mitsuba/include/mitsuba/core/point.h

598 lines
16 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2010 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#if !defined(__POINT_H)
#define __POINT_H
#include <mitsuba/core/vector.h>
MTS_NAMESPACE_BEGIN
/**
* \headerfile mitsuba/core/point.h mitsuba/mitsuba.h
* \brief Parameterizable two-dimensional point data structure
*/
template <typename T> struct TPoint2 {
T x, y;
/** \brief Construct a new point without initializing it.
*
* This construtor is useful when the point will either not
* be used at all (it might be part of a larger data structure)
* or initialized at a later point in time. Always make sure
* that one of the two is the case! Otherwise your program will do
* computations involving uninitialized memory, which will probably
* lead to a difficult-to-find bug.
*/
#if !defined(MTS_DEBUG_UNINITIALIZED)
TPoint2() { }
#else
TPoint2() { x = y = std::numeric_limits<double>::quiet_NaN(); }
#endif
/// Initialize the point with the specified X, Y and Z components
TPoint2(T x, T y) : x(x), y(y) { }
/// Initialize the point with the components of another point
template <typename T2> explicit TPoint2(const TPoint2<T2> &p)
: x((T) p.x), y((T) p.y) { }
/// Initialize the point with the components of a vector data structure
template <typename T2> explicit TPoint2(const TVector2<T2> &v)
: x((T) v.x), y((T) v.y) { }
/// Initialize all components of the the point with the specified value
explicit TPoint2(T val) : x(val), y(val) { }
/// Unserialize a point from a binary data stream
TPoint2(Stream *stream) {
x = stream->readElement<T>();
y = stream->readElement<T>();
}
/// Add a vector to a point and return the result
TPoint2 operator+(const TVector2<T> &v) const {
return TPoint2(x + v.x, y + v.y);
}
/// Add two points and return the result (e.g. to compute a weighted position)
TPoint2 operator+(const TPoint2 &p) const {
return TPoint2(x + p.x, y + p.y);
}
/// Add a vector to this one (e.g. to compute a weighted position)
TPoint2& operator+=(const TVector2<T> &v) {
x += v.x; y += v.y;
return *this;
}
/// Add a point to this one (e.g. to compute a weighted position)
TPoint2& operator+=(const TPoint2 &p) {
x += p.x; y += p.y;
return *this;
}
/// Subtract a vector from this point
TPoint2 operator-(const TVector2<T> &v) const {
return TPoint2(x - v.x, y - v.y);
}
/// Subtract two points from each other and return the difference as a vector
TVector2<T> operator-(const TPoint2 &p) const {
return TVector2<T>(x - p.x, y - p.y);
}
/// Subtract a vector from this point
TPoint2& operator-=(const TVector2<T> &v) {
x -= v.x; y -= v.y;
return *this;
}
/// Scale the point's coordinates by the given scalar and return the result
TPoint2 operator*(T f) const {
return TPoint2(x * f, y * f);
}
/// Scale the point's coordinates by the given scalar
TPoint2 &operator*=(T f) {
x *= f; y *= f;
return *this;
}
/// Return a version of the point, which has been flipped along the origin
TPoint2 operator-() const {
return TPoint2(-x, -y);
}
/// Divide the point's coordinates by the given scalar and return the result
TPoint2 operator/(T f) const {
#ifdef MTS_DEBUG
if (f == 0)
SLog(EWarn, "Point2: Division by zero!");
#endif
T recip = (T) 1 / f;
return TPoint2(x * recip, y * recip);
}
/// Divide the point's coordinates by the given scalar
TPoint2 &operator/=(T f) {
#ifdef MTS_DEBUG
if (f == 0)
SLog(EWarn, "Point2: Division by zero!");
#endif
T recip = (T) 1 / f;
x *= recip; y *= recip;
return *this;
}
/// Index into the point's components
T &operator[](int i) {
return (&x)[i];
}
/// Index into the point's components (const version)
T operator[](int i) const {
return (&x)[i];
}
/// Return whether or not this point is identically zero
bool isZero() const {
return x == 0 && y == 0;
}
/// Equality test
bool operator==(const TPoint2 &v) const {
return (v.x == x && v.y == y);
}
/// Inequality test
bool operator!=(const TPoint2 &v) const {
return v.x != x || v.y != y;
}
/// Serialize this point to a binary data stream
void serialize(Stream *stream) const {
stream->writeElement<T>(x);
stream->writeElement<T>(y);
}
/// Return a readable string representation of this point
std::string toString() const {
std::ostringstream oss;
oss << "[" << x << ", " << y << "]";
return oss.str();
}
};
template <typename T> inline TPoint2<T> operator*(T f, const TPoint2<T> &v) {
return v*f;
}
template <typename T> inline T distance(const TPoint2<T> &p1, const TPoint2<T> &p2) {
return (p1-p2).length();
}
template <typename T> inline T distanceSquared(const TPoint2<T> &p1, const TPoint2<T> &p2) {
return (p1-p2).lengthSquared();
}
template <> inline TPoint2<int> TPoint2<int>::operator/(int s) const {
#ifdef MTS_DEBUG
if (s == 0)
SLog(EWarn, "Point2i: Division by zero!");
#endif
return TPoint2(x/s, y/s);
}
template <> inline TPoint2<int> &TPoint2<int>::operator/=(int s) {
#ifdef MTS_DEBUG
if (s == 0)
SLog(EWarn, "Point2i: Division by zero!");
#endif
x /= s;
y /= s;
return *this;
}
/**
* \headerfile mitsuba/core/point.h mitsuba/mitsuba.h
* \brief Parameterizable three-dimensional point data structure
*/
template <typename T> struct TPoint3 {
T x, y, z;
/** \brief Construct a new point without initializing it.
*
* This construtor is useful when the point will either not
* be used at all (it might be part of a larger data structure)
* or initialized at a later point in time. Always make sure
* that one of the two is the case! Otherwise your program will do
* computations involving uninitialized memory, which will probably
* lead to a difficult-to-find bug.
*/
#if !defined(MTS_DEBUG_UNINITIALIZED)
TPoint3() { }
#else
TPoint3() { x = y = z = std::numeric_limits<double>::quiet_NaN(); }
#endif
/// Initialize the point with the specified X, Y and Z components
TPoint3(T x, T y, T z) : x(x), y(y), z(z) { }
/// Initialize the point with the components of another point
template <typename T2> explicit TPoint3(const TPoint3<T2> &p)
: x((T) p.x), y((T) p.y), z((T) p.z) { }
/// Initialize the point with the components of a vector data structure
template <typename T2> explicit TPoint3(const TVector3<T2> &v)
: x((T) v.x), y((T) v.y), z((T) v.z) { }
/// Initialize all components of the the point with the specified value
explicit TPoint3(T val) : x(val), y(val), z(val) { }
/// Unserialize a point from a binary data stream
TPoint3(Stream *stream) {
x = stream->readElement<T>();
y = stream->readElement<T>();
z = stream->readElement<T>();
}
/// Add a vector to a point and return the result
TPoint3 operator+(const TVector3<T> &v) const {
return TPoint3(x + v.x, y + v.y, z + v.z);
}
/// Add two points and return the result (e.g. to compute a weighted position)
TPoint3 operator+(const TPoint3 &p) const {
return TPoint3(x + p.x, y + p.y, z + p.z);
}
/// Add a vector to this one (e.g. to compute a weighted position)
TPoint3& operator+=(const TVector3<T> &v) {
x += v.x; y += v.y; z += v.z;
return *this;
}
/// Add a point to this one (e.g. to compute a weighted position)
TPoint3& operator+=(const TPoint3 &p) {
x += p.x; y += p.y; z += p.z;
return *this;
}
/// Subtract a vector from this point
TPoint3 operator-(const TVector3<T> &v) const {
return TPoint3(x - v.x, y - v.y, z - v.z);
}
/// Subtract two points from each other and return the difference as a vector
TVector3<T> operator-(const TPoint3 &p) const {
return TVector3<T>(x - p.x, y - p.y, z - p.z);
}
/// Subtract a vector from this point
TPoint3& operator-=(const TVector3<T> &v) {
x -= v.x; y -= v.y; z -= v.z;
return *this;
}
/// Scale the point's coordinates by the given scalar and return the result
TPoint3 operator*(T f) const {
return TPoint3(x * f, y * f, z * f);
}
/// Scale the point's coordinates by the given scalar
TPoint3 &operator*=(T f) {
x *= f; y *= f; z *= f;
return *this;
}
/// Return a version of the point, which has been flipped along the origin
TPoint3 operator-() const {
return TPoint3(-x, -y, -z);
}
/// Divide the point's coordinates by the given scalar and return the result
TPoint3 operator/(T f) const {
#ifdef MTS_DEBUG
if (f == 0)
SLog(EWarn, "Point3: Division by zero!");
#endif
T recip = (T) 1 / f;
return TPoint3(x * recip, y * recip, z * recip);
}
/// Divide the point's coordinates by the given scalar
TPoint3 &operator/=(T f) {
#ifdef MTS_DEBUG
if (f == 0)
SLog(EWarn, "Point3: Division by zero!");
#endif
T recip = (T) 1 / f;
x *= recip; y *= recip; z *= recip;
return *this;
}
/// Index into the point's components
T &operator[](int i) {
return (&x)[i];
}
/// Index into the point's components (const version)
T operator[](int i) const {
return (&x)[i];
}
/// Return whether or not this point is identically zero
bool isZero() const {
return x == 0 && y == 0 && z == 0;
}
/// Equality test
bool operator==(const TPoint3 &v) const {
return (v.x == x && v.y == y && v.z == z);
}
/// Inequality test
bool operator!=(const TPoint3 &v) const {
return v.x != x || v.y != y || v.z != z;
}
/// Serialize this point to a binary data stream
void serialize(Stream *stream) const {
stream->writeElement<T>(x);
stream->writeElement<T>(y);
stream->writeElement<T>(z);
}
/// Return a readable string representation of this point
std::string toString() const {
std::ostringstream oss;
oss << "[" << x << ", " << y << ", " << z << "]";
return oss.str();
}
};
template <typename T> inline TPoint3<T> operator*(T f, const TPoint3<T> &v) {
return v*f;
}
template <typename T> inline T distance(const TPoint3<T> &p1, const TPoint3<T> &p2) {
return (p1-p2).length();
}
template <typename T> inline T distanceSquared(const TPoint3<T> &p1, const TPoint3<T> &p2) {
return (p1-p2).lengthSquared();
}
template <> inline TPoint3<int> TPoint3<int>::operator/(int s) const {
#ifdef MTS_DEBUG
if (s == 0)
SLog(EWarn, "Point3i: Division by zero!");
#endif
return TPoint3(x/s, y/s, z/s);
}
template <> inline TPoint3<int> &TPoint3<int>::operator/=(int s) {
#ifdef MTS_DEBUG
if (s == 0)
SLog(EWarn, "Point3i: Division by zero!");
#endif
x /= s;
y /= s;
z /= s;
return *this;
}
/**
* \headerfile mitsuba/core/point.h mitsuba/mitsuba.h
* \brief Parameterizable four-dimensional point data structure
*/
template <typename T> struct TPoint4 {
T x, y, z, w;
/** \brief Construct a new point without initializing it.
*
* This construtor is useful when the point will either not
* be used at all (it might be part of a larger data structure)
* or initialized at a later point in time. Always make sure
* that one of the two is the case! Otherwise your program will do
* computations involving uninitialized memory, which will probably
* lead to a difficult-to-find bug.
*/
#if !defined(MTS_DEBUG_UNINITIALIZED)
TPoint4() { }
#else
TPoint4() { x = y = z = w = std::numeric_limits<double>::quiet_NaN(); }
#endif
/// Initialize the point with the specified X, Y and Z components
TPoint4(T x, T y, T z, T w) : x(x), y(y), z(z), w(w) { }
/// Initialize the point with the components of another point
template <typename T2> explicit TPoint4(const TPoint4<T2> &p)
: x((T) p.x), y((T) p.y), z((T) p.z), w((T) p.w) { }
/// Initialize the point with the components of a vector data structure
template <typename T2> explicit TPoint4(const TVector4<T2> &v)
: x((T) v.x), y((T) v.y), z((T) v.z), w((T) v.w) { }
/// Initialize all components of the the point with the specified value
explicit TPoint4(T val) : x(val), y(val), z(val), w(val) { }
/// Unserialize a point from a binary data stream
TPoint4(Stream *stream) {
x = stream->readElement<T>();
y = stream->readElement<T>();
z = stream->readElement<T>();
w = stream->readElement<T>();
}
/// Add a vector to a point and return the result
TPoint4 operator+(const TVector4<T> &v) const {
return TPoint4(x + v.x, y + v.y, z + v.z, w + v.w);
}
/// Add two points and return the result (e.g. to compute a weighted position)
TPoint4 operator+(const TPoint4 &p) const {
return TPoint4(x + p.x, y + p.y, z + p.z, w + p.w);
}
/// Add a vector to this one (e.g. to compute a weighted position)
TPoint4& operator+=(const TVector4<T> &v) {
x += v.x; y += v.y; z += v.z; w += v.w;
return *this;
}
/// Add a point to this one (e.g. to compute a weighted position)
TPoint4& operator+=(const TPoint4 &p) {
x += p.x; y += p.y; z += p.z; w += p.w;
return *this;
}
/// Subtract a vector from this point
TPoint4 operator-(const TVector4<T> &v) const {
return TPoint4(x - v.x, y - v.y, z - v.z, w - v.w);
}
/// Subtract two points from each other and return the difference as a vector
TVector4<T> operator-(const TPoint4 &p) const {
return TVector4<T>(x - p.x, y - p.y, z - p.z, w - p.w);
}
/// Subtract a vector from this point
TPoint4& operator-=(const TVector4<T> &v) {
x -= v.x; y -= v.y; z -= v.z; w -= v.w;
return *this;
}
/// Scale the point's coordinates by the given scalar and return the result
TPoint4 operator*(T f) const {
return TPoint4(x * f, y * f, z * f, w * f);
}
/// Scale the point's coordinates by the given scalar
TPoint4 &operator*=(T f) {
x *= f; y *= f; z *= f; w *= f;
return *this;
}
/// Return a version of the point, which has been flipped along the origin
TPoint4 operator-() const {
return TPoint4(-x, -y, -z, -w);
}
/// Divide the point's coordinates by the given scalar and return the result
TPoint4 operator/(T f) const {
#ifdef MTS_DEBUG
if (f == 0)
SLog(EWarn, "Point4: Division by zero!");
#endif
T recip = (T) 1 / f;
return TPoint4(x * recip, y * recip, z * recip, w * recip);
}
/// Divide the point's coordinates by the given scalar
TPoint4 &operator/=(T f) {
#ifdef MTS_DEBUG
if (f == 0)
SLog(EWarn, "Point4: Division by zero!");
#endif
T recip = (T) 1 / f;
x *= recip; y *= recip; z *= recip; w *= recip;
return *this;
}
/// Index into the point's components
T &operator[](int i) {
return (&x)[i];
}
/// Index into the point's components (const version)
T operator[](int i) const {
return (&x)[i];
}
/// Return whether or not this point is identically zero
bool isZero() const {
return x == 0 && y == 0 && z == 0 && w == 0;
}
/// Equality test
bool operator==(const TPoint4 &v) const {
return (v.x == x && v.y == y && v.z == z && v.w == w);
}
/// Inequality test
bool operator!=(const TPoint4 &v) const {
return v.x != x || v.y != y || v.z != z || v.w != w;
}
/// Serialize this point to a binary data stream
void serialize(Stream *stream) const {
stream->writeElement<T>(x);
stream->writeElement<T>(y);
stream->writeElement<T>(z);
stream->writeElement<T>(w);
}
/// Return a readable string representation of this point
std::string toString() const {
std::ostringstream oss;
oss << "[" << x << ", " << y << ", " << z << ", " << w << "]";
return oss.str();
}
};
template <typename T> inline TPoint4<T> operator*(T f, const TPoint4<T> &v) {
return v*f;
}
template <typename T> inline T distance(const TPoint4<T> &p1, const TPoint4<T> &p2) {
return (p1-p2).length();
}
template <typename T> inline T distanceSquared(const TPoint4<T> &p1, const TPoint4<T> &p2) {
return (p1-p2).lengthSquared();
}
template <> inline TPoint4<int> TPoint4<int>::operator/(int s) const {
#ifdef MTS_DEBUG
if (s == 0)
SLog(EWarn, "Point4i: Division by zero!");
#endif
return TPoint4(x/s, y/s, z/s, w/s);
}
template <> inline TPoint4<int> &TPoint4<int>::operator/=(int s) {
#ifdef MTS_DEBUG
if (s == 0)
SLog(EWarn, "Point4i: Division by zero!");
#endif
x /= s;
y /= s;
z /= s;
w /= s;
return *this;
}
MTS_NAMESPACE_END
#endif /* __POINT_H */