mitsuba/src/bsdfs/roughdiffuse.cpp

361 lines
13 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/hw/basicshader.h>
MTS_NAMESPACE_BEGIN
/*!\plugin{roughdiffuse}{Rough diffuse material}
* \order{2}
* \parameters{
* \parameter{reflectance}{\Spectrum\Or\Texture}{
* Specifies the diffuse albedo of the
* material. \default{0.5}
* }
* \parameter{alpha}{\Spectrum\Or\Texture}{
* Specifies the roughness of the unresolved surface micro-geometry
* using the \emph{root mean square} (RMS) slope of the
* microfacets. \default{0.2}
* }
* \parameter{useFastApprox}{\Boolean}{
* This parameter selects between the full version of the model
* or a fast approximation that still retains most qualitative features.
* \default{\texttt{false}, i.e. use the high-quality version}
* }
* }
*
* \renderings{
* \rendering{Smooth diffuse surface ($\alpha=0$)}
* {bsdf_roughdiffuse_0}
* \rendering{Very rough diffuse surface ($\alpha=0.7$)}
* {bsdf_roughdiffuse_0_7}
* \vspace{-3mm}
* \caption{The effect of switching from smooth to rough diffuse scattering
* is fairly subtle on this model---generally, there will be higher
* reflectance at grazing angles, as well as an overall reduced contrast.}\vspace{3mm}
* }
*
* This reflectance model describes the interaction of light with a \emph{rough}
* diffuse material, such as plaster, sand, clay, or concrete.
* The underlying theory was developed by Oren and Nayar
* \cite{Oren1994Generalization}, who model the microscopic surface structure as
* unresolved planar facets arranged in V-shaped grooves, where each facet
* is an ideal diffuse reflector. The model takes into account shadowing,
* masking, as well as interreflections between the facets.
*
* Since the original publication, this approach has been shown to
* be a good match for many real-world materials, particularly compared
* to Lambertian scattering, which does not take surface roughness into account.
*
* The implementation in Mitsuba uses a surface roughness parameter $\alpha$ that
* is slightly different from the slope-area variance in the original 1994 paper.
* The reason for this change is to make the parameter $\alpha$ portable
* across different models (i.e. \pluginref{roughdielectric}, \pluginref{roughplastic},
* \pluginref{roughconductor}).
*
* To get an intuition about the effect of the
* parameter $\alpha$, consider the following approximate differentiation:
* a value of $\alpha=0.001-0.01$ corresponds to a material
* with slight imperfections on an otherwise smooth surface (for such small
* values, the model will behave identically to \pluginref{diffuse}), $\alpha=0.1$
* is relatively rough, and $\alpha=0.3-0.7$ is \emph{extremely} rough
* (e.g. an etched or ground surface).
*
* Note that this material is one-sided---that is, observed from the
* back side, it will be completely black. If this is undesirable,
* consider using the \pluginref{twosided} BRDF adapter plugin.
*/
class RoughDiffuse : public BSDF {
public:
RoughDiffuse(const Properties &props)
: BSDF(props) {
/* For better compatibility with other models, support both
'reflectance' and 'diffuseReflectance' as parameter names */
m_reflectance = new ConstantSpectrumTexture(props.getSpectrum(
props.hasProperty("reflectance") ? "reflectance"
: "diffuseReflectance", Spectrum(0.5f)));
m_useFastApprox = props.getBoolean("useFastApprox", false);
m_alpha = new ConstantFloatTexture(props.getFloat("alpha", 0.2f));
}
RoughDiffuse(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_reflectance = static_cast<Texture *>(manager->getInstance(stream));
m_alpha = static_cast<Texture *>(manager->getInstance(stream));
m_useFastApprox = stream->readBool();
configure();
}
void configure() {
/* Verify the input parameter and fix them if necessary */
m_reflectance = ensureEnergyConservation(m_reflectance, "reflectance", 1.0f);
