622 lines
16 KiB
C++
622 lines
16 KiB
C++
/*
|
|
This file is part of Mitsuba, a physically based rendering system.
|
|
|
|
Copyright (c) 2007-2010 by Wenzel Jakob and others.
|
|
|
|
Mitsuba is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License Version 3
|
|
as published by the Free Software Foundation.
|
|
|
|
Mitsuba is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#if !defined(__VECTOR_H)
|
|
#define __VECTOR_H
|
|
|
|
#include <mitsuba/core/stream.h>
|
|
|
|
MTS_NAMESPACE_BEGIN
|
|
|
|
/**
|
|
* \headerfile mitsuba/core/vector.h mitsuba/mitsuba.h
|
|
* \brief Parameterizable two-dimensional vector data structure
|
|
*/
|
|
template <typename T> struct TVector2 {
|
|
typedef T value_type;
|
|
typedef TPoint2<T> point_type;
|
|
|
|
T x, y;
|
|
|
|
/// Number of dimensions
|
|
const static int dim = 2;
|
|
|
|
/** \brief Construct a new vector without initializing it.
|
|
*
|
|
* This construtor is useful when the vector will either not
|
|
* be used at all (it might be part of a larger data structure)
|
|
* or initialized at a later point in time. Always make sure
|
|
* that one of the two is the case! Otherwise your program will do
|
|
* computations involving uninitialized memory, which will probably
|
|
* lead to a difficult-to-find bug.
|
|
*/
|
|
#if !defined(MTS_DEBUG_UNINITIALIZED)
|
|
TVector2() { }
|
|
#else
|
|
TVector2() { x = y = std::numeric_limits<double>::quiet_NaN(); }
|
|
#endif
|
|
|
|
/// Initialize the vector with the specified X and Z components
|
|
TVector2(T x, T y) : x(x), y(y) { }
|
|
|
|
/// Initialize all components of the the vector with the specified value
|
|
explicit TVector2(T val) : x(val), y(val) { }
|
|
|
|
/// Initialize the vector with the components of a point data structure
|
|
template <typename T2> explicit TVector2(const TVector2<T2> &v)
|
|
: x((T) v.x), y((T) v.y) { }
|
|
|
|
/// Initialize the vector with the components of another vector data structure
|
|
template <typename T2> explicit TVector2(const TPoint2<T2> &p)
|
|
: x((T) p.x), y((T) p.y) { }
|
|
|
|
/// Unserialize a vector from a binary data stream
|
|
explicit TVector2(Stream *stream) {
|
|
x = stream->readElement<T>();
|
|
y = stream->readElement<T>();
|
|
}
|
|
|
|
/// Add two vectors and return the result
|
|
TVector2 operator+(const TVector2 &v) const {
|
|
return TVector2(x + v.x, y + v.y);
|
|
}
|
|
|
|
/// Subtract two vectors and return the result
|
|
TVector2 operator-(const TVector2 &v) const {
|
|
return TVector2(x - v.x, y - v.y);
|
|
}
|
|
|
|
/// Add another vector to the current one
|
|
TVector2& operator+=(const TVector2 &v) {
|
|
x += v.x; y += v.y;
|
|
return *this;
|
|
}
|
|
|
|
/// Subtract another vector from the current one
|
|
TVector2& operator-=(const TVector2 &v) {
|
|
x -= v.x; y -= v.y;
|
|
return *this;
|
|
}
|
|
|
|
/// Multiply the vector by the given scalar and return the result
|
|
TVector2 operator*(T f) const {
|
|
return TVector2(x*f, y*f);
|
|
}
|
|
|
|
/// Multiply the vector by the given scalar
|
|
TVector2 &operator*=(T f) {
|
|
x *= f; y *= f;
|
|
return *this;
|
|
}
|
|
|
|
/// Return a negated version of the vector
|
|
TVector2 operator-() const {
|
|
return TVector2(-x, -y);
|
|
}
|
|
|
|
/// Divide the vector by the given scalar and return the result
|
|
TVector2 operator/(T f) const {
|
|
