mitsuba/src/integrators/path/volpath.cpp

441 lines
16 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2012 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/scene.h>
#include <mitsuba/core/statistics.h>
MTS_NAMESPACE_BEGIN
static StatsCounter avgPathLength("Volumetric path tracer", "Average path length", EAverage);
/*!\plugin{volpath}{Extended volumetric path tracer}
* \order{4}
* \parameters{
* \parameter{maxDepth}{\Integer}{Specifies the longest path depth
* in the generated output image (where \code{-1} corresponds to $\infty$).
* A value of \code{1} will only render directly visible light sources.
* \code{2} will lead to single-bounce (direct-only) illumination,
* and so on. \default{\code{-1}}
* }
* \parameter{rrDepth}{\Integer}{Specifies the minimum path depth, after
* which the implementation will start to use the ``russian roulette''
* path termination criterion. \default{\code{5}}
* }
* \parameter{strictNormals}{\Boolean}{Be strict about potential
* inconsistencies involving shading normals? See \pluginref{path}
* for details.\default{no, i.e. \code{false}}}
* }
*
* This plugin provides a volumetric path tracer that can be used to
* compute approximate solutions of the radiative transfer equation.
* Its implementation makes use of multiple importance sampling to
* combine BSDF and phase function sampling with direct illumination
* sampling strategies. On surfaces, it behaves exactly
* like the standard path tracer.
*
* This integrator has special support for \emph{index-matched} transmission
* events (i.e. surface scattering events that do not change the direction
* of light). As a consequence, particating media enclosed by a stencil shape (see
* \secref{shapes} for details) are rendered considerably more efficiently when this
* shape has \emph{no}\footnote{this is what signals to Mitsuba that the boundary is
* index-matched and does not interact with light in any way. Alternatively,
* the \pluginref{mask} and \pluginref{thindielectric} BSDF can be used to specify
* index-matched boundaries that involve some amount of interaction.} BSDF assigned
* to it (as compared to, say, a \pluginref{dielectric} or \pluginref{roughdielectric} BSDF).
*
* \remarks{
* \item This integrator will generally perform poorly when rendering
* participating media that have a different index of refraction compared
* to the surrounding medium.
* \item This integrator has poor convergence properties when rendering
* caustics and similar effects. In this case, \pluginref{bdpt} or
* one of the photon mappers may be preferable.
* }
*/
class VolumetricPathTracer : public MonteCarloIntegrator {
public:
VolumetricPathTracer(const Properties &props) : MonteCarloIntegrator(props) { }
/// Unserialize from a binary data stream
VolumetricPathTracer(Stream *stream, InstanceManager *manager)
: MonteCarloIntegrator(stream, manager) { }
Spectrum Li(const RayDifferential &r, RadianceQueryRecord &rRec) const {
/* Some aliases and local variables */
const Scene *scene = rRec.scene;
Intersection &its = rRec.its;
MediumSamplingRecord mRec;
RayDifferential ray(r);
Spectrum Li(0.0f);
Float eta = 1.0f;
/* Perform the first ray intersection (or ignore if the
intersection has already been provided). */
rRec.rayIntersect(ray);
Spectrum throughput(1.0f);
bool scattered = false;
while (rRec.depth <= m_maxDepth || m_maxDepth < 0) {
/* ==================================================================== */
/* Radiative Transfer Equation sampling */
/* ==================================================================== */
if (rRec.medium && rRec.medium->sampleDistance(Ray(ray, 0, its.t), mRec, rRec.sampler)) {
/* Sample the integral
\int_x^y tau(x, x') [ \sigma_s \int_{S^2} \rho(\omega,\omega') L(x,\omega') d\omega' ] dx'
*/
const PhaseFunction *phase = mRec.getPhaseFunction();
if (rRec.depth >= m_maxDepth && m_maxDepth != -1) // No more scattering events allowed
