mitsuba/include/mitsuba/core/stream.h

586 lines
21 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2014 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#if !defined(__MITSUBA_CORE_STREAM_H_)
#define __MITSUBA_CORE_STREAM_H_
#include <mitsuba/mitsuba.h>
#include <mitsuba/core/half.h>
MTS_NAMESPACE_BEGIN
/// \brief This exception is thrown after an incomplete IO read/write operation
class EOFException : public std::runtime_error {
public:
inline EOFException(const std::string &str, size_t completed)
: std::runtime_error(str), m_completed(completed) { }
/// Return the number of bytes that successfully completed
inline size_t getCompleted() const {
return m_completed;
}
private:
size_t m_completed;
};
/** \brief Abstract seekable stream class
*
* Specifies all functions to be implemented by stream
* subclasses and provides various convenience functions
* layered on top of on them.
*
* All read<b>X</b>() and write<b>X</b>() methods support transparent
* conversion based on the endianness of the underlying system and the
* value passed to \ref setByteOrder(). Whenever \ref getHostByteOrder()
* and \ref getByteOrder() disagree, the endianness is swapped.
*
* \sa FileStream, MemoryStream, SocketStream,
* ConsoleStream, SSHStream, ZStream
* \ingroup libcore
* \ingroup libpython
*/
class MTS_EXPORT_CORE Stream : public Object {
public:
/// Defines the byte order to use in this Stream
enum EByteOrder {
EBigEndian = 0, ///< PowerPC, SPARC, Motorola 68K
ELittleEndian = 1, ///< x86, x86_64
ENetworkByteOrder = EBigEndian ///< Network byte order (an alias for big endian)
};
/**
* \brief Create a new stream.
*
* By default, it assumes the byte order of the
* underlying system, i.e. no endianness conversion
* is performed.
*/
Stream();
/// Return a string representation
virtual std::string toString() const;
// ======================================================================
/// @{ \name Endianness-related
// ======================================================================
/// Set the stream byte order
void setByteOrder(EByteOrder byteOrder);
/// Return the byte order of this stream
inline EByteOrder getByteOrder() const { return m_byteOrder; }
/// Return the byte order of the underlying machine
inline static EByteOrder getHostByteOrder() { return m_hostByteOrder; }
/// @}
// ======================================================================
// ======================================================================
//! @{ \name Abstract methods that need to be implemented by subclasses
// ======================================================================
/**
* \brief Read a specified amount of data from the stream
*
* Throws an exception when the stream ended prematurely
*/
virtual void read(void *ptr, size_t size) = 0;
/**
* \brief Write a specified amount of data into the stream
*
* Throws an exception when not all data could be written
*/
virtual void write(const void *ptr, size_t size) = 0;
/// Seek to a position inside the stream
virtual void seek(size_t pos) = 0;
/// Truncate the stream to a given size
virtual void truncate(size_t size) = 0;
/// Get the current position inside the stream
virtual size_t getPos() const = 0;
/// Return the size of the stream
virtual size_t getSize() const = 0;
/// Flush the stream's buffers
virtual void flush() = 0;
/// Can we write to the stream?
virtual bool canWrite() const = 0;
/// Can we read from the stream?
virtual bool canRead() const = 0;
//! @}
// ======================================================================
// ======================================================================
//! @{ \name Convenience functions with automatic endianness conversion
// ======================================================================
/// Skip the given number of bytes
void skip(size_t amount);
/// Write a null-terminated string to the stream
void writeString(const std::string &value);
/// Write a string followed by a newline
void writeLine(const std::string &value);
/// Write a signed short (16 bit) to the stream
void writeShort(short value);
/// Write an array of signed shorts (16 bit) to the stream
void writeShortArray(const short *values, size_t size);
/// Write an array of known size of signed shorts (16 bit) to the stream
template <size_t N>
inline void writeShortArray(const short (&values)[N]) {
writeShortArray(&values[0], N);
}
/// Write an unsigned short (16 bit) to the stream
void writeUShort(unsigned short value);
/// Write an array of unsigned shorts (16 bit) to the stream
void writeUShortArray(const unsigned short *values, size_t size);
/// Write an array of known size of unsigned shorts (16 bit) to the stream
template <size_t N>
inline void writeUShortArray(const unsigned short (&values)[N]) {
writeUShortArray(&values[0], N);
}
/// Write a signed int (32 bit) to the stream
void writeInt(int value);
/// Write an array of signed ints (32 bit) to the stream
void writeIntArray(const int *values, size_t size);
/// Write an array of known size of signed ints (32 bit) to the stream
template <size_t N>
inline void writeIntArray(const int (&values)[N]) {
