mitsuba/src/sensors/spherical.cpp

220 lines
7.1 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2014 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/sensor.h>
#include <mitsuba/render/medium.h>
#include <mitsuba/core/track.h>
MTS_NAMESPACE_BEGIN
/*!\plugin{spherical}{Spherical camera}
* \order{5}
* \parameters{
* \parameter{toWorld}{\Transform\Or\Animation}{
* Specifies an optional camera-to-world transformation.
* \default{none (i.e. camera space $=$ world space)}
* }
* \parameter{shutterOpen, shutterClose}{\Float}{
* Specifies the time interval of the measurement---this
* is only relevant when the scene is in motion.
* \default{0}
* }
* }
*
* \renderings{
* \rendering{A rendering made using a spherical camera}{sensor_spherical_cbox.jpg}
* }
*
* The spherical camera captures the illumination arriving from all
* directions and turns it into a latitude-longitude environment map.
* It is best used with a high dynamic range film that has 2:1 aspect ratio,
* and the resulting output can then be turned into a distant light source
* using the \pluginref{envmap} plugin.
* By default, the camera is located at the origin, which can
* be changed by providing a custom \code{toWorld} transformation.
*/
class SphericalCamera : public Sensor {
public:
SphericalCamera(const Properties &props) : Sensor(props) {
m_type |= EDeltaPosition | EDirectionSampleMapsToPixels;
if (props.getTransform("toWorld", Transform()).hasScale())
Log(EError, "Scale factors in the sensor-to-world "
"transformation are not allowed!");
}
SphericalCamera(Stream *stream, InstanceManager *manager)
: Sensor(stream, manager) {
configure();
}
Spectrum sampleRay(Ray &ray, const Point2 &pixelSample,
const Point2 &otherSample, Float timeSample) const {
ray.time = sampleTime(timeSample);
ray.mint = Epsilon;
ray.maxt = std::numeric_limits<Float>::infinity();
const Transform &trafo = m_worldTransform->eval(ray.time);
Float sinPhi, cosPhi, sinTheta, cosTheta;
math::sincos(pixelSample.x * m_invResolution.x * 2 * M_PI, &sinPhi, &cosPhi);
math::sincos(pixelSample.y * m_invResolution.y * M_PI, &sinTheta, &cosTheta);
Vector d(sinPhi*sinTheta, cosTheta, -cosPhi*sinTheta);
ray.setOrigin(trafo(Point(0.0f)));
ray.setDirection(trafo(d));
return Spectrum(1.0f);
}
Spectrum samplePosition(PositionSamplingRecord &pRec,
const Point2 &sample, const Point2 *extra) const {
const Transform &trafo = m_worldTransform->eval(pRec.time);
pRec.p = trafo(Point(0.0f));
pRec.n = Normal(0.0f);
pRec.pdf = 1.0f;
pRec.measure = EDiscrete;
return Spectrum(1.0f);
}
Spectrum evalPosition(const PositionSamplingRecord &pRec) const {
return Spectrum((pRec.measure == EDiscrete) ? 1.0f : 0.0f);
}
Float pdfPosition(const PositionSamplingRecord &pRec) const {
return (pRec.measure == EDiscrete) ? 1.0f : 0.0f;
}
Spectrum sampleDirection(DirectionSamplingRecord &dRec,
PositionSamplingRecord &pRec,
const Point2 &sample, const Point2 *extra) const {
const Transform &trafo = m_worldTransform->eval(pRec.time);
Point samplePos(sample.x, sample.y, 0.0f);
if (extra) {
/* The caller wants to condition on a specific pixel position */
samplePos.x = (extra->x + sample.x) * m_invResolution.x;
samplePos.y = (extra->y + sample.y) * m_invResolution.y;
}
pRec.uv = Point2(samplePos.x * m_resolution.x,
samplePos.y * m_resolution.y);
Float sinPhi, cosPhi, sinTheta, cosTheta;
math::sincos(samplePos.x * 2 * M_PI, &sinPhi, &cosPhi);
math::sincos(samplePos.y * M_PI, &sinTheta, &cosTheta);
dRec.d = trafo(Vector(sinPhi*sinTheta, cosTheta, -cosPhi*sinTheta));
dRec.measure = ESolidAngle;
dRec.pdf = 1 / (2 * M_PI * M_PI * std::max(sinTheta, Epsilon));
return Spectrum(1.0f);
}
Float pdfDirection(const DirectionSamplingRecord &dRec,
const PositionSamplingRecord &pRec) const {
if (dRec.measure != ESolidAngle)
return 0.0f;
Vector d = m_worldTransform->eval(pRec.time).inverse()(dRec.d);
Float sinTheta = math::safe_sqrt(1-d.y*d.y);
return 1 / (2 * M_PI * M_PI * std::max(sinTheta, Epsilon));
}
Spectrum evalDirection(const DirectionSamplingRecord &dRec,
const PositionSamplingRecord &pRec) const {
if (dRec.measure != ESolidAngle)
return Spectrum(0.0f);
Vector d = m_worldTransform->eval(pRec.time).inverse()(dRec.d);
Float sinTheta = math::safe_sqrt(1-d.y*d.y);
return Spectrum(1 / (2 * M_PI * M_PI * std::max(sinTheta, Epsilon)));
}
bool getSamplePosition(const PositionSamplingRecord &pRec,
const DirectionSamplingRecord &dRec, Point2 &samplePosition) const {
Vector d = normalize(m_worldTransform->eval(pRec.time).inverse()(dRec.d));
samplePosition = Point2(
math::modulo(std::atan2(d.x, -d.z) * INV_TWOPI, (Float) 1) * m_resolution.x,
math::safe_acos(d.y) * INV_PI * m_resolution.y
);
return true;
}
Spectrum sampleDirect(DirectSamplingRecord &dRec, const Point2 &sample) const {
const Transform &trafo = m_worldTransform->eval(dRec.time);
/* Transform the reference point into the local coordinate system */
Point refP = trafo.inverse().transformAffine(dRec.ref);
Vector d(refP);
Float dist = d.length(),
invDist = 1.0f / dist;
d *= invDist;
dRec.uv = Point2(
math::modulo(std::atan2(d.x, -d.z) * INV_TWOPI, (Float) 1) * m_resolution.x,
math::safe_acos(d.y) * INV_PI * m_resolution.y
);
Float sinTheta = math::safe_sqrt(1-d.y*d.y);
dRec.p = trafo.transformAffine(Point(0.0f));
dRec.d = (dRec.p - dRec.ref) * invDist;
dRec.dist = dist;
dRec.n = Vector(0.0f);
dRec.pdf = 1;
dRec.measure = EDiscrete;
return Spectrum(
(1/(2 * M_PI * M_PI * std::max(sinTheta, Epsilon))) * invDist * invDist);
}
Float pdfDirect(const DirectSamplingRecord &dRec) const {
return (dRec.measure == EDiscrete) ? 1.0f : 0.0f;
}
AABB getAABB() const {
return m_worldTransform->getTranslationBounds();
}
std::string toString() const {
std::ostringstream oss;
oss << "SphericalCamera[" << endl
<< " worldTransform = " << indent(m_worldTransform.toString()) << "," << endl
<< " sampler = " << indent(m_sampler->toString()) << "," << endl
<< " film = " << indent(m_film->toString()) << "," << endl
<< " medium = " << indent(m_medium.toString()) << "," << endl
<< " shutterOpen = " << m_shutterOpen << "," << endl
<< " shutterOpenTime = " << m_shutterOpenTime << endl
<< "]";
return oss.str();
}
MTS_DECLARE_CLASS()
};
MTS_IMPLEMENT_CLASS_S(SphericalCamera, false, Sensor)
MTS_EXPORT_PLUGIN(SphericalCamera, "Spherical camera");
MTS_NAMESPACE_END