break;
throughput *= mRec.sigmaS * mRec.transmittance / mRec.pdfSuccess;
/* ==================================================================== */
/* Luminaire sampling */
/* ==================================================================== */
/* Estimate the single scattering component if this is requested */
DirectSamplingRecord dRec(mRec.p, mRec.time);
if (rRec.type & RadianceQueryRecord::EDirectMediumRadiance) {
int interactions = m_maxDepth - rRec.depth - 1;
Spectrum value = scene->sampleAttenuatedEmitterDirect(
dRec, rRec.medium, interactions,
rRec.nextSample2D(), rRec.sampler);
if (!value.isZero()) {
const Emitter *emitter = static_cast<const Emitter *>(dRec.object);
/* Evaluate the phase function */
PhaseFunctionSamplingRecord pRec(mRec, -ray.d, dRec.d);
Float phaseVal = phase->eval(pRec);
if (phaseVal != 0) {
/* Calculate prob. of having sampled that direction using
phase function sampling */
Float phasePdf = (emitter->isOnSurface() && dRec.measure == ESolidAngle)
? phase->pdf(pRec) : (Float) 0.0f;
/* Weight using the power heuristic */
const Float weight = miWeight(dRec.pdf, phasePdf);
Li += throughput * value * phaseVal * weight;
}
}
}
/* ==================================================================== */
/* Phase function sampling */
/* ==================================================================== */
Float phasePdf;
PhaseFunctionSamplingRecord pRec(mRec, -ray.d);
Float phaseVal = phase->sample(pRec, phasePdf, rRec.sampler);
if (phaseVal == 0)
break;
throughput *= phaseVal;
/* Trace a ray in this direction */
ray = Ray(mRec.p, pRec.wo, ray.time);
ray.mint = 0;
Spectrum value(0.0f);
rayIntersectAndLookForEmitter(scene, rRec.sampler, rRec.medium,
m_maxDepth - rRec.depth - 1, ray, its, dRec, value);
/* If a luminaire was hit, estimate the local illumination and
weight using the power heuristic */
if (!value.isZero() && (rRec.type & RadianceQueryRecord::EDirectMediumRadiance)) {
const Float emitterPdf = scene->pdfEmitterDirect(dRec);
Li += throughput * value * miWeight(phasePdf, emitterPdf);
}
/* ==================================================================== */
/* Multiple scattering */
/* ==================================================================== */
/* Stop if multiple scattering was not requested */
if (!(rRec.type & RadianceQueryRecord::EIndirectMediumRadiance))
break;
rRec.type = RadianceQueryRecord::ERadianceNoEmission;
} else {
/* Sample
tau(x, y) (Surface integral). This happens with probability mRec.pdfFailure
Account for this and multiply by the proper per-color-channel transmittance.
*/
if (rRec.medium)
throughput *= mRec.transmittance / mRec.pdfFailure;
if (!its.isValid()) {
/* If no intersection could be found, possibly return
attenuated radiance from a background luminaire */
if (rRec.type & RadianceQueryRecord::EEmittedRadiance)
Li += throughput * scene->evalEnvironment(ray);
break;
}
/* Possibly include emitted radiance if requested */
if (its.isEmitter() && (rRec.type & RadianceQueryRecord::EEmittedRadiance))
Li += throughput * its.Le(-ray.d);
/* Include radiance from a subsurface integrator if requested */
if (its.hasSubsurface() && (rRec.type & RadianceQueryRecord::ESubsurfaceRadiance))
Li += throughput * its.LoSub(scene, rRec.sampler, -ray.d, rRec.depth);
if (rRec.depth >= m_maxDepth && m_maxDepth != -1)
break;
/* Prevent light leaks due to the use of shading normals */
Float wiDotGeoN = -dot(its.geoFrame.n, ray.d),
wiDotShN = Frame::cosTheta(its.wi);
if (wiDotGeoN * wiDotShN < 0 && m_strictNormals)
break;
/* ==================================================================== */
/* Luminaire sampling */
/* ==================================================================== */
const BSDF *bsdf = its.getBSDF(ray);
DirectSamplingRecord dRec(its);
/* Estimate the direct illumination if this is requested */
if ((rRec.type & RadianceQueryRecord::EDirectSurfaceRadiance) &&
(bsdf->getType() & BSDF::ESmooth)) {
int interactions = m_maxDepth - rRec.depth - 1;
Spectrum value = scene->sampleAttenuatedEmitterDirect(
dRec, its, rRec.medium, interactions,
rRec.nextSample2D(), rRec.sampler);
if (!value.isZero()) {
const Emitter *emitter = static_cast<const Emitter *>(dRec.object);
/* Evaluate BSDF * cos(theta) */
BSDFSamplingRecord bRec(its, its.toLocal(dRec.d));
const Spectrum bsdfVal = bsdf->eval(bRec);
Float woDotGeoN = dot(its.geoFrame.n, dRec.d);
/* Prevent light leaks due to the use of shading normals */
if (!bsdfVal.isZero() && (!m_strictNormals ||
woDotGeoN * Frame::cosTheta(bRec.wo) > 0)) {
/* Calculate prob. of having generated that direction
using BSDF sampling */
Float bsdfPdf = (emitter->isOnSurface()
&& dRec.measure == ESolidAngle)
? bsdf->pdf(bRec) : (Float) 0.0f;
/* Weight using the power heuristic */
const Float weight = miWeight(dRec.pdf, bsdfPdf);
Li += throughput * value * bsdfVal * weight;
}
}
}
/* ==================================================================== */
/* BSDF sampling */
/* ==================================================================== */
/* Sample BSDF * cos(theta) */
BSDFSamplingRecord bRec(its, rRec.sampler, ERadiance);
Float bsdfPdf;
Spectrum bsdfWeight = bsdf->sample(bRec, bsdfPdf, rRec.nextSample2D());
if (bsdfWeight.isZero())
break;
/* Prevent light leaks due to the use of shading normals */
const Vector wo = its.toWorld(bRec.wo);
Float woDotGeoN = dot(its.geoFrame.n, wo);
if (woDotGeoN * Frame::cosTheta(bRec.wo) <= 0 && m_strictNormals)
break;
/* Trace a ray in this direction */
ray = Ray(its.p, wo, ray.time);
/* Keep track of the throughput, medium, and relative
refractive index along the path */
throughput *= bsdfWeight;
eta *= bRec.eta;
if (its.isMediumTransition())
rRec.medium = its.getTargetMedium(ray.d);
/* Handle index-matched medium transitions specially */
if (bRec.sampledType == BSDF::ENull) {
if (!(rRec.type & RadianceQueryRecord::EIndirectSurfaceRadiance))
break;
rRec.type = scattered ? RadianceQueryRecord::ERadianceNoEmission
: RadianceQueryRecord::ERadiance;
scene->rayIntersect(ray, its);
rRec.depth++;
continue;
}
Spectrum value(0.0f);
rayIntersectAndLookForEmitter(scene, rRec.sampler, rRec.medium,
m_maxDepth - rRec.depth - 1, ray, its, dRec, value);
/* If a luminaire was hit, estimate the local illumination and
weight using the power heuristic */
if (!value.isZero() && (rRec.type & RadianceQueryRecord::EDirectSurfaceRadiance)) {
const Float emitterPdf = (!(bRec.sampledType & BSDF::EDelta)) ?
scene->pdfEmitterDirect(dRec) : 0;
Li += throughput * value * miWeight(bsdfPdf, emitterPdf);
}
/* ==================================================================== */
/* Indirect illumination */
/* ==================================================================== */
/* Stop if indirect illumination was not requested */
if (!(rRec.type & RadianceQueryRecord::EIndirectSurfaceRadiance))
break;
rRec.type = RadianceQueryRecord::ERadianceNoEmission;
}
if (rRec.depth++ >= m_rrDepth) {
/* Russian roulette: try to keep path weights equal to one,
while accounting for the solid angle compression at refractive
index boundaries. Stop with at least some probability to avoid
getting stuck (e.g. due to total internal reflection) */
Float q = std::min(throughput.max() * eta * eta, (Float) 0.95f);
if (rRec.nextSample1D() >= q)
break;
throughput /= q;
}
scattered = true;
}
avgPathLength.incrementBase();
avgPathLength += rRec.depth;
return Li;
}
/**
* This function is called by the recursive ray tracing above after
* having sampled a direction from a BSDF/phase function. Due to the
* way in which this integrator deals with index-matched boundaries,
* it is necessarily a bit complicated (though the improved performance
* easily pays for the extra effort).
*
* This function
*
* 1. Intersects 'ray' against the scene geometry and returns the
* *first* intersection via the '_its' argument.
*
* 2. It checks whether the intersected shape was an emitter, or if
* the ray intersects nothing and there is an environment emitter.
* In this case, it returns the attenuated emittance, as well as
* a DirectSamplingRecord that can be used to query the hypothetical
* sampling density at the emitter.
*
* 3. If current shape is an index-matched medium transition, the
* integrator keeps on looking on whether a light source eventually
* follows after a potential chain of index-matched medium transitions,
* while respecting the specified 'maxDepth' limits. It then returns
* the attenuated emittance of this light source, while accounting for
* all attenuation that occurs on the wya.
*/
void rayIntersectAndLookForEmitter(const Scene *scene, Sampler *sampler,
const Medium *medium, int maxInteractions, Ray ray, Intersection &_its,
DirectSamplingRecord &dRec, Spectrum &value) const {
Intersection its2, *its = &_its;
Spectrum transmittance(1.0f);
bool surface = false;
int interactions = 0;
while (true) {
surface = scene->rayIntersect(ray, *its);
if (surface && (interactions == maxInteractions ||
!(its->getBSDF()->getType() & BSDF::ENull)))
/* Encountered an occluder -- zero transmittance. */
break;
if (medium)
transmittance *= medium->evalTransmittance(Ray(ray, 0, its->t), sampler);
if (!surface)
break;
if (transmittance.isZero())
return;
if (its->isMediumTransition())
medium = its->getTargetMedium(ray.d);
Vector wo = its->shFrame.toLocal(ray.d);
BSDFSamplingRecord bRec(*its, -wo, wo, ERadiance);
bRec.typeMask = BSDF::ENull;
transmittance *= its->getBSDF()->eval(bRec, EDiscrete);
ray.o = ray(its->t);
ray.mint = Epsilon;
its = &its2;
if (++interactions > 100) { /// Just a precaution..
Log(EWarn, "rayIntersectAndLookForEmitter(): round-off error issues?");
return;
}
}
if (surface) {
/* Intersected something - check if it was a luminaire */
if (its->isEmitter()) {
dRec.setQuery(ray, *its);
value = transmittance * its->Le(-ray.d);
}
} else {
/* Intersected nothing -- perhaps there is an environment map? */
const Emitter *env = scene->getEnvironmentEmitter();
if (env && env->fillDirectSamplingRecord(dRec, ray))
value = transmittance * env->evalEnvironment(RayDifferential(ray));
}
}
inline Float miWeight(Float pdfA, Float pdfB) const {
pdfA *= pdfA; pdfB *= pdfB;
return pdfA / (pdfA + pdfB);
}
void serialize(Stream *stream, InstanceManager *manager) const {
MonteCarloIntegrator::serialize(stream, manager);
}
std::string toString() const {
std::ostringstream oss;
oss << "VolumetricPathTracer[" << endl
<< " maxDepth = " << m_maxDepth << "," << endl
<< " rrDepth = " << m_rrDepth << "," << endl
<< " strictNormals = " << m_strictNormals << endl
<< "]";
return oss.str();
}
MTS_DECLARE_CLASS()
};
MTS_IMPLEMENT_CLASS_S(VolumetricPathTracer, false, MonteCarloIntegrator)
MTS_EXPORT_PLUGIN(VolumetricPathTracer, "Volumetric path tracer");
MTS_NAMESPACE_END