m_components.clear();
m_components.push_back(EGlossyReflection | EFrontSide
| ((!m_reflectance->isConstant() || !m_alpha->isConstant())
? ESpatiallyVarying : 0));
m_usesRayDifferentials = m_reflectance->usesRayDifferentials() ||
m_alpha->usesRayDifferentials();
BSDF::configure();
}
Spectrum getDiffuseReflectance(const Intersection &its) const {
return m_reflectance->getValue(its);
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (!(bRec.typeMask & EGlossyReflection) || measure != ESolidAngle
|| Frame::cosTheta(bRec.wi) <= 0
|| Frame::cosTheta(bRec.wo) <= 0)
return Spectrum(0.0f);
/* Conversion from Beckmann-style RMS roughness to
Oren-Nayar-style slope-area variance. The factor
of 1/sqrt(2) was found to be a perfect fit up
to extreme roughness values (>.5), after which
the match is not as good anymore */
const Float conversionFactor = 1 / std::sqrt((Float) 2);
Float sigma = m_alpha->getValue(bRec.its).average()
* conversionFactor;
const Float sigma2 = sigma*sigma;
Float sinThetaI = Frame::sinTheta(bRec.wi),
sinThetaO = Frame::sinTheta(bRec.wo);
Float cosPhiDiff = 0;
if (sinThetaI > Epsilon && sinThetaO > Epsilon) {
/* Compute cos(phiO-phiI) using the half-angle formulae */
Float sinPhiI = Frame::sinPhi(bRec.wi),
cosPhiI = Frame::cosPhi(bRec.wi),
sinPhiO = Frame::sinPhi(bRec.wo),
cosPhiO = Frame::cosPhi(bRec.wo);
cosPhiDiff = cosPhiI * cosPhiO + sinPhiI * sinPhiO;
}
if (m_useFastApprox) {
Float A = 1.0f - 0.5f * sigma2 / (sigma2 + 0.33f),
B = 0.45f * sigma2 / (sigma2 + 0.09f),
sinAlpha, tanBeta;
if (Frame::cosTheta(bRec.wi) > Frame::cosTheta(bRec.wo)) {
sinAlpha = sinThetaO;
tanBeta = sinThetaI / Frame::cosTheta(bRec.wi);
} else {
sinAlpha = sinThetaI;
tanBeta = sinThetaO / Frame::cosTheta(bRec.wo);
}
return m_reflectance->getValue(bRec.its)
* (INV_PI * Frame::cosTheta(bRec.wo) * (A + B
* std::max(cosPhiDiff, (Float) 0.0f) * sinAlpha * tanBeta));
} else {
Float sinThetaI = Frame::sinTheta(bRec.wi),
sinThetaO = Frame::sinTheta(bRec.wo),
thetaI = std::acos(Frame::cosTheta(bRec.wi)),
thetaO = std::acos(Frame::cosTheta(bRec.wo)),
alpha = std::max(thetaI, thetaO),
beta = std::min(thetaI, thetaO);
Float sinAlpha, sinBeta, tanBeta;
if (Frame::cosTheta(bRec.wi) > Frame::cosTheta(bRec.wo)) {
sinAlpha = sinThetaO; sinBeta = sinThetaI;
tanBeta = sinThetaI / Frame::cosTheta(bRec.wi);
} else {
sinAlpha = sinThetaI; sinBeta = sinThetaO;
tanBeta = sinThetaO / Frame::cosTheta(bRec.wo);
}
Float tmp = sigma2 / (sigma2 + 0.09f),
tmp2 = (4*INV_PI*INV_PI) * alpha * beta,
tmp3 = 2*beta*INV_PI;
Float C1 = 1.0f - 0.5f * sigma2 / (sigma2 + 0.33f),
C2 = 0.45f * tmp,
C3 = 0.125f * tmp * tmp2 * tmp2,
C4 = 0.17f * sigma2 / (sigma2 + 0.13f);
if (cosPhiDiff > 0)
C2 *= sinAlpha;
else
C2 *= sinAlpha - tmp3*tmp3*tmp3;
/* Compute tan(0.5 * (alpha+beta)) using the half-angle formulae */
Float tanHalf = (sinAlpha + sinBeta) / (
std::sqrt(std::max((Float) 0.0f, 1.0f - sinAlpha * sinAlpha)) +
std::sqrt(std::max((Float) 0.0f, 1.0f - sinBeta * sinBeta)));
Spectrum rho = m_reflectance->getValue(bRec.its),
snglScat = rho * (C1 + cosPhiDiff * C2 * tanBeta +
(1.0f - std::abs(cosPhiDiff)) * C3 * tanHalf),
dblScat = rho * rho * (C4 * (1.0f - cosPhiDiff*tmp3*tmp3));
return (snglScat + dblScat) * (INV_PI * Frame::cosTheta(bRec.wo));
}
}
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (!(bRec.typeMask & EGlossyReflection) || measure != ESolidAngle
|| Frame::cosTheta(bRec.wi) <= 0
|| Frame::cosTheta(bRec.wo) <= 0)
return 0.0f;
return Frame::cosTheta(bRec.wo) * INV_PI;
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
if (!(bRec.typeMask & EGlossyReflection) || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
bRec.wo = squareToHemispherePSA(sample);
bRec.sampledComponent = 0;
bRec.sampledType = EGlossyReflection;
return eval(bRec, ESolidAngle) /