writeIntArray(&values[0], N);
}
/// Write an unsigned int (32 bit) to the stream
void writeUInt(unsigned int value);
/// Write an array of unsigned ints (32 bit) to the stream
void writeUIntArray(const unsigned int *values, size_t size);
/// Write an array of known size of unsigned ints (32 bit) to the stream
template <size_t N>
inline void writeUIntArray(const unsigned int (&values)[N]) {
writeUIntArray(&values[0], N);
}
/// Write a signed int (64 bit) to the stream
void writeLong(int64_t value);
/// Write an array of signed ints (64 bit) to the stream
void writeLongArray(const int64_t *values, size_t size);
/// Write an array of known size of signed ints (64 bit) to the stream
template <size_t N>
inline void writeLongArray(const int64_t (&values)[N]) {
writeLongArray(&values[0], N);
}
/// Write an unsigned int (64 bit) to the stream
void writeULong(uint64_t value);
/// Write a size value to the stream
void writeSize(size_t value) { writeULong((uint64_t) value); }
/// Write an array of unsigned ints (64 bit) to the stream
void writeULongArray(const uint64_t *values, size_t size);
/// Write an array of known size of unsigned ints (64 bit) to the stream
template <size_t N>
inline void writeULongArray(const uint64_t (&values)[N]) {
writeULongArray(&values[0], N);
}
/// Write a signed character (8 bit) to the stream
void writeChar(char value);
/// Write an unsigned character (8 bit) to the stream
void writeUChar(unsigned char value);
/// Write a boolean (8 bit) to the stream
inline void writeBool(bool value) { writeUChar(value); }
/// Write a half-precision floating point number (16 bit) to the stream
void writeHalf(half value);
/// Write a half-precision floating point array (16 bit) to the stream
void writeHalfArray(const half *data, size_t size);
/// Write a known size half-precision floating point array (16 bit) to the stream
template <size_t N>
inline void writeHalfArray(const half (&values)[N]) {
writeHalfArray(&values[0], N);
}
/// Write a single-precision floating point number (32 bit) to the stream
void writeSingle(float value);
/// Write a single-precision floating point array (32 bit) to the stream
void writeSingleArray(const float *data, size_t size);
/// Write a known size single-precision floating point array (32 bit) to the stream
template <size_t N>
inline void writeSingleArray(const float (&values)[N]) {
writeSingleArray(&values[0], N);
}
/// Write a double-precision floating point number (64 bit) to the stream
void writeDouble(double value);
/// Write a double-precision floating point array (64 bit) to the stream
void writeDoubleArray(const double *data, size_t size);
/// Write a known size double-precision floating point array (64 bit) to the stream
template <size_t N>
inline void writeDoubleArray(const double (&values)[N]) {
writeDoubleArray(&values[0], N);
}
/// Write a floating point number (configured precision) to the stream
inline void writeFloat(Float value) {
#ifdef SINGLE_PRECISION
writeSingle(value);
#else
writeDouble(value);
#endif
}
/// Write an array of floating point values (configured precision) to the stream
inline void writeFloatArray(const Float *data, size_t size) {
#ifdef SINGLE_PRECISION
writeSingleArray(data, size);
#else
writeDoubleArray(data, size);
#endif
}
/// Write a known size array of floating point values (configured precision) to the stream
template <size_t N>
inline void writeFloatArray(const Float (&values)[N]) {
writeFloatArray(&values[0], N);
}
/// Return whether we are at the end of the stream
bool isEOF() const;
/// Read a line from the stream and return it as a string
std::string readLine();
/// Read a null-terminated string from the stream
std::string readString();
/// Read a signed short (16 bit) from the stream
short readShort();
/// Read an array of signed shorts (16 bit) from the stream
void readShortArray(short *dest, size_t size);
/// Read an array of known size of signed shorts (16 bit) from the stream
template <size_t N>
inline void readShortArray(short (&values)[N]) {
readShortArray(&values[0], N);
}
/// Read an unsigned short (16 bit) from the stream
unsigned short readUShort();
/// Read an array of unsigned shorts (16 bit) from the stream
void readUShortArray(unsigned short *dest, size_t size);
/// Read an array of known size of unsigned shorts (16 bit) from the stream
template <size_t N>
inline void readUShortArray(short (&values)[N]) {
readUShortArray(&values[0], N);
}
/// Read a signed int (32 bit) from the stream
int readInt();
/// Read an array of signed ints (32 bit) from the stream
void readIntArray(int *dst, size_t size);
/// Read an array of known size of signed ints (32 bit) from the stream
template <size_t N>
inline void readIntArray(int (&values)[N]) {
readIntArray(&values[0], N);
}
/// Read an unsigned int (32 bit) from the stream
unsigned int readUInt();
/// Read an array of unsigned ints (32 bit) from the stream
void readUIntArray(unsigned int *dest, size_t size);
/// Read an array of known size of unsigned ints (32 bit) from the stream
template <size_t N>
inline void readUIntArray(int (&values)[N]) {