#ifdef MTS_DEBUG
|
|
if (f == 0)
|
|
SLog(EWarn, "Vector2: Division by zero!");
|
|
#endif
|
|
T recip = (T) 1 / f;
|
|
return TVector2(x * recip, y * recip);
|
|
}
|
|
|
|
/// Divide the vector by the given scalar
|
|
TVector2 &operator/=(T f) {
|
|
#ifdef MTS_DEBUG
|
|
if (f == 0)
|
|
SLog(EWarn, "Vector2: Division by zero!");
|
|
#endif
|
|
T recip = (T) 1 / f;
|
|
x *= recip; y *= recip;
|
|
return *this;
|
|
}
|
|
|
|
/// Index into the vector's components
|
|
T &operator[](int i) {
|
|
return (&x)[i];
|
|
}
|
|
|
|
/// Index into the vector's components (const version)
|
|
T operator[](int i) const {
|
|
return (&x)[i];
|
|
}
|
|
|
|
/// Return the squared 2-norm of this vector
|
|
T lengthSquared() const {
|
|
return x*x + y*y;
|
|
}
|
|
|
|
/// Return the 2-norm of this vector
|
|
T length() const {
|
|
return std::sqrt(lengthSquared());
|
|
}
|
|
|
|
/// Return whether or not this vector is identically zero
|
|
bool isZero() const {
|
|
return x == 0 && y == 0;
|
|
}
|
|
|
|
/// Equality test
|
|
bool operator==(const TVector2 &v) const {
|
|
return (v.x == x && v.y == y);
|
|
}
|
|
|
|
/// Inequality test
|
|
bool operator!=(const TVector2 &v) const {
|
|
return v.x != x || v.y != y;
|
|
}
|
|
|
|
/// Serialize this vector to a binary data stream
|
|
void serialize(Stream *stream) const {
|
|
stream->writeElement<T>(x);
|
|
stream->writeElement<T>(y);
|
|
}
|
|
|
|
/// Return a readable string representation of this vector
|
|
std::string toString() const {
|
|
std::ostringstream oss;
|
|
oss << "[" << x << ", " << y << "]";
|
|
return oss.str();
|
|
}
|
|
};
|
|
|
|
template <typename T> inline TVector2<T> operator*(T f, const TVector2<T> &v) {
|
|
return v*f;
|
|
}
|
|
|
|
template <typename T> inline T dot(const TVector2<T> &v1, const TVector2<T> &v2) {
|
|
return v1.x * v2.x + v1.y * v2.y;
|
|
}
|
|
|
|
template <typename T> inline T absDot(const TVector2<T> &v1, const TVector2<T> &v2) {
|
|
return std::abs(dot(v1, v2));
|
|
}
|
|
|
|
template <typename T> inline TVector2<T> normalize(const TVector2<T> &v) {
|
|
return v / v.length();
|
|
}
|
|
|
|
template <> inline TVector2<int> TVector2<int>::operator/(int s) const {
|
|
#ifdef MTS_DEBUG
|
|
if (s == 0)
|
|
SLog(EWarn, "Vector2i: Division by zero!");
|
|
#endif
|
|
return TVector2(x/s, y/s);
|
|
}
|
|
|
|
template <> inline TVector2<int> &TVector2<int>::operator/=(int s) {
|
|
#ifdef MTS_DEBUG
|
|
if (s == 0)
|
|
SLog(EWarn, "Vector2i: Division by zero!");
|
|
#endif
|
|
|
|
x /= s;
|
|
y /= s;
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* \headerfile mitsuba/core/vector.h mitsuba/mitsuba.h
|
|
* \brief Parameterizable three-dimensional vector data structure
|
|
*/
|
|
template <typename T> struct TVector3 {
|
|
typedef T value_type;
|
|
typedef TPoint3<T> point_type;
|
|
|
|
T x, y, z;
|
|
|
|
/// Number of dimensions
|
|
const static int dim = 3;
|
|
|
|
/** \brief Construct a new vector without initializing it.
|
|
*
|
|
* This construtor is useful when the vector will either not
|
|
* be used at all (it might be part of a larger data structure)
|
|
* or initialized at a later point in time. Always make sure
|
|
* that one of the two is the case! Otherwise your program will do
|
|
* computations involving uninitialized memory, which will probably
|
|
* lead to a difficult-to-find bug.