(Frame::cosTheta(bRec.wo) * INV_PI);
}
Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &sample) const {
if (!(bRec.typeMask & EGlossyReflection) || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
bRec.wo = squareToHemispherePSA(sample);
bRec.sampledComponent = 0;
bRec.sampledType = EGlossyReflection;
pdf = Frame::cosTheta(bRec.wo) * INV_PI;
return eval(bRec, ESolidAngle);
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
if (name == "reflectance" || name == "diffuseReflectance")
m_reflectance = static_cast<Texture *>(child);
if (name == "alpha")
m_alpha = static_cast<Texture *>(child);
else
BSDF::addChild(name, child);
} else {
BSDF::addChild(name, child);
}
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
manager->serialize(stream, m_reflectance.get());
manager->serialize(stream, m_alpha.get());
stream->writeBool(m_useFastApprox);
}
std::string toString() const {
std::ostringstream oss;
oss << "RoughDiffuse[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " reflectance = " << indent(m_reflectance->toString()) << "," << endl
<< " alpha = " << indent(m_alpha->toString()) << "," << endl
<< " useFastApprox = " << m_useFastApprox << endl
<< "]";
return oss.str();
}
Shader *createShader(Renderer *renderer) const;
MTS_DECLARE_CLASS()
private:
ref<Texture> m_reflectance;
ref<Texture> m_alpha;
bool m_useFastApprox;
};
// ================ Hardware shader implementation ================
class RoughDiffuseShader : public Shader {
public:
RoughDiffuseShader(Renderer *renderer, const Texture *reflectance, const Texture *alpha)
: Shader(renderer, EBSDFShader), m_reflectance(reflectance), m_alpha(alpha) {
m_reflectanceShader = renderer->registerShaderForResource(m_reflectance.get());
m_alphaShader = renderer->registerShaderForResource(m_alpha.get());
}
bool isComplete() const {
return m_reflectanceShader.get() != NULL &&
m_alphaShader.get() != NULL;
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_reflectance.get());
renderer->unregisterShaderForResource(m_alpha.get());
}
void putDependencies(std::vector<Shader *> &deps) {
deps.push_back(m_reflectanceShader.get());
deps.push_back(m_alphaShader.get());
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " if (cosTheta(wi) <= 0.0 || cosTheta(wo) <= 0.0)" << endl
<< " return vec3(0.0);" << endl
<< " float sigma = " << depNames[1] << "(uv)[0] * 0.70711;" << endl
<< " float sigma2 = sigma * sigma;" << endl
<< " float A = 1.0 - 0.5 * sigma2 / (sigma2 + 0.33);" << endl
<< " float B = 0.45 * sigma2 / (sigma2 + 0.09);" << endl
<< " float maxCos = max(0.0, cosPhi(wi)*cosPhi(wo)+sinPhi(wi)*sinPhi(wo));" << endl
<< " float sinAlpha, tanBeta;" << endl
<< " if (cosTheta(wi) > cosTheta(wo)) {" << endl
<< " sinAlpha = sinTheta(wo);" << endl
<< " tanBeta = sinTheta(wi) / cosTheta(wi);" << endl
<< " } else {" << endl
<< " sinAlpha = sinTheta(wi);" << endl
<< " tanBeta = sinTheta(wo) / cosTheta(wo);" << endl
<< " }" << endl
<< " float value = A + B * maxCos * sinAlpha * tanBeta;" << endl
<< " return " << depNames[0] << "(uv) * 0.31831 * cosTheta(wo) * value;" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " if (cosTheta(wi) <= 0.0 || cosTheta(wo) <= 0.0)" << endl
<< " return vec3(0.0);" << endl
<< " return " << depNames[0] << "(uv) * 0.31831 * cosTheta(wo);" << endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
private:
ref<const Texture> m_reflectance;
ref<const Texture> m_alpha;
ref<Shader> m_reflectanceShader;
ref<Shader> m_alphaShader;
};
Shader *RoughDiffuse::createShader(Renderer *renderer) const {
return new RoughDiffuseShader(renderer, m_reflectance.get(), m_alpha.get());
}
MTS_IMPLEMENT_CLASS(RoughDiffuseShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(RoughDiffuse, false, BSDF)
MTS_EXPORT_PLUGIN(RoughDiffuse, "Rough diffuse BRDF")
MTS_NAMESPACE_END