mitsuba/src/bsdfs/dipolebrdf.cpp

321 lines
10 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/hw/basicshader.h>
#include "../medium/materials.h"
#include "ior.h"
MTS_NAMESPACE_BEGIN
/**
* Integrated Jensen-style dipole BRDF -- not to be
* used just by itself. Please refer to the sssbrdf plugin
*/
class DipoleBRDF : public BSDF {
public:
DipoleBRDF(const Properties &props)
: BSDF(props) {
Spectrum sigmaS, sigmaA;
Float eta = 1.33f;
lookupMaterial(props, sigmaS, sigmaA, &eta, false);
/* Specifies the internal index of refraction at the interface */
m_intIOR = lookupIOR(props, "intIOR", eta);
/* Specifies the external index of refraction at the interface */
m_extIOR = lookupIOR(props, "extIOR", "air");
/* Mean cosine angle of the phase function */
m_g = props.getFloat("g", 0.0f);
/* Scattering coefficient of the layer */
m_sigmaS = new ConstantSpectrumTexture(
props.getSpectrum("sigmaS", sigmaS));
/* Absorption coefficient of the layer */
m_sigmaA = new ConstantSpectrumTexture(
props.getSpectrum("sigmaA", sigmaA));
if (props.hasProperty("sigmaT"))
m_sigmaT = new ConstantSpectrumTexture(
props.getSpectrum("sigmaT"));
if (props.hasProperty("albedo"))
m_albedo = new ConstantSpectrumTexture(
props.getSpectrum("albedo"));
}
DipoleBRDF(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_intIOR = stream->readFloat();
m_extIOR = stream->readFloat();
m_g = stream->readFloat();
m_sigmaS = static_cast<Texture *>(manager->getInstance(stream));
m_sigmaA = static_cast<Texture *>(manager->getInstance(stream));
configure();
}
Float evalFdr(Float eta) const {
if (eta > 1) {
return -1.440f / (eta * eta) + 0.710f / eta + 0.668f + 0.0636f * eta;
} else if (eta < 1) {
return -0.4399f + 0.7099f / eta - 0.3319f / (eta * eta)
+ 0.0636f / (eta * eta * eta);
} else {
/* eta == 1 */
return 0.0f;
}
}
void configure() {
if (m_sigmaT != NULL || m_albedo != NULL) {
/* Support for the alternative scattering/absorption
* coefficient parameter passing convention */
if (m_sigmaT == NULL || m_albedo == NULL)
SLog(EError, "Please provide *both* sigmaT & albedo!");
m_sigmaS = new SpectrumProductTexture(m_sigmaT, m_albedo);
m_sigmaA = new SpectrumSubtractionTexture(m_sigmaT, m_sigmaS);
m_sigmaT = NULL;
m_albedo = NULL;
}
m_components.clear();
m_components.push_back(EDiffuseReflection | EFrontSide
| (m_sigmaS->isConstant() && m_sigmaA->isConstant() ? 0 : ESpatiallyVarying));
m_usesRayDifferentials = m_sigmaS->usesRayDifferentials()
|| m_sigmaA->usesRayDifferentials();
/* Numerically approximate the diffuse Fresnel reflectance */
const Float Fdr = fresnelDiffuseReflectance(m_extIOR / m_intIOR, false);
/* Compute the extrapolation distance */
m_A = (1 + Fdr) / (1 - Fdr);
BSDF::configure();
}
Spectrum getDiffuseReflectance(const Intersection &its) const {
Spectrum sigmaA = m_sigmaA->getValue(its),
sigmaS = m_sigmaS->getValue(its),
reducedAlbedo;
/* ==================================================================== */
/* Diffuse Reflectance due to Multiple Scattering */
/* ==================================================================== */
/* Reduced scattering albedo */
const Spectrum reducedSigmaS = sigmaS * (1.0f - m_g),
reducedSigmaT = reducedSigmaS + sigmaA;
/* Avoid divisions by 0 */
for (int i = 0; i < SPECTRUM_SAMPLES; i++)
reducedAlbedo[i] = reducedSigmaT[i] > 0.0f ?