readUIntArray(&values[0], N);
}
/// Read a signed int (64 bit) from the stream
int64_t readLong();
/// Read an array of signed ints (64 bit) from the stream
void readLongArray(int64_t *dst, size_t size);
/// Read an array of known size of signed ints (64 bit) from the stream
template <size_t N>
inline void readLongArray(int64_t (&values)[N]) {
readLongArray(&values[0], N);
}
/// Read an unsigned int (64 bit) from the stream
uint64_t readULong();
/// Read a size value from the stream
size_t readSize() { return (size_t) readULong(); }
/// Read an array of unsigned ints (64 bit) from the stream
void readULongArray(uint64_t *dst, size_t size);
/// Read an array of known size of unsigned ints (64 bit) from the stream
template <size_t N>
inline void readULongArray(uint64_t (&values)[N]) {
readULongArray(&values[0], N);
}
/// Read a signed character (8 bit) from the stream
char readChar();
/// Read an unsigned character (8 bit) from the stream
unsigned char readUChar();
/// Read a boolean (8 bit) from the stream
inline bool readBool() { return static_cast<bool> (readUChar()); }
/// Read a half-precision floating point number (16 bit) from the stream
half readHalf();
/// Read a half-precision floating point array (16 bit) from the stream
void readHalfArray(half *data, size_t size);
/// Read a known-size half-precision floating point array (16 bit) from the stream
template <size_t N>
inline void readHalfArray(half (&values)[N]) {
readHalfArray(&values[0], N);
}
/// Read a single-precision floating point number (32 bit) from the stream
float readSingle();
/// Read a single-precision floating point array (32 bit) from the stream
void readSingleArray(float *data, size_t size);
/// Read a known-size single-precision floating point array (32 bit) from the stream
template <size_t N>
inline void readSingleArray(float (&values)[N]) {
readSingleArray(&values[0], N);
}
/// Read a double-precision floating point number (64 bit) from the stream
double readDouble();
/// Read a double-precision floating point array (64 bit) from the stream
void readDoubleArray(double *data, size_t size);
/// Read a known-size double-precision floating point array (64 bit) from the stream
template <size_t N>
inline void readDoubleArray(double (&values)[N]) {
readDoubleArray(&values[0], N);
}
/// Write a floating point number (configured precision) to the stream
inline Float readFloat() {
#ifdef SINGLE_PRECISION
return readSingle();
#else
return readDouble();
#endif
}
/// Write an array of floating point values (configured precision) to the stream
inline void readFloatArray(Float *data, size_t size) {
#ifdef SINGLE_PRECISION
readSingleArray(data, size);
#else
readDoubleArray(data, size);
#endif
}
/// Read a known-size array of floating point values (configured precision) to the stream
template <size_t N>
inline void readFloatArray(Float (&values)[N]) {
readFloatArray(&values[0], N);
}
/**
* \brief Copy content from this stream into another stream
* \param stream Destination stream
* \param numBytes
* The number of bytes to copy. When -1 is specified,
* copying proceeds until the end of the source stream.
*/
void copyTo(Stream *stream, int64_t numBytes = -1);
/**
* \brief Read an element from the stream (uses partial template
* specialization to select a method appropriate to the data type)
*/
template <typename T> T readElement();
/**
* \brief Write an element to the stream (uses partial template
* specialization to select a method appropriate to the data type)
*/
template <typename T> void writeElement(T value);
/**
* \brief Read an array from the stream (uses partial template
* specialization to select a method appropriate to the data type)
*/
template <typename T> void readArray(T *array, size_t count);
/**
* \brief Read a known-size array from the stream (uses partial template
* specialization to select a method appropriate to the data type)
*/
template <typename T, size_t N> inline void readArray(T (&arr)[N]) {
readArray(&arr[0], N);
}
/**
* \brief Write an array to the stream (uses partial template
* specialization to select a method appropriate to the data type)
*/
template <typename T> void writeArray(const T *array, size_t count);
/**
* \brief Write a known-size array to the stream (uses partial template
* specialization to select a method appropriate to the data type)
*/
template <typename T, size_t N> inline void writeArray(const T (&arr)[N]) {
writeArray(&arr[0], N);
}
//! @}
MTS_DECLARE_CLASS()
protected:
/// Virtual destructor
virtual ~Stream() { }
private:
static EByteOrder m_hostByteOrder;
EByteOrder m_byteOrder;
};
template <typename T> inline T Stream::readElement() {
Log(EError, "Stream::readElement<T>: not implemented!");
}
template <typename T> inline void Stream::writeElement(T value) {
Log(EError, "Stream::writeElement<T>: not implemented!");
}
template <typename T> inline void Stream::readArray(T *array, size_t count) {
Log(EError, "Stream::readArray<T>: not implemented!");
}
template <typename T> inline void Stream::writeArray(const T *array, size_t count) {
Log(EError, "Stream::writeArray<T>: not implemented!");
