360 lines
12 KiB
C++
360 lines
12 KiB
C++
/*
|
|
This file is part of Mitsuba, a physically based rendering system.
|
|
|
|
Copyright (c) 2007-2011 by Wenzel Jakob and others.
|
|
|
|
Mitsuba is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License Version 3
|
|
as published by the Free Software Foundation.
|
|
|
|
Mitsuba is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <mitsuba/core/plugin.h>
|
|
#include <mitsuba/render/gatherproc.h>
|
|
#include <mitsuba/render/renderqueue.h>
|
|
|
|
MTS_NAMESPACE_BEGIN
|
|
|
|
/**
|
|
* Progressive photon mapping implementation. Only handles surface
|
|
* interactions. Parallelization is limited to the local cores.
|
|
*/
|
|
class ProgressivePhotonMapIntegrator : public Integrator {
|
|
public:
|
|
struct GatherPoint {
|
|
Intersection its;
|
|
Float radius;
|
|
Spectrum weight;
|
|
Spectrum flux;
|
|
Spectrum emission;
|
|
Point2 sample;
|
|
Float N;
|
|
int depth;
|
|
|
|
inline GatherPoint() : weight(0.0f), flux(0.0f), emission(0.0f), N(0.0f) {
|
|
}
|
|
};
|
|
|
|
ProgressivePhotonMapIntegrator(const Properties &props) : Integrator(props) {
|
|
/* Initial photon query radius (0 = infer based on scene size and camera resolution) */
|
|
m_initialRadius = props.getFloat("initialRadius", 0);
|
|
/* Alpha parameter from the paper (influences the speed, at which the photon radius is reduced) */
|
|
m_alpha = props.getFloat("alpha", .7);
|
|
/* Number of photons to shoot in each iteration */
|
|
m_photonCount = props.getInteger("photonCount", 100000);
|
|
/* Granularity of the work units used in parallelizing the
|
|
particle tracing task (default: 100 samples). */
|
|
m_granularity = props.getInteger("granularity", 500);
|
|
/* Longest visualized path length (<tt>-1</tt>=infinite). When a positive value is
|
|
specified, it must be greater or equal to <tt>2</tt>, which corresponds to single-bounce
|
|
(direct-only) illumination */
|
|
m_maxDepth = props.getInteger("maxDepth", 5);
|
|
/* Depth to start using russian roulette */
|
|
m_rrDepth = props.getInteger("rrDepth", 3);
|
|
/* Block size used to parallelize the photon query passes (default: 32x32 pixels). */
|
|
m_blockSize = props.getInteger("blockSize", 32);
|
|
/* Indicates if the gathering steps should be canceled if not enough photons are generated. */
|
|
m_autoCancelGathering = props.getBoolean("autoCancelGathering", true);
|
|
m_mutex = new Mutex();
|
|
#if MTS_BROKEN_OPENMP == 1
|
|
Log(EError, "Progressive photon mapping currently doesn't work "
|
|
"on OSX due to a bug in OpenMP that affects Leopard & Snow Leopard");
|
|
#endif
|
|
if (m_maxDepth <= 1 && m_maxDepth != -1)
|
|
Log(EError, "Maximum depth must either be set to \"-1\" or \"2\" or higher!");
|
|
}
|
|
|
|
ProgressivePhotonMapIntegrator(Stream *stream, InstanceManager *manager)
|
|
: Integrator(stream, manager) {
|
|
}
|
|
|
|
virtual ~ProgressivePhotonMapIntegrator() {
|
|
for (size_t i=0; i<m_blocks.size(); ++i)
|
|
m_blocks[i]->decRef();
|
|
m_blocks.clear();
|
|
}
|
|
|
|
|
|
void serialize(Stream *stream, InstanceManager *manager) const {
|
|
Integrator::serialize(stream, manager);
|
|
Log(EError, "Network rendering is not supported!");
