mitsuba/include/mitsuba/core/vector.h

622 lines
16 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2010 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#if !defined(__VECTOR_H)
#define __VECTOR_H
#include <mitsuba/core/stream.h>
MTS_NAMESPACE_BEGIN
/**
* \headerfile mitsuba/core/vector.h mitsuba/mitsuba.h
* \brief Parameterizable two-dimensional vector data structure
*/
template <typename T> struct TVector2 {
typedef T value_type;
typedef TPoint2<T> point_type;
T x, y;
/// Number of dimensions
const static int dim = 2;
/** \brief Construct a new vector without initializing it.
*
* This construtor is useful when the vector will either not
* be used at all (it might be part of a larger data structure)
* or initialized at a later point in time. Always make sure
* that one of the two is the case! Otherwise your program will do
* computations involving uninitialized memory, which will probably
* lead to a difficult-to-find bug.
*/
#if !defined(MTS_DEBUG_UNINITIALIZED)
TVector2() { }
#else
TVector2() { x = y = std::numeric_limits<double>::quiet_NaN(); }
#endif
/// Initialize the vector with the specified X and Z components
TVector2(T x, T y) : x(x), y(y) { }
/// Initialize all components of the the vector with the specified value
explicit TVector2(T val) : x(val), y(val) { }
/// Initialize the vector with the components of a point data structure
template <typename T2> explicit TVector2(const TVector2<T2> &v)
: x((T) v.x), y((T) v.y) { }
/// Initialize the vector with the components of another vector data structure
template <typename T2> explicit TVector2(const TPoint2<T2> &p)
: x((T) p.x), y((T) p.y) { }
/// Unserialize a vector from a binary data stream
explicit TVector2(Stream *stream) {
x = stream->readElement<T>();
y = stream->readElement<T>();
}
/// Add two vectors and return the result
TVector2 operator+(const TVector2 &v) const {
return TVector2(x + v.x, y + v.y);
}
/// Subtract two vectors and return the result
TVector2 operator-(const TVector2 &v) const {
return TVector2(x - v.x, y - v.y);
}
/// Add another vector to the current one
TVector2& operator+=(const TVector2 &v) {
x += v.x; y += v.y;
return *this;
}
/// Subtract another vector from the current one
TVector2& operator-=(const TVector2 &v) {
x -= v.x; y -= v.y;
return *this;
}
/// Multiply the vector by the given scalar and return the result
TVector2 operator*(T f) const {
return TVector2(x*f, y*f);
}
/// Multiply the vector by the given scalar
TVector2 &operator*=(T f) {
x *= f; y *= f;
return *this;
}
/// Return a negated version of the vector
TVector2 operator-() const {
return TVector2(-x, -y);
}
/// Divide the vector by the given scalar and return the result
TVector2 operator/(T f) const {
#ifdef MTS_DEBUG
if (f == 0)
SLog(EWarn, "Vector2: Division by zero!");
#endif
T recip = (T) 1 / f;
return TVector2(x * recip, y * recip);
}
/// Divide the vector by the given scalar
TVector2 &operator/=(T f) {
#ifdef MTS_DEBUG
if (f == 0)
SLog(EWarn, "Vector2: Division by zero!");
#endif
T recip = (T) 1 / f;
x *= recip; y *= recip;
return *this;
}
/// Index into the vector's components
T &operator[](int i) {
return (&x)[i];
}
/// Index into the vector's components (const version)
T operator[](int i) const {
return (&x)[i];
}
/// Return the squared 2-norm of this vector
T lengthSquared() const {
return x*x + y*y;
}
/// Return the 2-norm of this vector
T length() const {
return std::sqrt(lengthSquared());
}
/// Return whether or not this vector is identically zero
bool isZero() const {
return x == 0 && y == 0;
}
