mitsuba/src/bsdfs/roughmetal.cpp

208 lines
6.1 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/render/consttexture.h>
MTS_NAMESPACE_BEGIN
/**
* Rough metal BRDF model based on
* "Microfacet Models for Refraction through Rough Surfaces"
* by Bruce Walter, Stephen R. Marschner, Hongsong Li
* and Kenneth E. Torrance.
*
* This is similar to the 'microfacet' implementation, but
* the Fresnel term is now that of a conductor.
*/
class RoughMetal : public BSDF {
public:
RoughMetal(const Properties &props)
: BSDF(props) {
m_specularReflectance = new ConstantTexture(
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
m_alphaB = props.getFloat("alphaB", .1f);
m_ior = props.getSpectrum("ior", Spectrum(0.370f)); /* Gold */
m_k = props.getSpectrum("k", Spectrum(2.820f));
m_componentCount = 1;
m_type = new unsigned int[m_componentCount];
m_combinedType = m_type[0] = EGlossyReflection | EFrontSide;
m_usesRayDifferentials = false;
}
RoughMetal(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_alphaB = stream->readFloat();
m_ior = Spectrum(stream);
m_k = Spectrum(stream);
m_componentCount = 1;
m_type = new unsigned int[m_componentCount];
m_combinedType = m_type[0] = EGlossyReflection | EFrontSide;
m_usesRayDifferentials =
m_specularReflectance->usesRayDifferentials();
}
virtual ~RoughMetal() {
delete[] m_type;
}
Spectrum getDiffuseReflectance(const Intersection &its) const {
return Spectrum(0.0f);
}
/**
* Beckmann distribution function for gaussian random surfaces
* @param thetaM Tangent of the angle between M and N.
*/
Float beckmannD(const Vector &m) const {
Float ex = Frame::tanTheta(m) / m_alphaB;
return std::exp(-(ex*ex)) / (M_PI * m_alphaB*m_alphaB *
std::pow(Frame::cosTheta(m), (Float) 4.0f));
}
/**
* Sample microsurface normals according to
* the Beckmann distribution
*/
Normal sampleBeckmannD(Point2 sample) const {
Float thetaM = std::atan(std::sqrt(-m_alphaB*m_alphaB
* std::log(1.0f - sample.x)));
Float phiM = (2.0f * M_PI) * sample.y;
return Normal(sphericalDirection(thetaM, phiM));
}
/**
* Smith's shadow-masking function G1 for the Beckmann distribution
* @param m The microsurface normal
* @param v An arbitrary direction
*/
Float smithBeckmannG1(const Vector &v, const Vector &m) const {
if (dot(v, m)*Frame::cosTheta(v) <= 0)
return 0.0;
const Float tanTheta = Frame::tanTheta(v);
if (tanTheta == 0.0f)
return 1.0f;
const Float a = 1.0f / (m_alphaB * tanTheta);
const Float aSqr = a * a;
if (a >= 1.6f)
return 1.0f;
return (3.535f * a + 2.181f * aSqr)/(1.0f + 2.276f * a + 2.577f * aSqr);
}
inline Vector reflect(const Vector &wi, const Normal &n) const {
return Vector(n*(2.0f*dot(n, wi))) - wi;
}
Spectrum f(const BSDFQueryRecord &bRec) const {
if (!(bRec.typeMask & m_combinedType)
|| bRec.wi.z <= 0 || bRec.wo.z <= 0)
return Spectrum(0.0f);\
Vector Hr = normalize(bRec.wi+bRec.wo);
/* Fresnel factor */
Spectrum F = fresnelConductor(dot(bRec.wi, Hr), m_ior, m_k);
/* Microsurface normal distribution */
Float D = beckmannD(Hr);
/* Smith's shadow-masking function for the Beckmann distribution */
Float G = smithBeckmannG1(bRec.wi, Hr) * smithBeckmannG1(bRec.wo, Hr);
/* Calculate the total amount of specular reflection */
Spectrum specRef = F * (D * G /
(4.0f * Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo)));
return m_specularReflectance->getValue(bRec.its) * specRef;
}
Float pdf(const BSDFQueryRecord &bRec) const {
if (bRec.wi.z <= 0 || bRec.wo.z <= 0)
return 0.0f;
Vector Hr = normalize(bRec.wi + bRec.wo);
/* Jacobian of the half-direction transform. */
Float dwhr_dwo = 1.0f / (4.0f * absDot(bRec.wo, Hr));
return beckmannD(Hr) * Frame::cosTheta(Hr) * dwhr_dwo;
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
if (bRec.wi.z <= 0)
return Spectrum(0.0f);
/* Sample M, the microsurface normal */
Normal m = sampleBeckmannD(sample);
/* Perfect specular reflection along the microsurface normal */
bRec.wo = reflect(bRec.wi, m);
bRec.sampledComponent = 1;
bRec.sampledType = EGlossyReflection;
if (bRec.wo.z <= 0)
return Spectrum(0.0f);
return f(bRec) / pdf(bRec);
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
manager->serialize(stream, m_specularReflectance.get());
stream->writeFloat(m_alphaB);
m_ior.serialize(stream);
m_k.serialize(stream);
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
m_specularReflectance = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
} else {
BSDF::addChild(name, child);
}
}
std::string toString() const {
std::ostringstream oss;
oss << "RoughMetal[" << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << std::endl
<< " ior = " << m_ior.toString() << "," << std::endl
<< " k = " << m_k.toString() << "," << std::endl
<< " alphaB = " << m_alphaB << std::endl
<< "]";
return oss.str();
}
MTS_DECLARE_CLASS()
private:
ref<Texture> m_specularReflectance;
Float m_alphaB;
Spectrum m_ior, m_k;
};
MTS_IMPLEMENT_CLASS_S(RoughMetal, false, BSDF)
MTS_EXPORT_PLUGIN(RoughMetal, "Rough metal BRDF");
MTS_NAMESPACE_END