488 lines
17 KiB
C++
488 lines
17 KiB
C++
/*
|
|
This file is part of Mitsuba, a physically based rendering system.
|
|
|
|
Copyright (c) 2007-2011 by Wenzel Jakob and others.
|
|
|
|
Mitsuba is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License Version 3
|
|
as published by the Free Software Foundation.
|
|
|
|
Mitsuba is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <mitsuba/render/bsdf.h>
|
|
#include <mitsuba/hw/basicshader.h>
|
|
#include <boost/algorithm/string.hpp>
|
|
|
|
MTS_NAMESPACE_BEGIN
|
|
|
|
/*!\plugin{ward}{Anisotropic Ward BRDF}
|
|
* \order{11}
|
|
* \parameters{
|
|
* \parameter{variant}{\String}{
|
|
* Determines the variant of the Ward model to use:
|
|
* \begin{enumerate}[(i)]
|
|
* \item \code{ward}: The original model by Ward \cite{Ward1992Measuring}
|
|
* --- suffers from energy loss at grazing angles.
|
|
* \item \code{ward-duer}: Corrected Ward model with lower energy loss
|
|
* at grazing angles \cite{Dur2006Improved}.
|
|
* Does not always conserve energy.
|
|
* \item \code{balanced}: Improved version of the \code{ward-duer}
|
|
* model with energy balance at all angles \cite{Geisler2010New}.
|
|
* \vspace{-4mm}
|
|
* \end{enumerate}
|
|
* }
|
|
* \parameter{alphaU, alphaV}{\Float\Or\Texture}{
|
|
* Specifies the anisotropic roughness values along the tangent and
|
|
* bitangent directions.
|
|
* \default{0.1}.
|
|
* }
|
|
* \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{
|
|
* Specifies the weight of the specular reflectance component.\default{0.2}}
|
|
* \parameter{diffuse\showbreak Reflectance}{\Spectrum\Or\Texture}{
|
|
* Specifies the weight of the diffuse reflectance component\default{0.5}}
|
|
* }
|
|
* \renderings{
|
|
* \rendering{$\alpha_u=0.1,\ \alpha_v=0.3$}{bsdf_ward_01_03}
|
|
* \rendering{$\alpha_u=0.3,\ \alpha_v=0.1$}{bsdf_ward_03_01}
|
|
* }
|
|
|
|
* This plugin implements the anisotropic Ward reflectance model and
|
|
* several extensions. They are described in the papers
|
|
* \begin{enumerate}[(i)]
|
|
* \item ``Measuring and Modeling Anisotropic Reflection''
|
|
* by Greg Ward \cite{Ward1992Measuring}
|
|
* \item ``Notes on the Ward BRDF'' by Bruce Walter \cite{Walter2005Notes}
|
|
* \item ``An Improved Normalization for the Ward Reflectance Model''
|
|
* by Arne D\"ur \cite{Dur2006Improved}
|
|
* \item ``A New Ward BRDF Model with Bounded Albedo'' by
|
|
* Geisler-Moroder et al. \cite{Geisler2010New}
|
|
* \end{enumerate}
|
|
*
|
|
* Like the Phong BRDF, the Ward model does not take the Fresnel reflectance
|
|
* of the material into account. In an experimental study by Ngan et al.
|
|
* \cite{Ngan2005Experimental}, the Ward model performed noticeably worse than
|
|
* models based on microfacets.
|
|
*
|
|
* For this reason, it is usually preferable to switch to a microfacet model
|
|
* that incorporates knowledge about the material's index of refraction. In Mitsuba,
|
|
* two such alternatives to \pluginref{ward} are given by the plugins
|
|
* \pluginref{roughconductor} and \pluginref{roughplastic} (depending on the
|
|
* material type).
|
|
*
|
|
* When using this plugin, note that the diffuse and specular reflectance
|
|
* components should add up to a value less than or equal to one (for each
|
|
* color channel). Otherwise, they will automatically be scaled appropriately
|
|
* to ensure energy conservation.
