mitsuba/src/bsdfs/bumpmap.cpp

332 lines
12 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2012 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/scene.h>
#include <mitsuba/hw/basicshader.h>
MTS_NAMESPACE_BEGIN
/*! \plugin{bumpmap}{Bump map modifier}
* \order{12}
* \icon{bsdf_bumpmap}
*
* \parameters{
* \parameter{\Unnamed}{\Texture}{
* The luminance of this texture specifies the amount of
* displacement. The implementation ignores any constant
* offset---only changes in the luminance matter.
* }
* \parameter{\Unnamed}{\BSDF}{A BSDF model that should
* be affected by the bump map}
* }
* \renderings{
* \rendering{Bump map based on tileable diagonal lines}{bsdf_bumpmap_1}
* \rendering{An irregular bump map}{bsdf_bumpmap_2}
* }
*
* Bump mapping \cite{Blinn1978Simulation} is a simple technique for cheaply
* adding surface detail to a rendering. This is done by perturbing the
* shading coordinate frame based on a displacement height field provided
* as a texture. This method can lend objects a highly realistic and detailed
* appearance (e.g. wrinkled or covered by scratches and other imperfections)
* without requiring any changes to the input geometry.
*
* The implementation in Mitsuba uses the common approach of ignoring
* the usually negligible texture-space derivative of the base mesh
* surface normal. As side effect of this decision, it is invariant
* to constant offsets in the height field texture---only variations in
* its luminance cause changes to the shading frame.
*
* Note that the magnitude of the height field variations influences
* the strength of the displacement. If desired, the \pluginref{scale}
* texture plugin can be used to magnify or reduce the effect of a
* bump map texture.
* \begin{xml}[caption=A rough metal model with a scaled image-based bump map]
* <bsdf type="bumpmap">
* <!-- The bump map is applied to a rough metal BRDF -->
* <bsdf type="roughconductor"/>
*
* <texture type="scale">
* <!-- The scale of the displacement gets multiplied by 10x -->
* <float name="scale" value="10"/>
*
* <texture type="bitmap">
* <string name="filename" value="bumpmap.png"/>
* </texture>
* </texture>
* </bsdf>
* \end{xml}
*/
class BumpMap : public BSDF {
public:
BumpMap(const Properties &props) : BSDF(props) { }
BumpMap(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_nested = static_cast<BSDF *>(manager->getInstance(stream));
m_displacement = static_cast<Texture *>(manager->getInstance(stream));
configure();
}
void configure() {
if (!m_nested)
Log(EError, "A child BSDF instance is required");
if (!m_displacement)
Log(EError, "A displacement texture must be specified");
m_components.clear();
for (int i=0; i<m_nested->getComponentCount(); ++i)
m_components.push_back(m_nested->getType(i) | ESpatiallyVarying | EAnisotropic);
m_usesRayDifferentials = true;
BSDF::configure();
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
manager->serialize(stream, m_nested.get());
manager->serialize(stream, m_displacement.get());
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(BSDF))) {
if (m_nested != NULL)
Log(EError, "Only a single nested BSDF can be added!");
m_nested = static_cast<BSDF *>(child);
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
if (m_displacement != NULL)
Log(EError, "Only a single displacement texture can be specified!");
const Properties &props = child->getProperties();
if (props.getPluginName() == "bitmap" && !props.hasProperty("gamma"))
Log(EError, "When using a bitmap texture as a bump map, please explicitly specify "
"the 'gamma' parameter of the bitmap plugin. In most cases the following is the correct choice: "