/// Equality test
bool operator==(const TVector2 &v) const {
return (v.x == x && v.y == y);
}
/// Inequality test
bool operator!=(const TVector2 &v) const {
return v.x != x || v.y != y;
}
/// Serialize this vector to a binary data stream
void serialize(Stream *stream) const {
stream->writeElement<T>(x);
stream->writeElement<T>(y);
}
/// Return a readable string representation of this vector
std::string toString() const {
std::ostringstream oss;
oss << "[" << x << ", " << y << "]";
return oss.str();
}
};
template <typename T> inline TVector2<T> operator*(T f, const TVector2<T> &v) {
return v*f;
}
template <typename T> inline T dot(const TVector2<T> &v1, const TVector2<T> &v2) {
return v1.x * v2.x + v1.y * v2.y;
}
template <typename T> inline T absDot(const TVector2<T> &v1, const TVector2<T> &v2) {
return std::abs(dot(v1, v2));
}
template <typename T> inline TVector2<T> normalize(const TVector2<T> &v) {
return v / v.length();
}
template <> inline TVector2<int> TVector2<int>::operator/(int s) const {
#ifdef MTS_DEBUG
if (s == 0)
SLog(EWarn, "Vector2i: Division by zero!");
#endif
return TVector2(x/s, y/s);
}
template <> inline TVector2<int> &TVector2<int>::operator/=(int s) {
#ifdef MTS_DEBUG
if (s == 0)
SLog(EWarn, "Vector2i: Division by zero!");
#endif
x /= s;
y /= s;
return *this;
}
/**
* \headerfile mitsuba/core/vector.h mitsuba/mitsuba.h
* \brief Parameterizable three-dimensional vector data structure
*/
template <typename T> struct TVector3 {
typedef T value_type;
typedef TPoint3<T> point_type;
T x, y, z;
/// Number of dimensions
const static int dim = 3;
/** \brief Construct a new vector without initializing it.
*
* This construtor is useful when the vector will either not
* be used at all (it might be part of a larger data structure)
* or initialized at a later point in time. Always make sure
* that one of the two is the case! Otherwise your program will do
* computations involving uninitialized memory, which will probably
* lead to a difficult-to-find bug.
*/
#if !defined(MTS_DEBUG_UNINITIALIZED)
TVector3() { }
#else
TVector3() { x = y = z = std::numeric_limits<double>::quiet_NaN(); }
#endif
/// Initialize the vector with the specified X, Y and Z components
TVector3(T x, T y, T z) : x(x), y(y), z(z) { }
/// Initialize all components of the the vector with the specified value
explicit TVector3(T val) : x(val), y(val), z(val) { }
/// Initialize the vector with the components of a point data structure
template <typename T2> explicit TVector3(const TVector3<T2> &v)
: x((T) v.x), y((T) v.y), z((T) v.z) { }
/// Initialize the vector with the components of another vector data structure
template <typename T2> explicit TVector3(const TPoint3<T2> &p)
: x((T) p.x), y((T) p.y), z((T) p.z) { }
/// Unserialize a vector from a binary data stream
explicit TVector3(Stream *stream) {
x = stream->readElement<T>();
y = stream->readElement<T>();
z = stream->readElement<T>();
}
/// Add two vectors and return the result
TVector3 operator+(const TVector3 &v) const {
return TVector3(x + v.x, y + v.y, z + v.z);
}
/// Subtract two vectors and return the result
TVector3 operator-(const TVector3 &v) const {
return TVector3(x - v.x, y - v.y, z - v.z);
}
/// Add another vector to the current one
TVector3& operator+=(const TVector3 &v) {
x += v.x; y += v.y; z += v.z;
return *this;
}
/// Subtract another vector from the current one
TVector3& operator-=(const TVector3 &v) {
x -= v.x; y -= v.y; z -= v.z;
return *this;
}
/// Multiply the vector by the given scalar and return the result
TVector3 operator*(T f) const {
