mitsuba/src/emitters/constant.cpp

333 lines
9.9 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2012 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/scene.h>
#include <mitsuba/core/bsphere.h>
#include <mitsuba/core/plugin.h>
#include <mitsuba/hw/gpuprogram.h>
MTS_NAMESPACE_BEGIN
/*!\plugin{constant}{Constant environment emitter}
* \icon{emitter_constant}
* \order{10}
* \parameters{
* \parameter{radiance}{\Spectrum}{
* Specifies the emitted radiance in units of
* power per unit area per unit steradian.
* }
* \parameter{samplingWeight}{\Float}{
* Specifies the relative amount of samples
* allocated to this emitter. \default{1}
* }
* }
*
* This plugin implements a constant environment emitter, which surrounds
* the scene and radiates diffuse illumination towards it. This is often
* a good default light source when the goal is to visualize some loaded
* geometry that uses basic (e.g. diffuse) materials.
*/
class ConstantBackgroundEmitter : public Emitter {
public:
ConstantBackgroundEmitter(const Properties &props) : Emitter(props) {
m_type |= EOnSurface | EEnvironmentEmitter;
m_radiance = props.getSpectrum("radiance", Spectrum(1.0f));
}
ConstantBackgroundEmitter(Stream *stream, InstanceManager *manager)
: Emitter(stream, manager) {
m_radiance = Spectrum(stream);
m_sceneBSphere = BSphere(stream);
m_geoBSphere = BSphere(stream);
configure();
}
void serialize(Stream *stream, InstanceManager *manager) const {
Emitter::serialize(stream, manager);
m_radiance.serialize(stream);
m_sceneBSphere.serialize(stream);
m_geoBSphere.serialize(stream);
}
ref<Shape> createShape(const Scene *scene) {
/* Create a bounding sphere that surrounds the scene */
BSphere sceneBSphere(scene->getAABB().getBSphere());
sceneBSphere.radius = std::max(Epsilon, sceneBSphere.radius * 1.5f);
BSphere geoBSphere(scene->getKDTree()->getAABB().getBSphere());
if (sceneBSphere != m_sceneBSphere || geoBSphere != m_geoBSphere) {
m_sceneBSphere = sceneBSphere;
m_geoBSphere = geoBSphere;
configure();
}
Transform trafo =
Transform::translate(Vector(m_sceneBSphere.center)) *
Transform::scale(Vector(m_sceneBSphere.radius));
Properties props("sphere");
props.setTransform("toWorld", trafo);
props.setBoolean("flipNormals", true);
Shape *shape = static_cast<Shape *> (PluginManager::getInstance()->
createObject(MTS_CLASS(Shape), props));
shape->addChild(this);
shape->configure();
return shape;
}
void configure() {
Emitter::configure();
Float surfaceArea = 4 * M_PI *
m_sceneBSphere.radius * m_sceneBSphere.radius;
m_invSurfaceArea = 1 / surfaceArea;
m_power = m_radiance * surfaceArea * M_PI;
}
Spectrum eval(const Intersection &its, const Vector &d) const {
if (dot(its.shFrame.n, d) <= 0)
return Spectrum(0.0f);
else
return m_radiance;
}
Spectrum samplePosition(PositionSamplingRecord &pRec,
const Point2 &sample, const Point2 *extra) const {
Vector d = Warp::squareToUniformSphere(sample);
pRec.p = m_sceneBSphere.center + d * m_sceneBSphere.radius;
pRec.n = -d;
pRec.measure = EArea;
pRec.pdf = m_invSurfaceArea;
return m_power;
}
Spectrum evalPosition(const PositionSamplingRecord &pRec) const {
return m_radiance * M_PI;
}
Float pdfPosition(const PositionSamplingRecord &pRec) const {
return m_invSurfaceArea;
}
Spectrum sampleDirection(DirectionSamplingRecord &dRec,
PositionSamplingRecord &pRec,
const Point2 &sample, const Point2 *extra) const {
Vector local = Warp::squareToCosineHemisphere(sample);
dRec.d = Frame(pRec.n).toWorld(local);
dRec.pdf = Warp::squareToCosineHemispherePdf(local);
dRec.measure = ESolidAngle;
return Spectrum(1.0f);
}
Spectrum evalDirection(const DirectionSamplingRecord &dRec,
const PositionSamplingRecord &pRec) const {
Float dp = dot(dRec.d, pRec.n);
if (dRec.measure != ESolidAngle || dp < 0)
dp = 0.0f;
return Spectrum(INV_PI * dp);
}
Float pdfDirection(const DirectionSamplingRecord &dRec,
const PositionSamplingRecord &pRec) const {
Float dp = dot(dRec.d, pRec.n);
if (dRec.measure != ESolidAngle || dp < 0)
dp = 0.0f;
return INV_PI * dp;
}
Spectrum sampleRay(Ray &ray,
const Point2 &spatialSample,
const Point2 &directionalSample,
Float time) const {
Vector v0 = Warp::squareToUniformSphere(spatialSample);
Vector v1 = Warp::squareToCosineHemisphere(directionalSample);
ray.setOrigin(m_geoBSphere.center + v0 * m_geoBSphere.radius);
ray.setDirection(Frame(-v0).toWorld(v1));
ray.setTime(time);
return m_radiance * (4 * M_PI * M_PI * m_geoBSphere.radius * m_geoBSphere.radius);
}
Spectrum sampleDirect(DirectSamplingRecord &dRec,
const Point2 &sample) const {
Vector d;
Float pdf;
if (!dRec.refN.isZero()) {
d = Warp::squareToCosineHemisphere(sample);
pdf = Warp::squareToCosineHemispherePdf(d);
d = Frame(dRec.refN).toWorld(d);
} else {
d = Warp::squareToUniformSphere(sample);
pdf = Warp::squareToUniformSpherePdf();
}
/* Intersect against the bounding sphere. This is not really
necessary for path tracing and similar integrators. However,
to make BDPT+MLT work with this emitter, we should return
positions that are consistent with respect to the other
sampling techniques in this class. */
Ray ray(dRec.ref, d, 0);
Float nearT, farT;
dRec.pdf = 0.0f;
if (!m_sceneBSphere.rayIntersect(ray, nearT, farT))
return Spectrum(0.0f);
if (nearT >= 0 || farT <= 0)
return Spectrum(0.0f);
dRec.p = ray(farT);
dRec.n = normalize(m_sceneBSphere.center - dRec.p);
dRec.measure = ESolidAngle;
dRec.d = ray.d;
dRec.dist = farT;
dRec.pdf = pdf;
if (!dRec.refN.isZero() && dot(dRec.d, dRec.refN) <= 0) {
/// Ignore the sample if roundoff errors moved it to the backside
return Spectrum(0.0f);
}
return m_radiance / pdf;
}
Float pdfDirect(const DirectSamplingRecord &dRec) const {
Float pdfSA;
if (!dRec.refN.isZero())
pdfSA = INV_PI * std::max((Float) 0.0f, dot(dRec.d, dRec.refN));
else
pdfSA = Warp::squareToUniformSpherePdf();
if (dRec.measure == ESolidAngle)
return pdfSA;
else if (dRec.measure == EArea)
return pdfSA * absDot(dRec.d, dRec.n)
/ (dRec.dist * dRec.dist);
else
return 0.0f;
}
AABB getAABB() const {
/* The scene sets its bounding box so that it contains all shapes and
emitters, but this particular emitter always wants to be *a little*
bigger than the scene. To avoid a silly recursion, just return a
point here. */
return AABB(m_sceneBSphere.center);
}
Spectrum evalEnvironment(const RayDifferential &ray) const {
return m_radiance;
}
bool fillDirectSamplingRecord(DirectSamplingRecord &dRec, const Ray &ray) const {
Float nearT, farT;
if (!m_sceneBSphere.rayIntersect(ray, nearT, farT) || nearT > 0 || farT < 0) {
Log(EWarn, "fillDirectSamplingRecord(): internal error!");
return false;
}
dRec.p = ray(farT);
dRec.n = normalize(m_sceneBSphere.center - dRec.p);
dRec.measure = ESolidAngle;
dRec.object = this;
dRec.d = ray.d;
dRec.dist = farT;
return true;
}
Spectrum fillDirectionSamplingRecord(const Ray &ray) const {
return m_radiance;
}
std::string toString() const {
std::ostringstream oss;
oss << "ConstantBackgroundEmitter[" << endl
<< " radiance = " << m_radiance.toString() << "," << endl
<< " samplingWeight = " << m_samplingWeight << "," << endl
<< " geoBSphere = " << m_geoBSphere.toString() << "," << endl
<< " sceneBSphere = " << m_sceneBSphere.toString() << "," << endl
<< " medium = " << indent(m_medium.toString()) << endl
<< "]";
return oss.str();
}
Shader *createShader(Renderer *renderer) const;
MTS_DECLARE_CLASS()
protected:
Spectrum m_radiance, m_power;
BSphere m_geoBSphere, m_sceneBSphere;
Float m_invSurfaceArea;
};
// ================ Hardware shader implementation ================
class ConstantBackgroundEmitterShader : public Shader {
public:
ConstantBackgroundEmitterShader(Renderer *renderer, const Spectrum &radiance)
: Shader(renderer, EEmitterShader), m_radiance(radiance * M_PI) {
}
void resolve(const GPUProgram *program, const std::string &evalName,
std::vector<int> &parameterIDs) const {
parameterIDs.push_back(program->getParameterID(evalName + "_radiance", false));
}
void generateCode(std::ostringstream &oss, const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "uniform vec3 " << evalName << "_radiance;" << endl
<< endl
<< "vec3 " << evalName << "_dir(vec3 wo) {" << endl
<< " return vec3(1.0);" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_background(vec3 wo) {" << endl
<< " const float inv_pi = 0.318309886183791;" << endl
<< " return " << evalName << "_radiance * inv_pi;" << endl
<< "}" << endl;
}
void bind(GPUProgram *program, const std::vector<int> &parameterIDs,
int &textureUnitOffset) const {
program->setParameter(parameterIDs[0], m_radiance);
}
MTS_DECLARE_CLASS()
private:
Spectrum m_radiance;
};
Shader *ConstantBackgroundEmitter::createShader(Renderer *renderer) const {
return new ConstantBackgroundEmitterShader(renderer, m_radiance);
}
MTS_IMPLEMENT_CLASS(ConstantBackgroundEmitterShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(ConstantBackgroundEmitter, false, Emitter)
MTS_EXPORT_PLUGIN(ConstantBackgroundEmitter, "Constant background emitter");
MTS_NAMESPACE_END