mitsuba/src/bsdfs/ward.cpp

373 lines
14 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2010 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/render/consttexture.h>
#include <mitsuba/hw/gpuprogram.h>
MTS_NAMESPACE_BEGIN
/**
* Anisotropic Ward BRDF model based on
* "Measuring and Modeling Anisotropic Reflection" by
* Gregory J. Ward, SIGGRAPH 1992
* and
* "Notes on the Ward BRDF" by Bruce Walter, Technical Report
* PCG-05-06, Cornell University
*/
class Ward : public BSDF {
public:
Ward(const Properties &props)
: BSDF(props) {
m_diffuseReflectance = new ConstantTexture(
props.getSpectrum("diffuseReflectance", Spectrum(0.5f)));
m_specularReflectance = new ConstantTexture(
props.getSpectrum("specularReflectance", Spectrum(0.2f)));
m_kd = props.getFloat("diffuseAmount", 1.0f);
m_ks = props.getFloat("specularAmount", 1.0f);
m_verifyEnergyConservation = props.getBoolean("verifyEnergyConservation", true);
m_specularSamplingWeight = props.getFloat("specularSamplingWeight", -1);
m_alphaX = props.getFloat("alphaX", .1f);
m_alphaY = props.getFloat("alphaY", .1f);
m_componentCount = 2;
m_type = new unsigned int[m_componentCount];
m_type[0] = EDiffuseReflection;
m_type[1] = EGlossyReflection;
m_combinedType = m_type[0] | m_type[1];
m_usesRayDifferentials = false;
}
Ward(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_diffuseReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_alphaX = stream->readFloat();
m_alphaY = stream->readFloat();
m_kd = stream->readFloat();
m_ks = stream->readFloat();
m_specularSamplingWeight = stream->readFloat();
m_diffuseSamplingWeight = stream->readFloat();
m_componentCount = 2;
m_type = new unsigned int[m_componentCount];
m_type[0] = EDiffuseReflection;
m_type[1] = EGlossyReflection;
m_combinedType = m_type[0] | m_type[1];
m_usesRayDifferentials =
m_diffuseReflectance->usesRayDifferentials() ||
m_specularReflectance->usesRayDifferentials();
}
virtual ~Ward() {
delete[] m_type;
}
void configure() {
if (m_verifyEnergyConservation && (m_kd * m_diffuseReflectance->getMaximum().max()
+ m_ks * m_specularReflectance->getMaximum().max() > 1.0f)) {
Log(EWarn, "Material \"%s\": Energy conservation is potentially violated!", getName().c_str());
Log(EWarn, "Max. diffuse reflectance = %f * %f = %f", m_kd, m_diffuseReflectance->getMaximum().max(), m_kd*m_diffuseReflectance->getMaximum().max());
Log(EWarn, "Max. specular reflectance = %f * %f = %f", m_ks, m_specularReflectance->getMaximum().max(), m_ks*m_specularReflectance->getMaximum().max());
Float normalization = 1/(m_kd * m_diffuseReflectance->getMaximum().max() + m_ks * m_specularReflectance->getMaximum().max());
Log(EWarn, "Reducing the albedo to %.1f%% of the original value to be on the safe side. "
"Specify verifyEnergyConservation=false to prevent this.", normalization * 100);
m_kd *= normalization; m_ks *= normalization;
}
if (m_specularSamplingWeight == -1) {
Float avgDiffReflectance = m_diffuseReflectance->getAverage().average() * m_kd;
Float avgSpecularReflectance = m_specularReflectance->getAverage().average() * m_ks;
m_specularSamplingWeight = avgSpecularReflectance / (avgDiffReflectance + avgSpecularReflectance);
}
m_diffuseSamplingWeight = 1.0f - m_specularSamplingWeight;
}
Spectrum getDiffuseReflectance(const Intersection &its) const {
return m_diffuseReflectance->getValue(its) * m_kd;
}
Spectrum f(const BSDFQueryRecord &bRec) const {
Spectrum result(0.0f);
if (bRec.wi.z <= 0 || bRec.wo.z <= 0)
return result;
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool hasGlossy = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == 1);
if (hasGlossy) {
Vector H = bRec.wi+bRec.wo;
Float factor1 = 1.0f / (4.0f * M_PI * m_alphaX * m_alphaY *
std::sqrt(Frame::cosTheta(bRec.wi)*Frame::cosTheta(bRec.wo)));
Float factor2 = H.x / m_alphaX, factor3 = H.y / m_alphaY;
Float exponent = -(factor2*factor2+factor3*factor3)/(H.z*H.z);