}
/// \cond
template <> inline half Stream::readElement() { return readHalf(); }
template <> inline float Stream::readElement() { return readSingle(); }
template <> inline double Stream::readElement() { return readDouble(); }
template <> inline char Stream::readElement() { return readChar(); }
template <> inline unsigned char Stream::readElement() { return readUChar(); }
template <> inline bool Stream::readElement() { return readBool(); }
template <> inline int16_t Stream::readElement() { return readShort(); }
template <> inline uint16_t Stream::readElement() { return readUShort(); }
template <> inline int32_t Stream::readElement() { return readInt(); }
template <> inline uint32_t Stream::readElement() { return readUInt(); }
template <> inline int64_t Stream::readElement() { return readLong(); }
template <> inline uint64_t Stream::readElement() { return readULong(); }
template <> inline std::string Stream::readElement() { return readString(); }
template <> inline void Stream::writeElement(half val) { return writeHalf(val); }
template <> inline void Stream::writeElement(float val) { return writeSingle(val); }
template <> inline void Stream::writeElement(double val) { return writeDouble(val); }
template <> inline void Stream::writeElement(char val) { return writeChar(val); }
template <> inline void Stream::writeElement(unsigned char val) { return writeUChar(val); }
template <> inline void Stream::writeElement(bool val) { return writeBool(val); }
template <> inline void Stream::writeElement(int16_t val) { return writeShort(val); }
template <> inline void Stream::writeElement(uint16_t val) { return writeUShort(val); }
template <> inline void Stream::writeElement(int32_t val) { return writeInt(val); }
template <> inline void Stream::writeElement(uint32_t val) { return writeUInt(val); }
template <> inline void Stream::writeElement(int64_t val) { return writeLong(val); }
template <> inline void Stream::writeElement(uint64_t val) { return writeULong(val); }
template <> inline void Stream::writeElement(const std::string &val) { return writeString(val); }
template <> inline void Stream::readArray(half *array, size_t count) { return readHalfArray(array, count); }
template <> inline void Stream::readArray(float *array, size_t count) { return readSingleArray(array, count); }
template <> inline void Stream::readArray(double *array, size_t count) { return readDoubleArray(array, count); }
template <> inline void Stream::readArray(char *array, size_t count) { return read((uint8_t *) array, count); }
template <> inline void Stream::readArray(unsigned char *array, size_t count) { return read((uint8_t *) array, count); }
template <> inline void Stream::readArray(bool *array, size_t count) { return read((uint8_t *) array, count); }
template <> inline void Stream::readArray(int16_t *array, size_t count) { return readShortArray(array, count); }
template <> inline void Stream::readArray(uint16_t *array, size_t count) { return readUShortArray(array, count); }
template <> inline void Stream::readArray(int32_t *array, size_t count) { return readIntArray(array, count); }
template <> inline void Stream::readArray(uint32_t *array, size_t count) { return readUIntArray(array, count); }
template <> inline void Stream::readArray(int64_t *array, size_t count) { return readLongArray(array, count); }
template <> inline void Stream::readArray(uint64_t *array, size_t count) { return readULongArray(array, count); }
template <> inline void Stream::writeArray(const half *array, size_t count) { return writeHalfArray(array, count); }
template <> inline void Stream::writeArray(const float *array, size_t count) { return writeSingleArray(array, count); }
template <> inline void Stream::writeArray(const double *array, size_t count) { return writeDoubleArray(array, count); }
template <> inline void Stream::writeArray(const char *array, size_t count) { return write((uint8_t *) array, count); }
template <> inline void Stream::writeArray(const unsigned char *array, size_t count) { return write((uint8_t *) array, count); }
template <> inline void Stream::writeArray(const bool *array, size_t count) { return write((uint8_t *) array, count); }
template <> inline void Stream::writeArray(const int16_t *array, size_t count) { return writeShortArray(array, count); }
template <> inline void Stream::writeArray(const uint16_t *array, size_t count) { return writeUShortArray(array, count); }
template <> inline void Stream::writeArray(const int32_t *array, size_t count) { return writeIntArray(array, count); }
template <> inline void Stream::writeArray(const uint32_t *array, size_t count) { return writeUIntArray(array, count); }
template <> inline void Stream::writeArray(const int64_t *array, size_t count) { return writeLongArray(array, count); }
template <> inline void Stream::writeArray(const uint64_t *array, size_t count) { return writeULongArray(array, count); }
extern MTS_EXPORT_CORE std::ostream &operator<<(std::ostream &os, const Stream::EByteOrder &value);
/// \endcond
MTS_NAMESPACE_END
#endif /* __MITSUBA_CORE_STREAM_H_ */