208 lines
6.1 KiB
C++
208 lines
6.1 KiB
C++
/*
|
|
This file is part of Mitsuba, a physically based rendering system.
|
|
|
|
Copyright (c) 2007-2011 by Wenzel Jakob and others.
|
|
|
|
Mitsuba is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License Version 3
|
|
as published by the Free Software Foundation.
|
|
|
|
Mitsuba is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <mitsuba/render/bsdf.h>
|
|
#include <mitsuba/render/consttexture.h>
|
|
|
|
MTS_NAMESPACE_BEGIN
|
|
|
|
/**
|
|
* Rough metal BRDF model based on
|
|
* "Microfacet Models for Refraction through Rough Surfaces"
|
|
* by Bruce Walter, Stephen R. Marschner, Hongsong Li
|
|
* and Kenneth E. Torrance.
|
|
*
|
|
* This is similar to the 'microfacet' implementation, but
|
|
* the Fresnel term is now that of a conductor.
|
|
*/
|
|
class RoughMetal : public BSDF {
|
|
public:
|
|
RoughMetal(const Properties &props)
|
|
: BSDF(props) {
|
|
m_specularReflectance = new ConstantTexture(
|
|
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
|
|
m_alphaB = props.getFloat("alphaB", .1f);
|
|
m_ior = props.getSpectrum("ior", Spectrum(0.370f)); /* Gold */
|
|
m_k = props.getSpectrum("k", Spectrum(2.820f));
|
|
|
|
m_componentCount = 1;
|
|
m_type = new unsigned int[m_componentCount];
|
|
m_combinedType = m_type[0] = EGlossyReflection | EFrontSide;
|
|
m_usesRayDifferentials = false;
|
|
}
|
|
|
|
RoughMetal(Stream *stream, InstanceManager *manager)
|
|
: BSDF(stream, manager) {
|
|
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
|
m_alphaB = stream->readFloat();
|
|
m_ior = Spectrum(stream);
|
|
m_k = Spectrum(stream);
|
|
|
|
m_componentCount = 1;
|
|
m_type = new unsigned int[m_componentCount];
|
|
m_combinedType = m_type[0] = EGlossyReflection | EFrontSide;
|
|
m_usesRayDifferentials =
|
|
m_specularReflectance->usesRayDifferentials();
|
|
}
|
|
|
|
virtual ~RoughMetal() {
|
|
delete[] m_type;
|
|
}
|
|
|
|
Spectrum getDiffuseReflectance(const Intersection &its) const {
|
|
return Spectrum(0.0f);
|
|
}
|
|
|
|
/**
|
|
* Beckmann distribution function for gaussian random surfaces
|
|
* @param thetaM Tangent of the angle between M and N.
|
|
*/
|
|
Float beckmannD(const Vector &m) const {
|
|
Float ex = Frame::tanTheta(m) / m_alphaB;
|
|
return std::exp(-(ex*ex)) / (M_PI * m_alphaB*m_alphaB *
|
|
std::pow(Frame::cosTheta(m), (Float) 4.0f));
|
|
}
|
|
|
|
/**
|
|
* Sample microsurface normals according to
|
|
* the Beckmann distribution
|
|
*/
|
|
Normal sampleBeckmannD(Point2 sample) const {
|
|
Float thetaM = std::atan(std::sqrt(-m_alphaB*m_alphaB
|
|
* std::log(1.0f - sample.x)));
|
|
Float phiM = (2.0f * M_PI) * sample.y;
|
|
return Normal(sphericalDirection(thetaM, phiM));
|
|
}
|
|
|
|
/**
|
|
* Smith's shadow-masking function G1 for the Beckmann distribution
|
|
* @param m The microsurface normal
|
|
* @param v An arbitrary direction
|
|
*/
|
|
Float smithBeckmannG1(const Vector &v, const Vector &m) const {
|
|
if (dot(v, m)*Frame::cosTheta(v) <= 0)
|
|
return 0.0;
|
|
|
|
const Float tanTheta = Frame::tanTheta(v);
|
|
|
|
if (tanTheta == 0.0f)
|
|
return 1.0f;
|
|
|
|