"<float name=\"gamma\" value=\"1.0\"/>");
m_displacement = static_cast<Texture *>(child);
} else {
BSDF::addChild(name, child);
}
}
Frame getFrame(const Intersection &its) const {
Spectrum grad[2];
m_displacement->evalGradient(its, grad);
Float dDispDu = grad[0].getLuminance();
Float dDispDv = grad[1].getLuminance();
/* Build a perturbed frame -- ignores the usually
negligible normal derivative term */
Vector dpdu = its.dpdu + its.shFrame.n * (
dDispDu - dot(its.shFrame.n, its.dpdu));
Vector dpdv = its.dpdv + its.shFrame.n * (
dDispDv - dot(its.shFrame.n, its.dpdv));
Frame result;
result.n = normalize(cross(dpdu, dpdv));
result.s = normalize(dpdu - result.n
* dot(result.n, dpdu));
result.t = cross(result.n, result.s);
if (dot(result.n, its.geoFrame.n) < 0)
result.n *= -1;
return result;
}
Spectrum eval(const BSDFSamplingRecord &bRec, EMeasure measure) const {
const Intersection& its = bRec.its;
Intersection perturbed(its);
perturbed.shFrame = getFrame(its);
BSDFSamplingRecord perturbedQuery(perturbed,
perturbed.toLocal(its.toWorld(bRec.wi)),
perturbed.toLocal(its.toWorld(bRec.wo)), bRec.mode);
if (Frame::cosTheta(bRec.wo) * Frame::cosTheta(perturbedQuery.wo) <= 0)
return Spectrum(0.0f);
perturbedQuery.sampler = bRec.sampler;
perturbedQuery.typeMask = bRec.typeMask;
perturbedQuery.component = bRec.component;
return m_nested->eval(perturbedQuery, measure);
}
Float pdf(const BSDFSamplingRecord &bRec, EMeasure measure) const {
const Intersection& its = bRec.its;
Intersection perturbed(its);
perturbed.shFrame = getFrame(its);
BSDFSamplingRecord perturbedQuery(perturbed,
perturbed.toLocal(its.toWorld(bRec.wi)),
perturbed.toLocal(its.toWorld(bRec.wo)), bRec.mode);
if (Frame::cosTheta(bRec.wo) * Frame::cosTheta(perturbedQuery.wo) <= 0)
return 0;
perturbedQuery.mode = bRec.mode;
perturbedQuery.sampler = bRec.sampler;
perturbedQuery.typeMask = bRec.typeMask;
perturbedQuery.component = bRec.component;
return m_nested->pdf(perturbedQuery, measure);
}
Spectrum sample(BSDFSamplingRecord &bRec, const Point2 &sample) const {
const Intersection& its = bRec.its;
Intersection perturbed(its);
perturbed.shFrame = getFrame(its);
BSDFSamplingRecord perturbedQuery(perturbed, bRec.sampler, bRec.mode);
perturbedQuery.wi = perturbed.toLocal(its.toWorld(bRec.wi));
perturbedQuery.sampler = bRec.sampler;
perturbedQuery.typeMask = bRec.typeMask;
perturbedQuery.component = bRec.component;
Spectrum result = m_nested->sample(perturbedQuery, sample);
if (!result.isZero()) {
bRec.sampledComponent = perturbedQuery.sampledComponent;
bRec.sampledType = perturbedQuery.sampledType;
bRec.wo = its.toLocal(perturbed.toWorld(perturbedQuery.wo));
bRec.eta = perturbedQuery.eta;
if (Frame::cosTheta(bRec.wo) * Frame::cosTheta(perturbedQuery.wo) <= 0)
return Spectrum(0.0f);
}
return result;
}
Spectrum sample(BSDFSamplingRecord &bRec, Float &pdf, const Point2 &sample) const {
const Intersection& its = bRec.its;
Intersection perturbed(its);
perturbed.shFrame = getFrame(its);
BSDFSamplingRecord perturbedQuery(perturbed, bRec.sampler, bRec.mode);
perturbedQuery.wi = perturbed.toLocal(its.toWorld(bRec.wi));
perturbedQuery.typeMask = bRec.typeMask;
perturbedQuery.component = bRec.component;
Spectrum result = m_nested->sample(perturbedQuery, pdf, sample);
if (!result.isZero()) {
bRec.sampledComponent = perturbedQuery.sampledComponent;
bRec.sampledType = perturbedQuery.sampledType;
bRec.wo = its.toLocal(perturbed.toWorld(perturbedQuery.wo));
bRec.eta = perturbedQuery.eta;
if (Frame::cosTheta(bRec.wo) * Frame::cosTheta(perturbedQuery.wo) <= 0)