Float specRef = factor1 * std::exp(exponent) * m_ks;
result += m_specularReflectance->getValue(bRec.its) * specRef;
}
if (hasDiffuse)
result += m_diffuseReflectance->getValue(bRec.its) * (INV_PI * m_kd);
return result;
}
inline Float pdfSpec(const BSDFQueryRecord &bRec) const {
Vector H = normalize(bRec.wi+bRec.wo);
Float factor1 = 1.0f / (4.0f * M_PI * m_alphaX * m_alphaY *
dot(H, bRec.wi) * std::pow(Frame::cosTheta(H), 3));
Float factor2 = H.x / m_alphaX, factor3 = H.y / m_alphaY;
Float exponent = -(factor2*factor2+factor3*factor3)/(H.z*H.z);
Float specPdf = factor1 * std::exp(exponent);
return specPdf;
}
Float pdf(const BSDFQueryRecord &bRec) const {
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool hasGlossy = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == 1);
if (bRec.wi.z <= 0 || bRec.wo.z <= 0)
return 0.0f;
if (hasDiffuse && hasGlossy) {
return m_specularSamplingWeight * pdfSpec(bRec) +
m_diffuseSamplingWeight * pdfLambertian(bRec);
} else if (hasDiffuse) {
return pdfLambertian(bRec);
} else if (hasGlossy) {
return pdfSpec(bRec);
}
return 0.0f;
}
inline Spectrum sampleSpecular(BSDFQueryRecord &bRec) const {
Float phiH = std::atan(m_alphaY/m_alphaX
* std::tan(2.0f * M_PI * bRec.sample.y));
if (bRec.sample.y > 0.5f)
phiH += M_PI;
Float cosPhiH = std::cos(phiH);
Float sinPhiH = std::sqrt(std::max((Float) 0.0f,
1.0f-cosPhiH*cosPhiH));
Float thetaH = std::atan(std::sqrt(std::max((Float) 0.0f,
-std::log(bRec.sample.x) / (
(cosPhiH*cosPhiH)/(m_alphaX*m_alphaX) +
(sinPhiH*sinPhiH)/(m_alphaY*m_alphaY)
))));
Vector H = sphericalDirection(thetaH, phiH);
bRec.wo = H * (2.0f * dot(bRec.wi, H)) - bRec.wi;
bRec.sampledComponent = 1;
bRec.sampledType = EGlossyReflection;
if (Frame::cosTheta(bRec.wo) <= 0.0f)
return Spectrum(0.0f);
return f(bRec) / pdf(bRec);
}
inline Float pdfLambertian(const BSDFQueryRecord &bRec) const {
return Frame::cosTheta(bRec.wo) * INV_PI;
}
inline Spectrum sampleLambertian(BSDFQueryRecord &bRec) const {
bRec.wo = squareToHemispherePSA(bRec.sample);
bRec.sampledComponent = 0;
bRec.sampledType = EDiffuseReflection;
return f(bRec) / pdf(bRec);
}
Spectrum sample(BSDFQueryRecord &bRec) const {
if (bRec.wi.z <= 0)
return Spectrum(0.0f);
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool sampleGlossy = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == 1);
if (sampleDiffuse && sampleGlossy) {
if (bRec.sample.x <= m_specularSamplingWeight) {
bRec.sample.x = bRec.sample.x / m_specularSamplingWeight;
return sampleSpecular(bRec);
} else {
bRec.sample.x = (bRec.sample.x - m_specularSamplingWeight)
/ m_diffuseSamplingWeight;
return sampleLambertian(bRec);
}
} else if (sampleDiffuse) {
return sampleLambertian(bRec);
} else if (sampleGlossy) {
return sampleSpecular(bRec);
}
return Spectrum(0.0f);
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(Texture::m_theClass) && name == "diffuseReflectance") {
m_diffuseReflectance = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_diffuseReflectance->usesRayDifferentials();
} else if (child->getClass()->derivesFrom(Texture::m_theClass) && name == "specularReflectance") {
m_specularReflectance = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
} else {
BSDF::addChild(name, child);
}
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
manager->serialize(stream, m_diffuseReflectance.get());
manager->serialize(stream, m_specularReflectance.get());
stream->writeFloat(m_alphaX);
stream->writeFloat(m_alphaY);
stream->writeFloat(m_kd);
stream->writeFloat(m_ks);
stream->writeFloat(m_specularSamplingWeight);
stream->writeFloat(m_diffuseSamplingWeight);
}
Shader *createShader(Renderer *renderer) const;
std::string toString() const {
std::ostringstream oss;
oss << "Ward[" << endl
<< " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
<< " diffuseAmount = " << m_kd << "," << endl
<< " specularAmount = " << m_ks << "," << endl
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
