(m_nestedShader.get()); + deps.push_back(m_sigmaAShader.get()); + } + + void cleanup(Renderer *renderer) { + renderer->unregisterShaderForResource(m_nested.get()); + renderer->unregisterShaderForResource(m_sigmaA.get()); + } + + void resolve(const GPUProgram *program, const std::string &evalName, std::vector ¶meterIDs) const { + parameterIDs.push_back(program->getParameterID(evalName + "_alpha", false)); + parameterIDs.push_back(program->getParameterID(evalName + "_R0", false)); + } + + void bind(GPUProgram *program, const std::vector ¶meterIDs, int &textureUnitOffset) const { + program->setParameter(parameterIDs[0], m_alpha); + program->setParameter(parameterIDs[1], m_R0); + } + + void generateCode(std::ostringstream &oss, + const std::string &evalName, + const std::vector &depNames) const { + oss << "uniform float " << evalName << "_alpha;" << endl + << "uniform float " << evalName << "_R0;" << endl + << endl + << "float " << evalName << "_D(vec3 m) {" << endl + << " float ct = cosTheta(m);" << endl + << " if (cosTheta(m) <= 0.0)" << endl + << " return 0.0;" << endl + << " float ex = tanTheta(m) / " << evalName << "_alpha;" << endl + << " return exp(-(ex*ex)) / (pi * " << evalName << "_alpha" << endl + << " * " << evalName << "_alpha * pow(cosTheta(m), 4.0));" << endl + << "}" << endl + << endl + << "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl + << " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl + << " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl + << " return 0.0;" << endl + << " float nDotM = cosTheta(m);" << endl + << " return min(1.0, min(" << endl + << " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl + << " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl + << "}" << endl + << endl + << endl + << "float " << evalName << "_schlick(float ct) {" << endl + << " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl + << " return " << evalName << "_R0 + (1.0 - " << evalName << "_R0) * ct5;" << endl + << "}" << endl + << endl + << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl + << " if (cosTheta(wi) <= 0 || cosTheta(wo) <= 0)" << endl + << " return vec3(0.0);" << endl + << " vec3 H = normalize(wi + wo);" << endl + << " vec3 specRef = " << depNames[0] << "(uv);" << endl + << " vec3 diffuseRef = " << depNames[1] << "(uv);" << endl + << " float D = " << evalName << "_D(H)" << ";" << endl + << " float G = " << evalName << "_G(H, wi, wo);" << endl + << " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl + << " return specRef * (F * D * G / (4*cosTheta(wi))) + " << endl + << " diffuseRef * ((1-F) * cosTheta(wo) * 0.31831);" << endl + << "}" << endl + << endl + << "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl + << " vec3 diffuseRef = " << depNames[1] << "(uv);" << endl + << " return diffuseRef * 0.31831 * cosTheta(wo);"<< endl + << "}" << endl; + } + MTS_DECLARE_CLASS() +private: + ref m_nested; + ref m_nestedShader; + ref m_sigmaA; + ref m_sigmaAShader; + Float m_alpha, m_extIOR, m_intIOR, m_R0; +}; + +Shader *RoughCoating::createShader(Renderer *renderer) const { + return new RoughCoatingShader(renderer, m_nested.get(), + m_sigmaA.get(), m_alpha, m_extIOR, m_intIOR); +} + +MTS_IMPLEMENT_CLASS(RoughCoatingShader, false, Shader) +#endif +MTS_IMPLEMENT_CLASS_S(RoughCoating, false, BSDF) +MTS_EXPORT_PLUGIN(RoughCoating, "Rough coating BSDF"); +MTS_NAMESPACE_END diff --git a/src/bsdfs/roughplastic.cpp b/src/bsdfs/roughplastic.cpp index 64a51b25..2bf755e9 100644 --- a/src/bsdfs/roughplastic.cpp +++ b/src/bsdfs/roughplastic.cpp @@ -532,5 +532,5 @@ Shader *RoughPlastic::createShader(Renderer *renderer) const { MTS_IMPLEMENT_CLASS(RoughPlasticShader, false, Shader) MTS_IMPLEMENT_CLASS_S(RoughPlastic, false, BSDF) -MTS_EXPORT_PLUGIN(RoughPlastic, "Rough plastic BSDF"); +MTS_EXPORT_PLUGIN(RoughPlastic, "Rough plastic BRDF"); MTS_NAMESPACE_END diff --git a/src/bsdfs/ward.cpp b/src/bsdfs/ward.cpp index 10290dd0..2a030e5d 100644 --- a/src/bsdfs/ward.cpp +++ b/src/bsdfs/ward.cpp @@ -23,7 +23,7 @@ MTS_NAMESPACE_BEGIN /*!\plugin{ward}{Anisotropic Ward BRDF} - * \order{11} + * \order{12} * \parameters{ * \parameter{variant}{\String}{ * Determines the variant of the Ward model to use: