mitsuba/src/bsdfs/thindielectric.cpp

371 lines
13 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2012 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/hw/basicshader.h>
#include "ior.h"
MTS_NAMESPACE_BEGIN
/*!\plugin{thindielectric}{Thin dielectric material}
* \order{4}
* \parameters{
* \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified
* numerically or using a known material name. \default{\texttt{bk7} / 1.5046}}
* \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
* \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
* factor that can be used to modulate the specular reflection component. Note
* that for physical realism, this parameter should never be touched. \default{1.0}}
* \parameter{specular\showbreak Transmittance}{\Spectrum\Or\Texture}{Optional
* factor that can be used to modulate the specular transmission component. Note
* that for physical realism, this parameter should never be touched. \default{1.0}}
* }
*
* This plugin models a \emph{thin} dielectric material that is embedded inside another
* dielectric---for instance, glass surrounded by air. The interior of the material
* is assumed to be so thin that its effect on transmitted rays is negligible,
* Hence, light exits such a material without any form of angular deflection
* (though there is still specular reflection).
*
* This model should be used for things like glass windows that were modeled using only a
* single sheet of triangles or quads. On the other hand, when the window consists of
* proper closed geometry, \pluginref{dielectric} is the right choice. This is illustrated below:
*
* \begin{figure}[h]
* \setcounter{subfigure}{0}
* \centering
* \hfill
* \subfloat[The \pluginref{dielectric} plugin models a single transition from one index of refraction to another]
* {\includegraphics[width=4.5cm]{images/bsdf_dielectric_figure.pdf}}\hfill
* \subfloat[The \pluginref{thindielectric} plugin models a pair of interfaces causing a transient index of refraction change]
* {\includegraphics[width=4.5cm]{images/bsdf_thindielectric_figure.pdf}}\hfill
* \subfloat[Windows modeled using a single sheet of geometry are the most frequent application of this BSDF]
* {\fbox{\includegraphics[width=4.5cm]{images/bsdf_thindielectric_window.jpg}}}\hspace*\fill
* \caption{
* \label{fig:thindielectric-diff}
* An illustration of the difference between the \pluginref{dielectric} and \pluginref{thindielectric} plugins}
* \end{figure}
*
* The implementation correctly accounts for multiple internal reflections
* inside the thin dielectric at \emph{no significant extra cost}, i.e. paths
* of the type $R, TRT, TR^3T, ..$ for reflection and $TT, TR^2, TR^4T, ..$ for
* refraction, where $T$ and $R$ denote individual reflection and refraction
* events, respectively.
*/
class ThinDielectric : public BSDF {
public:
ThinDielectric(const Properties &props) : BSDF(props) {
/* Specifies the internal index of refraction at the interface */
Float intIOR = lookupIOR(props, "intIOR", "bk7");
/* Specifies the external index of refraction at the interface */
Float extIOR = lookupIOR(props, "extIOR", "air");
if (intIOR < 0 || extIOR < 0)
Log(EError, "The interior and exterior indices of "
"refraction must be positive!");
m_eta = intIOR / extIOR;
m_specularReflectance = new ConstantSpectrumTexture(
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
m_specularTransmittance = new ConstantSpectrumTexture(
props.getSpectrum("specularTransmittance", Spectrum(1.0f)));
}
ThinDielectric(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_eta = stream->readFloat();
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_specularTransmittance = static_cast<Texture *>(manager->getInstance(stream));
configure();
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
stream->writeFloat(m_eta);
manager->serialize(stream, m_specularReflectance.get());
manager->serialize(stream, m_specularTransmittance.get());
}
void configure() {
/* Verify the input parameters and fix them if necessary */
m_specularReflectance = ensureEnergyConservation(
m_specularReflectance, "specularReflectance", 1.0f);
m_specularTransmittance = ensureEnergyConservation(
m_specularTransmittance, "specularTransmittance", 1.0f);
m_components.clear();
m_components.push_back(EDeltaReflection | EFrontSide | EBackSide
| (m_specularReflectance->isConstant() ? 0 : ESpatiallyVarying));
m_components.push_back(ENull | EFrontSide | EBackSide
| (m_specularTransmittance->isConstant() ? 0 : ESpatiallyVarying));
m_usesRayDifferentials = false;
m_usesRayDifferentials =
m_specularReflectance->usesRayDifferentials() ||
m_specularTransmittance->usesRayDifferentials();
BSDF::configure();
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
if (name == "specularReflectance")
m_specularReflectance = static_cast<Texture *>(child);
else if (name == "specularTransmittance")
m_specularTransmittance = static_cast<Texture *>(child);
else
BSDF::addChild(name, child);
} else {
BSDF::addChild(name, child);
}
}
/// Reflection in local coordinates
inline Vector reflect(const Vector &wi) const {
return Vector(-wi.x, -wi.y, wi.z);
}
/// Transmission in local coordinates
inline Vector transmit(const Vector &wi) const {
return -wi;
}
Spectrum eval(const BSDFSamplingRecord &bRec, EMeasure measure) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0) && measure == EDiscrete;
bool sampleTransmission = (bRec.typeMask & ENull)
&& (bRec.component == -1 || bRec.component == 1) && measure == EDiscrete;
Float R = fresnelDielectricExt(std::abs(Frame::cosTheta(bRec.wi)), m_eta), T = 1-R;
// Account for internal reflections: R' = R + TRT + TR^3T + ..