|
|
}
|
|
|
|
void cancel() {
|
|
m_running = false;
|
|
}
|
|
|
|
bool preprocess(const Scene *scene, RenderQueue *queue, const RenderJob *job,
|
|
int sceneResID, int cameraResID, int samplerResID) {
|
|
Integrator::preprocess(scene, queue, job, sceneResID, cameraResID, samplerResID);
|
|
|
|
if (m_initialRadius == 0) {
|
|
/* Guess an initial radius if not provided
|
|
(scene width / horizontal or vertical pixel count) * 5 */
|
|
Float rad = scene->getBSphere().radius;
|
|
Vector2i filmSize = scene->getCamera()->getFilm()->getSize();
|
|
|
|
m_initialRadius = std::min(rad / filmSize.x, rad / filmSize.y) * 5;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool render(Scene *scene, RenderQueue *queue,
|
|
const RenderJob *job, int sceneResID, int cameraResID, int samplerResID) {
|
|
ref<Scheduler> sched = Scheduler::getInstance();
|
|
ref<Camera> camera = scene->getCamera();
|
|
ref<Film> film = camera->getFilm();
|
|
size_t nCores = sched->getCoreCount();
|
|
Sampler *cameraSampler = (Sampler *) sched->getResource(samplerResID, 0);
|
|
|
|
size_t sampleCount = cameraSampler->getSampleCount();
|
|
Log(EInfo, "Starting render job (%ix%i, " SIZE_T_FMT " %s, " SIZE_T_FMT
|
|
" %s, " SSE_STR ") ..", film->getCropSize().x, film->getCropSize().y,
|
|
sampleCount, sampleCount == 1 ? "sample" : "samples", nCores,
|
|
nCores == 1 ? "core" : "cores");
|
|
|
|
Vector2i cropSize = film->getCropSize();
|
|
Point2i cropOffset = film->getCropOffset();
|
|
|
|
m_gatherPoints.clear();
|
|
m_running = true;
|
|
for (size_t i=0; i<m_blocks.size(); ++i)
|
|
m_blocks[i]->decRef();
|
|
m_blocks.clear();
|
|
|
|
m_totalEmitted = 0;
|
|
bool needsLensSample = camera->needsLensSample();
|
|
bool needsTimeSample = camera->needsTimeSample();
|
|
Log(EInfo, "Creating approximately %i gather points", cropSize.x*cropSize.y*sampleCount);
|
|
Point2 lensSample, sample;
|
|
RayDifferential eyeRay;
|
|
Float timeSample = 0;
|
|
m_filter = camera->getFilm()->getTabulatedFilter();
|
|
Vector2 filterSize = m_filter->getFilterSize();
|
|
int borderSize = (int) std::ceil(std::max(filterSize.x, filterSize.y));
|
|
|
|
ref<Sampler> independentSampler = static_cast<Sampler *> (PluginManager::getInstance()->
|
|
createObject(MTS_CLASS(Sampler), Properties("independent")));
|
|
|
|
/* Create a sampler instance for every core */
|
|
std::vector<SerializableObject *> samplers(sched->getCoreCount());
|
|
for (size_t i=0; i<sched->getCoreCount(); ++i) {
|
|
ref<Sampler> clonedSampler = independentSampler->clone();
|
|
clonedSampler->incRef();
|
|
samplers[i] = clonedSampler.get();
|
|
}
|
|
|
|
int independentSamplerResID = sched->registerManifoldResource(samplers);
|
|
for (size_t i=0; i<sched->getCoreCount(); ++i)
|
|
samplers[i]->decRef();
|
|
|
|
#ifdef MTS_DEBUG_FP
|
|
enableFPExceptions();
|
|
#endif
|
|
|
|
/* Create gather points in blocks so that gathering can be parallelized later on */
|
|
for (int yofs=0; yofs<cropSize.y; yofs += m_blockSize) {
|
|
for (int xofs=0; xofs<cropSize.x; xofs += m_blockSize) {
|
|
ImageBlock *block = new ImageBlock(Vector2i(m_blockSize, m_blockSize), borderSize,
|
|
true, true, false, false);
|
|