|
|
*/
|
|
#if !defined(MTS_DEBUG_UNINITIALIZED)
|
|
TVector3() { }
|
|
#else
|
|
TVector3() { x = y = z = std::numeric_limits<double>::quiet_NaN(); }
|
|
#endif
|
|
|
|
/// Initialize the vector with the specified X, Y and Z components
|
|
TVector3(T x, T y, T z) : x(x), y(y), z(z) { }
|
|
|
|
/// Initialize all components of the the vector with the specified value
|
|
explicit TVector3(T val) : x(val), y(val), z(val) { }
|
|
|
|
/// Initialize the vector with the components of a point data structure
|
|
template <typename T2> explicit TVector3(const TVector3<T2> &v)
|
|
: x((T) v.x), y((T) v.y), z((T) v.z) { }
|
|
|
|
/// Initialize the vector with the components of another vector data structure
|
|
template <typename T2> explicit TVector3(const TPoint3<T2> &p)
|
|
: x((T) p.x), y((T) p.y), z((T) p.z) { }
|
|
|
|
/// Unserialize a vector from a binary data stream
|
|
explicit TVector3(Stream *stream) {
|
|
x = stream->readElement<T>();
|
|
y = stream->readElement<T>();
|
|
z = stream->readElement<T>();
|
|
}
|
|
|
|
/// Add two vectors and return the result
|
|
TVector3 operator+(const TVector3 &v) const {
|
|
return TVector3(x + v.x, y + v.y, z + v.z);
|
|
}
|
|
|
|
/// Subtract two vectors and return the result
|
|
TVector3 operator-(const TVector3 &v) const {
|
|
return TVector3(x - v.x, y - v.y, z - v.z);
|
|
}
|
|
|
|
/// Add another vector to the current one
|
|
TVector3& operator+=(const TVector3 &v) {
|
|
x += v.x; y += v.y; z += v.z;
|
|
return *this;
|
|
}
|
|
|
|
/// Subtract another vector from the current one
|
|
TVector3& operator-=(const TVector3 &v) {
|
|
x -= v.x; y -= v.y; z -= v.z;
|
|
return *this;
|
|
}
|
|
|
|
/// Multiply the vector by the given scalar and return the result
|
|
TVector3 operator*(T f) const {
|
|
return TVector3(x*f, y*f, z*f);
|
|
}
|
|
|
|
/// Multiply the vector by the given scalar
|
|
TVector3 &operator*=(T f) {
|
|
x *= f; y *= f; z *= f;
|
|
return *this;
|
|
}
|
|
|
|
/// Return a negated version of the vector
|
|
TVector3 operator-() const {
|
|
return TVector3(-x, -y, -z);
|
|
}
|
|
|
|
/// Divide the vector by the given scalar and return the result
|
|
TVector3 operator/(T f) const {
|
|
#ifdef MTS_DEBUG
|
|
if (f == 0)
|
|
SLog(EWarn, "Vector3: Division by zero!");
|
|
#endif
|
|
T recip = (T) 1 / f;
|
|
return TVector3(x * recip, y * recip, z * recip);
|
|
}
|
|
|
|
/// Divide the vector by the given scalar
|
|
TVector3 &operator/=(T f) {
|
|
#ifdef MTS_DEBUG
|
|
if (f == 0)
|
|
SLog(EWarn, "Vector3: Division by zero!");
|
|
#endif
|
|
T recip = (T) 1 / f;
|
|
x *= recip; y *= recip; z *= recip;
|
|
return *this;
|
|
}
|
|
|
|
/// Index into the vector's components
|
|
T &operator[](int i) {
|
|
return (&x)[i];
|
|
}
|
|
|
|
/// Index into the vector's components (const version)
|
|
T operator[](int i) const {
|
|
return (&x)[i];
|
|
}
|
|
|
|
/// Return the squared 2-norm of this vector
|
|
T lengthSquared() const {
|
|
return x*x + y*y + z*z;
|
|
}
|
|
|
|
/// Return the 2-norm of this vector
|
|
T length() const {
|
|
return std::sqrt(lengthSquared());
|
|
}
|
|
|
|
/// Return whether or not this vector is identically zero
|
|
bool isZero() const {
|
|
return x == 0 && y == 0 && z == 0;
|
|
}
|
|
|
|
/// Equality test
|
|
bool operator==(const TVector3 &v) const {
|
|
return (v.x == x && v.y == y && v.z == z);
|
|
}
|
|
|
|
/// Inequality test
|
|
bool operator!=(const TVector3 &v) const {
|
|
return v.x != x || v.y != y || v.z != z;
|
|
}
|
|
|
|
/// Serialize this vector to a binary data stream
|
|
void serialize(Stream *stream) const {
|
|
stream->writeElement<T>(x);
|
|
stream->writeElement<T>(y);
|
|
stream->writeElement<T>(z);
|
|
}
|
|
|
|
/// Return a readable string representation of this vector