if (R < 1)
R += T*T * R / (1-R*R);
if (Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo) >= 0) {
if (!sampleReflection || std::abs(dot(reflect(bRec.wi), bRec.wo)-1) > DeltaEpsilon)
return Spectrum(0.0f);
return m_specularReflectance->eval(bRec.its) * R;
} else {
if (!sampleTransmission || std::abs(dot(transmit(bRec.wi), bRec.wo)-1) > DeltaEpsilon)
return Spectrum(0.0f);
return m_specularTransmittance->eval(bRec.its) * (1 - R);
}
}
Float pdf(const BSDFSamplingRecord &bRec, EMeasure measure) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0) && measure == EDiscrete;
bool sampleTransmission = (bRec.typeMask & ENull)
&& (bRec.component == -1 || bRec.component == 1) && measure == EDiscrete;
Float R = fresnelDielectricExt(std::abs(Frame::cosTheta(bRec.wi)), m_eta), T = 1-R;
// Account for internal reflections: R' = R + TRT + TR^3T + ..
if (R < 1)
R += T*T * R / (1-R*R);
if (Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo) >= 0) {
if (!sampleReflection || std::abs(dot(reflect(bRec.wi), bRec.wo)-1) > DeltaEpsilon)
return 0.0f;
return sampleTransmission ? R : 1.0f;
} else {
if (!sampleTransmission || std::abs(dot(transmit(bRec.wi), bRec.wo)-1) > DeltaEpsilon)
return 0.0f;
return sampleReflection ? 1-R : 1.0f;
}
}
Spectrum sample(BSDFSamplingRecord &bRec, Float &pdf, const Point2 &sample) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool sampleTransmission = (bRec.typeMask & ENull)
&& (bRec.component == -1 || bRec.component == 1);
Float R = fresnelDielectricExt(std::abs(Frame::cosTheta(bRec.wi)), m_eta), T = 1-R;
// Account for internal reflections: R' = R + TRT + TR^3T + ..
if (R < 1)
R += T*T * R / (1-R*R);
if (sampleTransmission && sampleReflection) {
if (sample.x <= R) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
bRec.eta = 1.0f;
pdf = R;
return m_specularReflectance->eval(bRec.its);
} else {
bRec.sampledComponent = 1;
bRec.sampledType = ENull;
bRec.wo = transmit(bRec.wi);
bRec.eta = 1.0f;
pdf = 1-R;
return m_specularTransmittance->eval(bRec.its);
}
} else if (sampleReflection) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
bRec.eta = 1.0f;
pdf = 1.0f;
return m_specularReflectance->eval(bRec.its) * R;
} else if (sampleTransmission) {
bRec.sampledComponent = 1;
bRec.sampledType = ENull;
bRec.wo = transmit(bRec.wi);
bRec.eta = 1.0f;
pdf = 1.0f;
return m_specularTransmittance->eval(bRec.its) * (1-R);
}
return Spectrum(0.0f);
}
Spectrum sample(BSDFSamplingRecord &bRec, const Point2 &sample) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool sampleTransmission = (bRec.typeMask & ENull)
&& (bRec.component == -1 || bRec.component == 1);
Float R = fresnelDielectricExt(Frame::cosTheta(bRec.wi), m_eta), T = 1-R;
// Account for internal reflections: R' = R + TRT + TR^3T + ..
if (R < 1)
R += T*T * R / (1-R*R);
if (sampleTransmission && sampleReflection) {
if (sample.x <= R) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
bRec.eta = 1.0f;
return m_specularReflectance->eval(bRec.its);
} else {
bRec.sampledComponent = 1;
bRec.sampledType = ENull;
bRec.wo = transmit(bRec.wi);
bRec.eta = 1.0f;
return m_specularTransmittance->eval(bRec.its);
}
} else if (sampleReflection) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
bRec.eta = 1.0f;
return m_specularReflectance->eval(bRec.its) * R;
} else if (sampleTransmission) {
bRec.sampledComponent = 1;
bRec.sampledType = ENull;
bRec.wo = transmit(bRec.wi);
bRec.eta = 1.0f;
return m_specularTransmittance->eval(bRec.its) * (1-R);
}
return Spectrum(0.0f);
}
Float getEta() const {
/* The rrelative IOR across this interface is 1, since the internal
material is thin: it begins and ends here. */
return 1.0f;
}
Float getRoughness(const Intersection &its, int component) const {
return 0.0f;
}
std::string toString() const {
std::ostringstream oss;
oss << "ThinDielectric[" << endl
<< " id = \"" << getID() << "\"," << endl
<< " eta = " << m_eta << "," << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
<< " specularTransmittance = " << indent(m_specularTransmittance->toString()) << endl
<< "]";
return oss.str();
}
Shader *createShader(Renderer *renderer) const;
MTS_DECLARE_CLASS()
private:
Float m_eta;
ref<Texture> m_specularTransmittance;
ref<Texture> m_specularReflectance;
};
/* Fake glass shader -- it is really hopeless to visualize
this material in the VPL renderer, so let's try to do at least
something that suggests the presence of a transparent boundary */
class ThinDielectricShader : public Shader {
public:
ThinDielectricShader(Renderer *renderer) :
Shader(renderer, EBSDFShader) {
m_flags = ETransparent;
}
Float getAlpha() const {
return 0.3f;
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " if (cosTheta(wi) < 0.0 || cosTheta(wo) < 0.0)" << endl
<< " return vec3(0.0);" << endl
<< " return vec3(inv_pi * cosTheta(wo));" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " return " << evalName << "(uv, wi, wo);" << endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
};
Shader *ThinDielectric::createShader(Renderer *renderer) const {
return new ThinDielectricShader(renderer);
}
MTS_IMPLEMENT_CLASS(ThinDielectricShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(ThinDielectric, false, BSDF)
MTS_EXPORT_PLUGIN(ThinDielectric, "Thin dielectric BSDF");
MTS_NAMESPACE_END