return Spectrum(0.0f);
}
return result;
}
Float getRoughness(const Intersection &its, int component) const {
return m_nested->getRoughness(its, component);
}
std::string toString() const {
std::ostringstream oss;
oss << "BumpMap[" << endl
<< " id = \"" << getID() << "\"," << endl
<< " displacement = " << indent(m_displacement->toString()) << endl
<< " nested = " << indent(m_nested->toString()) << endl
<< "]";
return oss.str();
}
Shader *createShader(Renderer *renderer) const;
MTS_DECLARE_CLASS()
protected:
ref<Texture> m_displacement;
ref<BSDF> m_nested;
};
// ================ Hardware shader implementation ================
/**
* This is a quite approximate version of the bump map model -- it likely
* won't match the reference exactly, but it should be good enough for
* preview purposes
*/
class BumpMapShader : public Shader {
public:
BumpMapShader(Renderer *renderer, const BSDF *nested, const Texture *displacement)
: Shader(renderer, EBSDFShader), m_nested(nested), m_displacement(displacement) {
m_nestedShader = renderer->registerShaderForResource(m_nested.get());
m_displacementShader = renderer->registerShaderForResource(m_displacement.get());
}
bool isComplete() const {
return m_nestedShader.get() != NULL;
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_nested.get());
renderer->unregisterShaderForResource(m_displacement.get());
}
void putDependencies(std::vector<Shader *> &deps) {
deps.push_back(m_nestedShader.get());
deps.push_back(m_displacementShader.get());
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " float eps = 1e-4;" << endl
<< " float displacement = " << depNames[1] << "(uv)[0];" << endl
<< " float displacementU = " << depNames[1] << "(uv + vec2(eps, 0.0))[0];" << endl
<< " float displacementV = " << depNames[1] << "(uv + vec2(0.0, eps))[0];" << endl
<< " float dfdu = (displacementU - displacement)*(0.5/eps);" << endl
<< " float dfdv = (displacementV - displacement)*(0.5/eps);" << endl
<< " vec3 n = normalize(vec3(-dfdu, -dfdv, 1.0));" << endl
<< " vec3 s = normalize(vec3(1.0-n.x*n.x, -n.x*n.y, -n.x*n.z)); " << endl
<< " vec3 t = cross(s, n);" << endl
<< " wi = vec3(dot(wi, s), dot(wi, t), dot(wi, n));" << endl
<< " wo = vec3(dot(wo, s), dot(wo, t), dot(wo, n));" << endl
<< " return " << depNames[0] << "(uv, wi, wo);" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " float eps = 1e-4;" << endl
<< " float displacement = " << depNames[1] << "(uv)[0];" << endl
<< " float displacementU = " << depNames[1] << "(uv + vec2(eps, 0.0))[0];" << endl
<< " float displacementV = " << depNames[1] << "(uv + vec2(0.0, eps))[0];" << endl
<< " float dfdu = (displacementU - displacement)*(0.5/eps);" << endl
<< " float dfdv = (displacementV - displacement)*(0.5/eps);" << endl
<< " vec3 n = normalize(vec3(-dfdu, -dfdv, 1.0));" << endl
<< " vec3 s = normalize(vec3(1.0-n.x*n.x, -n.x*n.y, -n.x*n.z)); " << endl
<< " vec3 t = cross(s, n);" << endl
<< " wi = vec3(dot(wi, s), dot(wi, t), dot(wi, n));" << endl
<< " wo = vec3(dot(wo, s), dot(wo, t), dot(wo, n));" << endl
<< " return " << depNames[0] << "_diffuse(uv, wi, wo);" << endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
private:
ref<const BSDF> m_nested;
ref<const Texture> m_displacement;
ref<Shader> m_nestedShader;
ref<Shader> m_displacementShader;
};
Shader *BumpMap::createShader(Renderer *renderer) const {
return new BumpMapShader(renderer, m_nested.get(), m_displacement.get());
}
MTS_IMPLEMENT_CLASS(BumpMapShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(BumpMap, false, BSDF)
MTS_EXPORT_PLUGIN(BumpMap, "Bump map modifier");
MTS_NAMESPACE_END