|
|
std::string toString() const {
|
|
std::ostringstream oss;
|
|
oss << "[" << x << ", " << y << ", " << z << "]";
|
|
return oss.str();
|
|
}
|
|
};
|
|
|
|
template <typename T> inline TVector3<T> operator*(T f, const TVector3<T> &v) {
|
|
return v*f;
|
|
}
|
|
|
|
template <typename T> inline T dot(const TVector3<T> &v1, const TVector3<T> &v2) {
|
|
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
|
|
}
|
|
|
|
template <typename T> inline T absDot(const TVector3<T> &v1, const TVector3<T> &v2) {
|
|
return std::abs(dot(v1, v2));
|
|
}
|
|
|
|
template <typename T> inline TVector3<T> cross(const TVector3<T> &v1, const TVector3<T> &v2) {
|
|
/* Left-handed vector cross product */
|
|
return TVector3<T>(
|
|
(v1.y * v2.z) - (v1.z * v2.y),
|
|
(v1.z * v2.x) - (v1.x * v2.z),
|
|
(v1.x * v2.y) - (v1.y * v2.x)
|
|
);
|
|
}
|
|
|
|
template <typename T> inline TVector3<T> normalize(const TVector3<T> &v) {
|
|
return v / v.length();
|
|
}
|
|
|
|
template <> inline TVector3<int> TVector3<int>::operator/(int s) const {
|
|
#ifdef MTS_DEBUG
|
|
if (s == 0)
|
|
SLog(EWarn, "Vector3i: Division by zero!");
|
|
#endif
|
|
return TVector3(x/s, y/s, z/s);
|
|
}
|
|
|
|
template <> inline TVector3<int> &TVector3<int>::operator/=(int s) {
|
|
#ifdef MTS_DEBUG
|
|
if (s == 0)
|
|
SLog(EWarn, "Vector3i: Division by zero!");
|
|
#endif
|
|
|
|
x /= s;
|
|
y /= s;
|
|
z /= s;
|
|
return *this;
|
|
}
|
|
|
|
|
|
/**
|
|
* \headerfile mitsuba/core/vector.h mitsuba/mitsuba.h
|
|
* \brief Parameterizable four-dimensional vector data structure
|
|
*/
|
|
template <typename T> struct TVector4 {
|
|
typedef T value_type;
|
|
typedef TPoint4<T> point_type;
|
|
|
|
T x, y, z, w;
|
|
|
|
/// Number of dimensions
|
|
const static int dim = 3;
|
|
|
|
|
|
/** \brief Construct a new vector without initializing it.
|
|
*
|
|
* This construtor is useful when the vector will either not
|
|
* be used at all (it might be part of a larger data structure)
|
|
* or initialized at a later point in time. Always make sure
|
|
* that one of the two is the case! Otherwise your program will do
|
|
* computations involving uninitialized memory, which will probably
|
|
* lead to a difficult-to-find bug.
|
|
*/
|
|
#if !defined(MTS_DEBUG_UNINITIALIZED)
|
|
TVector4() { }
|
|
#else
|
|
TVector4() { x = y = z = w = std::numeric_limits<double>::quiet_NaN(); }
|
|
#endif
|
|
|
|
/// Initialize the vector with the specified X, Y and Z components
|
|
TVector4(T x, T y, T z, T w) : x(x), y(y), z(z), w(w) { }
|
|
|
|
/// Initialize all components of the the vector with the specified value
|
|
explicit TVector4(T val) : x(val), y(val), z(val), w(val) { }
|
|
|
|
/// Initialize the vector with the components of a point data structure
|
|
template <typename T2> explicit TVector4(const TVector4<T2> &v)
|
|
: x((T) v.x), y((T) v.y), z((T) v.z), w((T) v.w) { }
|
|
|
|
/// Initialize the vector with the components of another vector data structure
|
|
template <typename T2> explicit TVector4(const TPoint4<T2> &p)
|
|
: x((T) p.x), y((T) p.y), z((T) p.z), w((T) p.w) { }
|
|
|
|
/// Unserialize a vector from a binary data stream
|
|
explicit TVector4(Stream *stream) {
|
|
x = stream->readElement<T>();
|
|
y = stream->readElement<T>();
|
|
z = stream->readElement<T>();
|
|
w = stream->readElement<T>();
|
|
}
|
|
|
|
/// Add two vectors and return the result
|
|
TVector4 operator+(const TVector4 &v) const {
|
|
return TVector4(x + v.x, y + v.y, z + v.z, w + v.w);
|
|
}
|
|
|
|
/// Subtract two vectors and return the result
|
|
TVector4 operator-(const TVector4 &v) const {
|
|
return TVector4(x - v.x, y - v.y, z - v.z, w - v.w);
|
|
}
|
|
|
|
/// Add another vector to the current one