block->setSize(Vector2i(m_blockSize, m_blockSize));
|
|
block->setOffset(Point2i(cropOffset.x + xofs, cropOffset.y + yofs));
|
|
block->incRef();
|
|
std::vector<GatherPoint> gatherPoints;
|
|
gatherPoints.reserve(m_blockSize*m_blockSize*sampleCount);
|
|
for (int yofsInt = 0; yofsInt < m_blockSize; ++yofsInt) {
|
|
if (yofsInt + yofs >= cropSize.y)
|
|
continue;
|
|
for (int xofsInt = 0; xofsInt < m_blockSize; ++xofsInt) {
|
|
if (xofsInt + xofs >= cropSize.x)
|
|
continue;
|
|
int y = cropOffset.y + yofs + yofsInt;
|
|
int x = cropOffset.x + xofs + xofsInt;
|
|
cameraSampler->generate();
|
|
for (size_t j = 0; j<sampleCount; j++) {
|
|
if (needsLensSample)
|
|
lensSample = cameraSampler->next2D();
|
|
if (needsTimeSample)
|
|
timeSample = cameraSampler->next1D();
|
|
sample = cameraSampler->next2D();
|
|
sample.x += x; sample.y += y;
|
|
camera->generateRayDifferential(sample,
|
|
lensSample, timeSample, eyeRay);
|
|
size_t offset = gatherPoints.size();
|
|
Float count = (Float) createGatherPoints(scene, eyeRay, sample,
|
|
cameraSampler, Spectrum(1.0f),
|
|
gatherPoints, 1);
|
|
if (count > 1) { // necessary because of filter weight computation
|
|
for (int i = 0; i<count; ++i)
|
|
gatherPoints[offset+i].weight *= count;
|
|
}
|
|
|
|
cameraSampler->advance();
|
|
}
|
|
}
|
|
}
|
|
m_blocks.push_back(block);
|
|
m_gatherPoints.push_back(gatherPoints);
|
|
}
|
|
}
|
|
|
|
int it=0;
|
|
while (m_running)
|
|
photonMapPass(++it, queue, job, film, sceneResID, cameraResID, independentSamplerResID);
|
|
|
|
#ifdef MTS_DEBUG_FP
|
|
disableFPExceptions();
|
|
#endif
|
|
|
|
sched->unregisterResource(independentSamplerResID);
|
|
return true;
|
|
}
|
|
|
|
int createGatherPoints(Scene *scene, const RayDifferential &ray,
|
|
const Point2 &sample, Sampler *sampler, const Spectrum &weight,
|
|
std::vector<GatherPoint> &gatherPoints, int depth) {
|
|
int count = 0;
|
|
if (depth >= m_maxDepth && m_maxDepth != -1)
|
|
return 0;
|
|
GatherPoint p;
|
|
if (scene->rayIntersect(ray, p.its)) {
|
|
const BSDF *bsdf = p.its.shape->getBSDF();
|
|
if (bsdf->getType() & BSDF::ESmooth) {
|
|
p.weight = weight;
|
|
p.sample = sample;
|
|
p.radius = m_initialRadius;
|
|
p.depth = depth;
|
|
if (p.its.isLuminaire())
|
|
p.emission = p.its.Le(-ray.d);
|
|
gatherPoints.push_back(p);
|
|
++count;
|
|
}
|
|
|
|
if (bsdf->getType() & BSDF::EDelta) {
|
|
int compCount = bsdf->getComponentCount();
|
|
for (int i=0; i<compCount; i++) {
|
|
if ((bsdf->getType(i) & BSDF::EDelta) == 0)
|
|
continue;
|
|
/* Sample the BSDF and recurse */
|
|
BSDFQueryRecord bRec(p.its, sampler);
|
|
bRec.component = i;
|
|
Spectrum bsdfVal = bsdf->sample(bRec, Point2(0.0f));
|
|
if (bsdfVal.isZero())
|
|
continue;
|
|
bsdfVal = bsdf->eval(bRec, EDiscrete);
|
|
|
|
const Float rrProb = depth < 4 ? 1 : 0.8f;
|
|
if (sampler->independent1D() < rrProb) {
|
|
RayDifferential recursiveRay(p.its.p, p.its.toWorld(bRec.wo), ray.time);
|
|
count += createGatherPoints(scene, recursiveRay, sample, sampler,
|
|
weight * bsdfVal / rrProb, gatherPoints, depth+1);
|
|
}
|
|
}
|
|
}
|
|
} else if (depth == 1) {
|
|
/* Generate an invalid sample */
|
|
p.radius = 0;
|
|