<< " alphaX = " << m_alphaX << "," << endl
<< " alphaY = " << m_alphaY << endl
<< "]";
return oss.str();
}
MTS_DECLARE_CLASS()
private:
ref<const Texture> m_diffuseReflectance;
ref<const Texture> m_specularReflectance;
Float m_alphaX, m_alphaY;
Float m_kd, m_ks;
Float m_specularSamplingWeight;
Float m_diffuseSamplingWeight;
bool m_verifyEnergyConservation;
};
// ================ Hardware shader implementation ================
class WardShader : public Shader {
public:
WardShader(Renderer *renderer,
const Texture *diffuseColor,
const Texture *specularColor,
Float ks, Float kd,
Float alphaX, Float alphaY) : Shader(renderer, EBSDFShader),
m_diffuseReflectance(diffuseColor),
m_specularReflectance(specularColor),
m_ks(ks), m_kd(kd), m_alphaX(alphaX), m_alphaY(alphaY) {
m_diffuseReflectanceShader = renderer->registerShaderForResource(m_diffuseReflectance.get());
m_specularReflectanceShader = renderer->registerShaderForResource(m_specularReflectance.get());
}
bool isComplete() const {
return m_diffuseReflectanceShader.get() != NULL &&
m_specularReflectanceShader.get() != NULL;
}
void putDependencies(std::vector<Shader *> &deps) {
deps.push_back(m_diffuseReflectanceShader.get());
deps.push_back(m_specularReflectanceShader.get());
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_diffuseReflectance.get());
renderer->unregisterShaderForResource(m_specularReflectance.get());
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "uniform float " << evalName << "_alphaX;" << endl
<< "uniform float " << evalName << "_alphaY;" << endl
<< "uniform float " << evalName << "_ks;" << endl
<< "uniform float " << evalName << "_kd;" << endl
<< endl
<< "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " if (wi.z <= 0.0 || wo.z <= 0.0)" << endl
<< " return vec3(0.0);" << endl
<< " vec3 H = normalize(wi + wo);" << endl
<< " float factor1 = 1/(12.566 * " << evalName << "_alphaX * "
<< " " << evalName << "_alphaY * sqrt(wi.z * wo.z));" << endl
<< " float factor2 = H.x / " << evalName << "_alphaX;" << endl
<< " float factor3 = H.y / " << evalName << "_alphaY;" << endl
<< " float exponent = -(factor2*factor2 + factor3*factor3)/(H.z*H.z);" << endl
<< " float specRef = factor1 * exp(exponent) * " << evalName << "_ks;" << endl
<< " return " << depNames[0] << "(uv) * (0.31831 * " << evalName << "_kd)" << endl
<< " + " << depNames[1] << "(uv) * specRef;" << endl
<< "}" << endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " if (wi.z < 0.0 || wo.z < 0.0)" << endl
<< " return vec3(0.0);" << endl
<< " return " << depNames[0] << "(uv) * (0.31831 * " << evalName << "_kd);" << endl
<< "}" << endl;
}
void resolve(const GPUProgram *program, const std::string &evalName, std::vector<int> &parameterIDs) const {
parameterIDs.push_back(program->getParameterID(evalName + "_alphaX"));
parameterIDs.push_back(program->getParameterID(evalName + "_alphaY"));
parameterIDs.push_back(program->getParameterID(evalName + "_ks"));
parameterIDs.push_back(program->getParameterID(evalName + "_kd"));
}
void bind(GPUProgram *program, const std::vector<int> &parameterIDs, int &textureUnitOffset) const {
program->setParameter(parameterIDs[0], m_alphaX);
program->setParameter(parameterIDs[1], m_alphaY);
program->setParameter(parameterIDs[2], m_ks);
program->setParameter(parameterIDs[3], m_kd);
}
MTS_DECLARE_CLASS()
private:
ref<const Texture> m_diffuseReflectance;
ref<const Texture> m_specularReflectance;
ref<Shader> m_diffuseReflectanceShader;
ref<Shader> m_specularReflectanceShader;
Float m_ks, m_kd;
Float m_alphaX, m_alphaY;
};
Shader *Ward::createShader(Renderer *renderer) const {
return new WardShader(renderer, m_diffuseReflectance.get(),
m_specularReflectance.get(), m_ks, m_kd, m_alphaX, m_alphaY);
}
MTS_IMPLEMENT_CLASS(WardShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(Ward, false, BSDF);
MTS_EXPORT_PLUGIN(Ward, "Anisotropic Ward BRDF");
MTS_NAMESPACE_END