|
|
TVector4& operator+=(const TVector4 &v) {
|
|
x += v.x; y += v.y; z += v.z; w += v.w;
|
|
return *this;
|
|
}
|
|
|
|
/// Subtract another vector from the current one
|
|
TVector4& operator-=(const TVector4 &v) {
|
|
x -= v.x; y -= v.y; z -= v.z; w -= v.w;
|
|
return *this;
|
|
}
|
|
|
|
/// Multiply the vector by the given scalar and return the result
|
|
TVector4 operator*(T f) const {
|
|
return TVector4(x * f, y * f, z * f, w * f);
|
|
}
|
|
|
|
/// Multiply the vector by the given scalar
|
|
TVector4 &operator*=(T f) {
|
|
x *= f; y *= f; z *= f; w *= f;
|
|
return *this;
|
|
}
|
|
|
|
/// Return a negated version of the vector
|
|
TVector4 operator-() const {
|
|
return TVector4(-x, -y, -z, -w);
|
|
}
|
|
|
|
/// Divide the vector by the given scalar and return the result
|
|
TVector4 operator/(T f) const {
|
|
#ifdef MTS_DEBUG
|
|
if (f == 0)
|
|
SLog(EWarn, "Vector4: Division by zero!");
|
|
#endif
|
|
T recip = (T) 1 / f;
|
|
return TVector4(x * recip, y * recip, z * recip, w * recip);
|
|
}
|
|
|
|
/// Divide the vector by the given scalar
|
|
TVector4 &operator/=(T f) {
|
|
#ifdef MTS_DEBUG
|
|
if (f == 0)
|
|
SLog(EWarn, "Vector4: Division by zero!");
|
|
#endif
|
|
T recip = (T) 1 / f;
|
|
x *= recip; y *= recip; z *= recip; w *= recip;
|
|
return *this;
|
|
}
|
|
|
|
/// Index into the vector's components
|
|
T &operator[](int i) {
|
|
return (&x)[i];
|
|
}
|
|
|
|
/// Index into the vector's components (const version)
|
|
T operator[](int i) const {
|
|
return (&x)[i];
|
|
}
|
|
|
|
/// Return the squared 2-norm of this vector
|
|
T lengthSquared() const {
|
|
return x*x + y*y + z*z + w*w;
|
|
}
|
|
|
|
/// Return the 2-norm of this vector
|
|
T length() const {
|
|
return std::sqrt(lengthSquared());
|
|
}
|
|
|
|
/// Return whether or not this vector is identically zero
|
|
bool isZero() const {
|
|
return x == 0 && y == 0 && z == 0 && w == 0;
|
|
}
|
|
|
|
/// Equality test
|
|
bool operator==(const TVector4 &v) const {
|
|
return (v.x == x && v.y == y && v.z == z && v.w == w);
|
|
}
|
|
|
|
/// Inequality test
|
|
bool operator!=(const TVector4 &v) const {
|
|
return v.x != x || v.y != y || v.z != z || v.w != w;
|
|
}
|
|
|
|
/// Serialize this vector to a binary data stream
|
|
void serialize(Stream *stream) const {
|
|
stream->writeElement<T>(x);
|
|
stream->writeElement<T>(y);
|
|
stream->writeElement<T>(z);
|
|
stream->writeElement<T>(w);
|
|
}
|
|
|
|
/// Return a readable string representation of this vector
|
|
std::string toString() const {
|
|
std::ostringstream oss;
|
|
oss << "[" << x << ", " << y << ", " << z << ", " << w << "]";
|
|
return oss.str();
|
|
}
|
|
};
|
|
|
|
template <typename T> inline TVector4<T> operator*(T f, const TVector4<T> &v) {
|
|
return v*f;
|
|
}
|
|
|
|
template <typename T> inline T dot(const TVector4<T> &v1, const TVector4<T> &v2) {
|
|
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w;
|
|
}
|
|
|
|
template <typename T> inline T absDot(const TVector4<T> &v1, const TVector4<T> &v2) {
|
|
return std::abs(dot(v1, v2));
|
|
}
|
|
|
|
template <typename T> inline TVector4<T> normalize(const TVector4<T> &v) {
|
|
return v / v.length();
|
|
}
|
|
|
|
template <> inline TVector4<int> TVector4<int>::operator/(int s) const {
|
|
#ifdef MTS_DEBUG
|
|
if (s == 0)
|
|
SLog(EWarn, "Vector4i: Division by zero!");
|
|
#endif
|
|
return TVector4(x/s, y/s, z/s, w/s);
|
|
}
|
|
|
|
template <> inline TVector4<int> &TVector4<int>::operator/=(int s) {
|
|
#ifdef MTS_DEBUG
|
|
if (s == 0)
|
|
SLog(EWarn, "Vector4i: Division by zero!");
|
|
#endif
|
|
|
|
x /= s;
|
|
y /= s;
|
|
z /= s;
|
|
w /= s;
|
|
return *this;
|
|
}
|
|
|
|
MTS_NAMESPACE_END
|
|
|
|
#endif /* __VECTOR_H */
|