p.sample = sample;
|
|
gatherPoints.push_back(p);
|
|
++count;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
void photonMapPass(int it, RenderQueue *queue, const RenderJob *job,
|
|
Film *film, int sceneResID, int cameraResID, int samplerResID) {
|
|
Log(EInfo, "Performing a photon mapping pass %i", it);
|
|
ref<Scheduler> sched = Scheduler::getInstance();
|
|
|
|
/* Generate the global photon map */
|
|
ref<GatherPhotonProcess> proc = new GatherPhotonProcess(
|
|
GatherPhotonProcess::EAllSurfacePhotons, m_photonCount,
|
|
m_granularity, m_maxDepth == -1 ? -1 : (m_maxDepth-1), m_rrDepth, true,
|
|
m_autoCancelGathering, job);
|
|
|
|
proc->bindResource("scene", sceneResID);
|
|
proc->bindResource("camera", cameraResID);
|
|
proc->bindResource("sampler", samplerResID);
|
|
|
|
sched->schedule(proc);
|
|
sched->wait(proc);
|
|
|
|
ref<PhotonMap> photonMap = proc->getPhotonMap();
|
|
photonMap->balance();
|
|
Log(EDebug, "Photon map full. Shot " SIZE_T_FMT " particles, excess photons due to parallelism: "
|
|
SIZE_T_FMT, proc->getShotParticles(), proc->getExcessPhotons());
|
|
|
|
Log(EInfo, "Gathering ..");
|
|
m_totalEmitted += proc->getShotParticles();
|
|
film->clear();
|
|
#pragma omp parallel for schedule(dynamic)
|
|
for (int blockIdx = 0; blockIdx<(int) m_blocks.size(); ++blockIdx) {
|
|
ImageBlock *block = m_blocks[blockIdx];
|
|
block->clear();
|
|
std::vector<GatherPoint> &gatherPoints = m_gatherPoints[blockIdx];
|
|
Spectrum flux, contrib;
|
|
|
|
for (size_t i=0; i<gatherPoints.size(); ++i) {
|
|
GatherPoint &g = gatherPoints[i];
|
|
|
|
if (g.radius == 0) {
|
|
/* Generate a black sample -- necessary for proper sample weight
|
|
computation at edges */
|
|
block->putSample(g.sample, Spectrum(0.0f), 1, m_filter);
|
|
continue;
|
|
}
|
|
|
|
Float M = (Float) photonMap->estimateRadianceRaw(
|
|
g.its, g.radius, flux, m_maxDepth == -1 ? INT_MAX : (m_maxDepth-g.depth));
|
|
Float N = g.N;
|
|
|
|
if (N+M == 0) {
|
|
g.flux = contrib = Spectrum(0.0f);
|
|
} else {
|
|
Float ratio = (N + m_alpha * M) / (N + M);
|
|
g.flux = (g.flux + flux) * ratio;
|
|
g.radius = g.radius * std::sqrt(ratio);
|
|
g.N = N + m_alpha * M;
|
|
}
|
|
contrib = g.flux / ((Float) m_totalEmitted * g.radius*g.radius * M_PI)
|
|
+ g.emission;
|
|
block->putSample(g.sample, contrib * g.weight, 1, m_filter, false);
|
|
}
|
|
m_mutex->lock();
|
|
film->putImageBlock(block);
|
|
m_mutex->unlock();
|
|
}
|
|
queue->signalRefresh(job, NULL);
|
|
}
|
|
|
|
|
|
std::string toString() const {
|
|
return "ProgressivePhotonMapIntegrator[]";
|
|
}
|
|
|
|
MTS_DECLARE_CLASS()
|
|
private:
|
|
const TabulatedFilter *m_filter;
|
|
std::vector<ImageBlock *> m_blocks;
|
|
std::vector<std::vector<GatherPoint> > m_gatherPoints;
|
|
ref<Mutex> m_mutex;
|
|
Float m_initialRadius, m_alpha;
|
|
int m_photonCount, m_granularity;
|
|
int m_maxDepth, m_rrDepth;
|
|
size_t m_totalEmitted;
|
|
int m_blockSize;
|
|
bool m_running;
|
|
bool m_autoCancelGathering;
|
|
};
|
|
|
|
MTS_IMPLEMENT_CLASS_S(ProgressivePhotonMapIntegrator, false, Integrator)
|
|
MTS_EXPORT_PLUGIN(ProgressivePhotonMapIntegrator, "Progressive photon mapper");
|
|
MTS_NAMESPACE_END
|