(reducedSigmaS[i]/reducedSigmaT[i]) : 0.0f;
/* Diffuse Reflectance */
const Spectrum rootExp = ((Spectrum(1.0f) - reducedAlbedo) * 3.0f).sqrt();
return (reducedAlbedo * 0.5f) * (Spectrum(1.0f) +
(-rootExp*(4.0f/3.0f*m_A)).exp()) * (-rootExp).exp();
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (!(bRec.typeMask & EDiffuseReflection) || measure != ESolidAngle
|| Frame::cosTheta(bRec.wi) <= 0
|| Frame::cosTheta(bRec.wo) <= 0)
return Spectrum(0.0f);
return getDiffuseReflectance(bRec.its) * (INV_PI * Frame::cosTheta(bRec.wo));
}
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (!(bRec.typeMask & EDiffuseReflection) || measure != ESolidAngle
|| Frame::cosTheta(bRec.wi) <= 0
|| Frame::cosTheta(bRec.wo) <= 0)
return 0.0f;
return Frame::cosTheta(bRec.wo) * INV_PI;
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
if (!(bRec.typeMask & EDiffuseReflection) || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
bRec.wo = squareToHemispherePSA(sample);
bRec.sampledComponent = 0;
bRec.sampledType = EDiffuseReflection;
return getDiffuseReflectance(bRec.its);
}
Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &sample) const {
if (!(bRec.typeMask & EDiffuseReflection) || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
bRec.wo = squareToHemispherePSA(sample);
bRec.sampledComponent = 0;
bRec.sampledType = EDiffuseReflection;
pdf = DipoleBRDF::pdf(bRec, ESolidAngle);
return getDiffuseReflectance(bRec.its);
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
if (name == "sigmaS")
m_sigmaS = static_cast<Texture *>(child);
else if (name == "sigmaA")
m_sigmaA = static_cast<Texture *>(child);
else if (name == "sigmaT")
m_sigmaT = static_cast<Texture *>(child);
else if (name == "albedo")
m_albedo = static_cast<Texture *>(child);
else
BSDF::addChild(name, child);
} else {
BSDF::addChild(name, child);
}
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
stream->writeFloat(m_intIOR);
stream->writeFloat(m_extIOR);
stream->writeFloat(m_g);
manager->serialize(stream, m_sigmaS.get());
manager->serialize(stream, m_sigmaA.get());
}
std::string toString() const {
std::ostringstream oss;
oss << "DipoleBRDF[" << endl
<< " intIOR = " << m_intIOR << "," << endl
<< " extIOR = " << m_extIOR << "," << endl
<< " g = " << m_g << "," << endl
<< " sigmaS = " << indent(m_sigmaS.toString()) << "," << endl
<< " sigmaA = " << indent(m_sigmaA.toString()) << "," << endl
<< "]";
return oss.str();
}
Shader *createShader(Renderer *renderer) const;
MTS_DECLARE_CLASS()
private:
Float m_intIOR, m_extIOR, m_g, m_A;
ref<Texture> m_sigmaS, m_sigmaA;
/* Temporary fields */
ref<Texture> m_sigmaT;
ref<Texture> m_albedo;
};
// ================ Hardware shader implementation ================
/**
* This is a relatively approximate GLSL shader for the Dipole BRDF model.
* It assumes that the layer is infinitely thick (i.e. there is no
* transmission) and that the phase function is isotropic
*/
class DipoleBRDFShader : public Shader {
public:
DipoleBRDFShader(Renderer *renderer, const Texture *sigmaS, const Texture *sigmaA,
Float A, Float g) : Shader(renderer, EBSDFShader), m_sigmaS(sigmaS),
m_sigmaA(sigmaA), m_A(A), m_g(g) {
m_sigmaSShader = renderer->registerShaderForResource(m_sigmaS.get());
m_sigmaAShader = renderer->registerShaderForResource(m_sigmaA.get());
}
bool isComplete() const {
return m_sigmaSShader.get() != NULL
&& m_sigmaAShader.get() != NULL;
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_sigmaS.get());
renderer->unregisterShaderForResource(m_sigmaA.get());
}
void putDependencies(std::vector<Shader *> &deps) {
deps.push_back(m_sigmaSShader.get());
deps.push_back(m_sigmaAShader.get());
}
void resolve(const GPUProgram *program, const std::string &evalName, std::vector<int> &parameterIDs) const {
parameterIDs.push_back(program->getParameterID(evalName + "_A", false));
parameterIDs.push_back(program->getParameterID(evalName + "_g", false));
}
void bind(GPUProgram *program, const std::vector<int> &parameterIDs, int &textureUnitOffset) const {
program->setParameter(parameterIDs[0], m_A);
program->setParameter(parameterIDs[1], m_g);
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "uniform float " << evalName << "_A;" << endl
<< "uniform float " << evalName << "_g;" << endl
<< endl
<< "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " float cosThetaI = cosTheta(wi);" << endl
<< " float cosThetaO = cosTheta(wo);" << endl
<< " if (cosThetaI < 0.0 || cosThetaO < 0.0)" << endl
<< " return vec3(0.0);" << endl
<< " vec3 sigmaS = " << depNames[0] << "(uv);" << endl
<< " vec3 sigmaA = " << depNames[1] << "(uv);" << endl
<< " vec3 reducedSigmaS = (1.0-" << evalName << "_g)*sigmaS;" << endl
<< " vec3 reducedSigmaT = reducedSigmaS + sigmaA, reducedAlbedo;" << endl
<< " for (int i=0; i<3; ++i)" << endl
<< " reducedAlbedo[i] = reducedSigmaT[i] > 0.0 ? reducedSigmaS[i]/reducedSigmaT[i] : 0.0;" << endl
<< " vec3 rootExp = sqrt((1.0 - reducedAlbedo) * 3.0);" << endl
<< " return (reducedAlbedo * 0.5) * (1+exp(-rootExp*(4.0/3.0 * " << endl
<< " " << evalName << "_A" << "))) * exp(-rootExp) * inv_pi * cosThetaO;" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " return " << evalName << "(uv, wi, wo);" << endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
private:
ref<const Texture> m_sigmaS;
ref<const Texture> m_sigmaA;
ref<Shader> m_sigmaSShader;
ref<Shader> m_sigmaAShader;
Float m_A, m_g;
};
Shader *DipoleBRDF::createShader(Renderer *renderer) const {
return new DipoleBRDFShader(renderer, m_sigmaS.get(),
m_sigmaA.get(), m_A, m_g);
}
MTS_IMPLEMENT_CLASS(DipoleBRDFShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(DipoleBRDF, false, BSDF)
MTS_EXPORT_PLUGIN(DipoleBRDF, "Dipole BRDF")
MTS_NAMESPACE_END