return TVector3(x*f, y*f, z*f);
}
/// Multiply the vector by the given scalar
TVector3 &operator*=(T f) {
x *= f; y *= f; z *= f;
return *this;
}
/// Return a negated version of the vector
TVector3 operator-() const {
return TVector3(-x, -y, -z);
}
/// Divide the vector by the given scalar and return the result
TVector3 operator/(T f) const {
#ifdef MTS_DEBUG
if (f == 0)
SLog(EWarn, "Vector3: Division by zero!");
#endif
T recip = (T) 1 / f;
return TVector3(x * recip, y * recip, z * recip);
}
/// Divide the vector by the given scalar
TVector3 &operator/=(T f) {
#ifdef MTS_DEBUG
if (f == 0)
SLog(EWarn, "Vector3: Division by zero!");
#endif
T recip = (T) 1 / f;
x *= recip; y *= recip; z *= recip;
return *this;
}
/// Index into the vector's components
T &operator[](int i) {
return (&x)[i];
}
/// Index into the vector's components (const version)
T operator[](int i) const {
return (&x)[i];
}
/// Return the squared 2-norm of this vector
T lengthSquared() const {
return x*x + y*y + z*z;
}
/// Return the 2-norm of this vector
T length() const {
return std::sqrt(lengthSquared());
}
/// Return whether or not this vector is identically zero
bool isZero() const {
return x == 0 && y == 0 && z == 0;
}
/// Equality test
bool operator==(const TVector3 &v) const {
return (v.x == x && v.y == y && v.z == z);
}
/// Inequality test
bool operator!=(const TVector3 &v) const {
return v.x != x || v.y != y || v.z != z;
}
/// Serialize this vector to a binary data stream
void serialize(Stream *stream) const {
stream->writeElement<T>(x);
stream->writeElement<T>(y);
stream->writeElement<T>(z);
}
/// Return a readable string representation of this vector
std::string toString() const {
std::ostringstream oss;
oss << "[" << x << ", " << y << ", " << z << "]";
return oss.str();
}
};
template <typename T> inline TVector3<T> operator*(T f, const TVector3<T> &v) {
return v*f;
}
template <typename T> inline T dot(const TVector3<T> &v1, const TVector3<T> &v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
template <typename T> inline T absDot(const TVector3<T> &v1, const TVector3<T> &v2) {
return std::abs(dot(v1, v2));
}
template <typename T> inline TVector3<T> cross(const TVector3<T> &v1, const TVector3<T> &v2) {
/* Left-handed vector cross product */
return TVector3<T>(
(v1.y * v2.z) - (v1.z * v2.y),
(v1.z * v2.x) - (v1.x * v2.z),
(v1.x * v2.y) - (v1.y * v2.x)
);
}
template <typename T> inline TVector3<T> normalize(const TVector3<T> &v) {
return v / v.length();
}
template <> inline TVector3<int> TVector3<int>::operator/(int s) const {
#ifdef MTS_DEBUG
if (s == 0)
SLog(EWarn, "Vector3i: Division by zero!");
#endif
return TVector3(x/s, y/s, z/s);
}
template <> inline TVector3<int> &TVector3<int>::operator/=(int s) {
#ifdef MTS_DEBUG
if (s == 0)
SLog(EWarn, "Vector3i: Division by zero!");
#endif
x /= s;
y /= s;
z /= s;
return *this;
}
/**
* \headerfile mitsuba/core/vector.h mitsuba/mitsuba.h
* \brief Parameterizable four-dimensional vector data structure
*/
template <typename T> struct TVector4 {
typedef T value_type;
typedef TPoint4<T> point_type;
T x, y, z, w;
/// Number of dimensions
const static int dim = 3;
/** \brief Construct a new vector without initializing it.
*
* This construtor is useful when the vector will either not
* be used at all (it might be part of a larger data structure)
* or initialized at a later point in time. Always make sure
* that one of the two is the case! Otherwise your program will do
* computations involving uninitialized memory, which will probably
* lead to a difficult-to-find bug.