const Float a = 1.0f / (m_alphaB * tanTheta);
|
|
const Float aSqr = a * a;
|
|
|
|
if (a >= 1.6f)
|
|
return 1.0f;
|
|
|
|
return (3.535f * a + 2.181f * aSqr)/(1.0f + 2.276f * a + 2.577f * aSqr);
|
|
}
|
|
|
|
inline Vector reflect(const Vector &wi, const Normal &n) const {
|
|
return Vector(n*(2.0f*dot(n, wi))) - wi;
|
|
}
|
|
|
|
Spectrum f(const BSDFQueryRecord &bRec) const {
|
|
if (!(bRec.typeMask & m_combinedType)
|
|
|| bRec.wi.z <= 0 || bRec.wo.z <= 0)
|
|
return Spectrum(0.0f);\
|
|
|
|
Vector Hr = normalize(bRec.wi+bRec.wo);
|
|
|
|
/* Fresnel factor */
|
|
Spectrum F = fresnelConductor(dot(bRec.wi, Hr), m_ior, m_k);
|
|
|
|
/* Microsurface normal distribution */
|
|
Float D = beckmannD(Hr);
|
|
/* Smith's shadow-masking function for the Beckmann distribution */
|
|
Float G = smithBeckmannG1(bRec.wi, Hr) * smithBeckmannG1(bRec.wo, Hr);
|
|
/* Calculate the total amount of specular reflection */
|
|
Spectrum specRef = F * (D * G /
|
|
(4.0f * Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo)));
|
|
|
|
return m_specularReflectance->getValue(bRec.its) * specRef;
|
|
}
|
|
|
|
Float pdf(const BSDFQueryRecord &bRec) const {
|
|
if (bRec.wi.z <= 0 || bRec.wo.z <= 0)
|
|
return 0.0f;
|
|
|
|
Vector Hr = normalize(bRec.wi + bRec.wo);
|
|
/* Jacobian of the half-direction transform. */
|
|
Float dwhr_dwo = 1.0f / (4.0f * absDot(bRec.wo, Hr));
|
|
return beckmannD(Hr) * Frame::cosTheta(Hr) * dwhr_dwo;
|
|
}
|
|
|
|
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
|
|
if (bRec.wi.z <= 0)
|
|
return Spectrum(0.0f);
|
|
|
|
/* Sample M, the microsurface normal */
|
|
Normal m = sampleBeckmannD(sample);
|
|
/* Perfect specular reflection along the microsurface normal */
|
|
bRec.wo = reflect(bRec.wi, m);
|
|
|
|
bRec.sampledComponent = 1;
|
|
bRec.sampledType = EGlossyReflection;
|
|
|
|
if (bRec.wo.z <= 0)
|
|
return Spectrum(0.0f);
|
|
|
|
return f(bRec) / pdf(bRec);
|
|
}
|
|
|
|
void serialize(Stream *stream, InstanceManager *manager) const {
|
|
BSDF::serialize(stream, manager);
|
|
|
|
manager->serialize(stream, m_specularReflectance.get());
|
|
stream->writeFloat(m_alphaB);
|
|
m_ior.serialize(stream);
|
|
m_k.serialize(stream);
|
|
}
|
|
|
|
void addChild(const std::string &name, ConfigurableObject *child) {
|
|
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
|
|
m_specularReflectance = static_cast<Texture *>(child);
|
|
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
|
|
} else {
|
|
BSDF::addChild(name, child);
|
|
}
|
|
}
|
|
|
|
|
|
std::string toString() const {
|
|
std::ostringstream oss;
|
|
oss << "RoughMetal[" << endl
|
|
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << std::endl
|
|
<< " ior = " << m_ior.toString() << "," << std::endl
|
|
<< " k = " << m_k.toString() << "," << std::endl
|
|
<< " alphaB = " << m_alphaB << std::endl
|
|
<< "]";
|
|
return oss.str();
|
|
}
|
|
|
|
MTS_DECLARE_CLASS()
|
|
private:
|
|
ref<Texture> m_specularReflectance;
|
|
Float m_alphaB;
|
|
Spectrum m_ior, m_k;
|
|
};
|
|
|
|
MTS_IMPLEMENT_CLASS_S(RoughMetal, false, BSDF)
|
|
MTS_EXPORT_PLUGIN(RoughMetal, "Rough metal BRDF");
|
|
MTS_NAMESPACE_END
|