131 lines
5.3 KiB
Python
131 lines
5.3 KiB
Python
|
import sys
|
||
|
import argparse
|
||
|
from pathlib import Path
|
||
|
from typing import List, Tuple
|
||
|
from itertools import cycle
|
||
|
|
||
|
import numpy as np
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
sys.path.append('')
|
||
|
import set_python_path
|
||
|
from mitsuba.core import PluginManager, Point3, Spectrum, Vector3, Transform, AABB, EWarn
|
||
|
from mitsuba.render import RenderJob
|
||
|
|
||
|
from io_util import ply
|
||
|
import util
|
||
|
import cameras
|
||
|
|
||
|
|
||
|
def create_spheres(pointcloud: np.ndarray, spectrum: Spectrum, sphere_radius: float = 1.) -> List:
|
||
|
"""
|
||
|
Create little spheres at the pointcloud's points' locations.
|
||
|
:param pointcloud: 3D pointcloud, as Nx3 ndarray
|
||
|
:param spectrum: The color spectrum to use with the spheres' diffuse bsdf
|
||
|
:param sphere_radius: The radius to use for each sphere
|
||
|
:return: A list of mitsuba shapes, to be added to a Scene
|
||
|
"""
|
||
|
spheres = []
|
||
|
for row in pointcloud:
|
||
|
sphere = PluginManager.getInstance().create({
|
||
|
'type': 'sphere',
|
||
|
'center': Point3(float(row[0]), float(row[1]), float(row[2])),
|
||
|
'radius': sphere_radius,
|
||
|
'bsdf': {
|
||
|
'type': 'diffuse',
|
||
|
'diffuseReflectance': spectrum
|
||
|
},
|
||
|
})
|
||
|
spheres.append(sphere)
|
||
|
|
||
|
return spheres
|
||
|
|
||
|
|
||
|
def get_pointcloud_bbox(pointcloud: np.ndarray) -> AABB:
|
||
|
"""
|
||
|
Create a mitsuba bounding box by using min and max on the input ndarray
|
||
|
:param pointcloud: The pointcloud (Nx3) to calculate the bounding box from
|
||
|
:return: The bounding box around the given pointcloud
|
||
|
"""
|
||
|
min_values = np.min(pointcloud, axis=0)
|
||
|
max_values = np.max(pointcloud, axis=0)
|
||
|
min_corner = Point3(*[float(elem) for elem in min_values])
|
||
|
max_corner = Point3(*[float(elem) for elem in max_values])
|
||
|
return AABB(min_corner, max_corner)
|
||
|
|
||
|
|
||
|
def load_from_ply(filepath: Path) -> np.ndarray:
|
||
|
"""
|
||
|
Load points from a ply file
|
||
|
:param filepath: The path of the file to read from
|
||
|
:return: An ndarray (Nx3) containing all read points
|
||
|
"""
|
||
|
points = ply.read_ply(str(filepath))['points'].to_numpy()
|
||
|
return points
|
||
|
|
||
|
|
||
|
def render_pointclouds(pointcloud_paths: List[Tuple[Path, Path]], sensor, sphere_radius=1., num_workers=8) -> None:
|
||
|
"""
|
||
|
Render pointclouds by pkacing little Mitsuba spheres at all point locations
|
||
|
:param pointcloud_paths: Path tuples (input_mesh, output_path) for all pointcloud files
|
||
|
:param sensor: The sensor containing the transform to render with
|
||
|
:param sphere_radius: Radius of individual point spheres
|
||
|
:param num_workers: Number of concurrent render workers
|
||
|
:return:
|
||
|
"""
|
||
|
queue = util.prepare_queue(num_workers)
|
||
|
|
||
|
pointcloud_paths = list(pointcloud_paths)
|
||
|
with tqdm(total=len(pointcloud_paths), bar_format='Total {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}] {desc}', dynamic_ncols=True) as t:
|
||
|
util.redirect_logger(tqdm.write, EWarn, t)
|
||
|
for pointcloud_path in pointcloud_paths:
|
||
|
input_path, output_path = pointcloud_path
|
||
|
t.write(f'Rendering {input_path.stem}')
|
||
|
# Make Pointcloud Spheres
|
||
|
spheres = create_spheres(load_from_ply(input_path), util.get_predefined_spectrum('orange'), sphere_radius)
|
||
|
# Make Scene
|
||
|
scene = util.construct_simple_scene(spheres, sensor)
|
||
|
scene.setDestinationFile(str(output_path / f'{input_path.stem}.png'))
|
||
|
# Make Result
|
||
|
job = RenderJob(f'Render-{input_path.stem}', scene, queue)
|
||
|
job.start()
|
||
|
|
||
|
queue.waitLeft(0)
|
||
|
queue.join()
|
||
|
t.update()
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
input_filepaths = [Path(elem) for elem in args.input]
|
||
|
output_path = Path(args.output)
|
||
|
|
||
|
assert all([elem.is_file() for elem in input_filepaths])
|
||
|
assert output_path.is_dir()
|
||
|
|
||
|
bbox = get_pointcloud_bbox(load_from_ply(input_filepaths[0]))
|
||
|
sensor_transform = cameras.create_transform_on_bbsphere(bbox,
|
||
|
radius_multiplier=3., positioning_vector=Vector3(0, -1, 1),
|
||
|
tilt=Transform.rotate(util.axis_unit_vector('x'), -25.))
|
||
|
sensor = cameras.create_sensor_from_transform(sensor_transform, args.width, args.height,
|
||
|
fov=45., num_samples=args.samples)
|
||
|
render_pointclouds(zip(input_filepaths, cycle([output_path])), sensor, args.radius, args.workers)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
parser = argparse.ArgumentParser("Render pointcloud with mitsuba by placing little spheres at the points' positions")
|
||
|
parser.add_argument('input', nargs='+', help="Path(s) to the ply file(s) containing a pointcloud(s) to render")
|
||
|
parser.add_argument('-o', '--output', required=True, help='Path to write renderings to')
|
||
|
|
||
|
# Pointcloud parameters
|
||
|
parser.add_argument('--radius', default=1., type=float, help='Radius of a single point')
|
||
|
|
||
|
# Sensor parameters
|
||
|
parser.add_argument('--width', default=1280, type=int, help='Width of the resulting image')
|
||
|
parser.add_argument('--height', default=960, type=int, help='Height of the resulting image')
|
||
|
parser.add_argument('--samples', default=128, type=int, help='Number of integrator samples per pixel')
|
||
|
|
||
|
# General render parameters
|
||
|
parser.add_argument('--workers', required=False, default=8, type=int, help="How many concurrent workers to use")
|
||
|
|
||
|
main(parser.parse_args())
|