*/
#if !defined(MTS_DEBUG_UNINITIALIZED)
TVector4() { }
#else
TVector4() { x = y = z = w = std::numeric_limits<double>::quiet_NaN(); }
#endif
/// Initialize the vector with the specified X, Y and Z components
TVector4(T x, T y, T z, T w) : x(x), y(y), z(z), w(w) { }
/// Initialize all components of the the vector with the specified value
explicit TVector4(T val) : x(val), y(val), z(val), w(val) { }
/// Initialize the vector with the components of a point data structure
template <typename T2> explicit TVector4(const TVector4<T2> &v)
: x((T) v.x), y((T) v.y), z((T) v.z), w((T) v.w) { }
/// Initialize the vector with the components of another vector data structure
template <typename T2> explicit TVector4(const TPoint4<T2> &p)
: x((T) p.x), y((T) p.y), z((T) p.z), w((T) p.w) { }
/// Unserialize a vector from a binary data stream
explicit TVector4(Stream *stream) {
x = stream->readElement<T>();
y = stream->readElement<T>();
z = stream->readElement<T>();
w = stream->readElement<T>();
}
/// Add two vectors and return the result
TVector4 operator+(const TVector4 &v) const {
return TVector4(x + v.x, y + v.y, z + v.z, w + v.w);
}
/// Subtract two vectors and return the result
TVector4 operator-(const TVector4 &v) const {
return TVector4(x - v.x, y - v.y, z - v.z, w - v.w);
}
/// Add another vector to the current one
TVector4& operator+=(const TVector4 &v) {
x += v.x; y += v.y; z += v.z; w += v.w;
return *this;
}
/// Subtract another vector from the current one
TVector4& operator-=(const TVector4 &v) {
x -= v.x; y -= v.y; z -= v.z; w -= v.w;
return *this;
}
/// Multiply the vector by the given scalar and return the result
TVector4 operator*(T f) const {
return TVector4(x * f, y * f, z * f, w * f);
}
/// Multiply the vector by the given scalar
TVector4 &operator*=(T f) {
x *= f; y *= f; z *= f; w *= f;
return *this;
}
/// Return a negated version of the vector
TVector4 operator-() const {
return TVector4(-x, -y, -z, -w);
}
/// Divide the vector by the given scalar and return the result
TVector4 operator/(T f) const {
#ifdef MTS_DEBUG
if (f == 0)
SLog(EWarn, "Vector4: Division by zero!");
#endif
T recip = (T) 1 / f;
return TVector4(x * recip, y * recip, z * recip, w * recip);
}
/// Divide the vector by the given scalar
TVector4 &operator/=(T f) {
#ifdef MTS_DEBUG
if (f == 0)
SLog(EWarn, "Vector4: Division by zero!");
#endif
T recip = (T) 1 / f;
x *= recip; y *= recip; z *= recip; w *= recip;
return *this;
}
/// Index into the vector's components
T &operator[](int i) {
return (&x)[i];
}
/// Index into the vector's components (const version)
T operator[](int i) const {
return (&x)[i];
}
/// Return the squared 2-norm of this vector
T lengthSquared() const {
return x*x + y*y + z*z + w*w;
}
/// Return the 2-norm of this vector
T length() const {
return std::sqrt(lengthSquared());
}
/// Return whether or not this vector is identically zero
bool isZero() const {
return x == 0 && y == 0 && z == 0 && w == 0;
}
/// Equality test
bool operator==(const TVector4 &v) const {
return (v.x == x && v.y == y && v.z == z && v.w == w);
}
/// Inequality test
bool operator!=(const TVector4 &v) const {
return v.x != x || v.y != y || v.z != z || v.w != w;
}
/// Serialize this vector to a binary data stream
void serialize(Stream *stream) const {
stream->writeElement<T>(x);
stream->writeElement<T>(y);
stream->writeElement<T>(z);
stream->writeElement<T>(w);
}
/// Return a readable string representation of this vector
std::string toString() const {
std::ostringstream oss;
oss << "[" << x << ", " << y << ", " << z << ", " << w << "]";
return oss.str();
}
};
template <typename T> inline TVector4<T> operator*(T f, const TVector4<T> &v) {
return v*f;
}
template <typename T> inline T dot(const TVector4<T> &v1, const TVector4<T> &v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w;
}
template <typename T> inline T absDot(const TVector4<T> &v1, const TVector4<T> &v2) {
return std::abs(dot(v1, v2));
}
template <typename T> inline TVector4<T> normalize(const TVector4<T> &v) {
return v / v.length();
}
template <> inline TVector4<int> TVector4<int>::operator/(int s) const {
#ifdef MTS_DEBUG
if (s == 0)
SLog(EWarn, "Vector4i: Division by zero!");
#endif
return TVector4(x/s, y/s, z/s, w/s);
}
template <> inline TVector4<int> &TVector4<int>::operator/=(int s) {
#ifdef MTS_DEBUG
if (s == 0)
SLog(EWarn, "Vector4i: Division by zero!");
#endif
x /= s;
y /= s;
z /= s;
w /= s;
return *this;
}
MTS_NAMESPACE_END
#endif /* __VECTOR_H */