|
|
*/
|
|
class Ward : public BSDF {
|
|
public:
|
|
/// Supported model types
|
|
enum EModelVariant {
|
|
/// The original Ward model
|
|
EWard = 0,
|
|
/// Ward model with correction by Arne Duer
|
|
EWardDuer = 1,
|
|
/// Energy-balanced Ward model
|
|
EBalanced = 2
|
|
};
|
|
|
|
Ward(const Properties &props)
|
|
: BSDF(props) {
|
|
m_diffuseReflectance = new ConstantSpectrumTexture(
|
|
props.getSpectrum("diffuseReflectance", Spectrum(0.5f)));
|
|
m_specularReflectance = new ConstantSpectrumTexture(
|
|
props.getSpectrum("specularReflectance", Spectrum(0.2f)));
|
|
|
|
std::string type =
|
|
boost::to_lower_copy(props.getString("variant", "balanced"));
|
|
if (type == "ward")
|
|
m_modelVariant = EWard;
|
|
else if (type == "ward-duer")
|
|
m_modelVariant = EWardDuer;
|
|
else if (type == "balanced")
|
|
m_modelVariant = EBalanced;
|
|
else
|
|
Log(EError, "Specified an invalid model type \"%s\", must be "
|
|
"\"ward\", \"ward-duer\", or \"balanced\"!", type.c_str());
|
|
|
|
Float alpha = props.getFloat("alpha", 0.1f),
|
|
alphaU = props.getFloat("alphaU", alpha),
|
|
alphaV = props.getFloat("alphaV", alpha);
|
|
|
|
m_alphaU = new ConstantFloatTexture(alphaU);
|
|
if (alphaU == alphaV)
|
|
m_alphaV = m_alphaU;
|
|
else
|
|
m_alphaV = new ConstantFloatTexture(alphaV);
|
|
m_specularSamplingWeight = 0.0f;
|
|
}
|
|
|
|
Ward(Stream *stream, InstanceManager *manager)
|
|
: BSDF(stream, manager) {
|
|
m_modelVariant = (EModelVariant) stream->readUInt();
|
|
m_diffuseReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
|
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
|
m_alphaU = static_cast<Texture *>(manager->getInstance(stream));
|
|
m_alphaV = static_cast<Texture *>(manager->getInstance(stream));
|
|
|
|
configure();
|
|
}
|
|
|
|
void configure() {
|
|
unsigned int extraFlags = 0;
|
|
if (m_alphaU != m_alphaV)
|
|
extraFlags |= EAnisotropic;
|
|
|
|
m_components.clear();
|
|
m_components.push_back(EGlossyReflection | EFrontSide | extraFlags
|
|
| ((!m_specularReflectance->isConstant() || !m_alphaU->isConstant()
|
|
|| !m_alphaV->isConstant()) ? ESpatiallyVarying : 0));
|
|
m_components.push_back(EDiffuseReflection | EFrontSide | extraFlags
|
|
| (m_diffuseReflectance->isConstant() ? 0 : ESpatiallyVarying));
|
|
|
|
/* Verify the input parameters and fix them if necessary */
|
|
std::pair<Texture *, Texture *> result = ensureEnergyConservation(
|
|
m_specularReflectance, m_diffuseReflectance,
|
|
"specularReflectance", "diffuseReflectance", 1.0f);
|
|
m_specularReflectance = result.first;
|
|
m_diffuseReflectance = result.second;
|
|
|
|
/* Compute weights that steer samples towards
|
|
the specular or diffuse components */
|
|
Float dAvg = m_diffuseReflectance->getAverage().getLuminance(),
|
|
sAvg = m_specularReflectance->getAverage().getLuminance();
|
|
m_specularSamplingWeight = sAvg / (dAvg + sAvg);
|
|
|
|
m_usesRayDifferentials =
|
|
m_diffuseReflectance->usesRayDifferentials() ||
|
|
m_specularReflectance->usesRayDifferentials() ||
|
|
m_alphaU->usesRayDifferentials() ||
|
|
m_alphaV->usesRayDifferentials();
|
|
|
|
BSDF::configure();
|
|
}
|
|
|
|
Spectrum getDiffuseReflectance(const Intersection &its) const {
|
|
return m_diffuseReflectance->getValue(its);
|
|
}
|
|
|
|
|
|
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
|
|
if (Frame::cosTheta(bRec.wi) <= 0 ||
|
|
Frame::cosTheta(bRec.wo) <= 0 || measure != ESolidAngle)
|
|
return Spectrum(0.0f);
|
|
|
|
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
|
|
&& (bRec.component == -1 || bRec.component == 0);
|
|
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection)
|
|
&& (bRec.component == -1 || bRec.component == 1);
|
|
|
|
Spectrum result(0.0f);
|
|
if (hasSpecular) {
|
|
Vector H = bRec.wi+bRec.wo;
|
|
Float alphaU = m_alphaU->getValue(bRec.its).average();
|
|
Float alphaV = m_alphaV->getValue(bRec.its).average();
|
|
|
|
Float factor1 = 0.0f;
|
|
switch (m_modelVariant) {
|
|
case EWard:
|
|
factor1 = 1.0f / (4.0f * M_PI * alphaU * alphaV *
|
|
std::sqrt(Frame::cosTheta(bRec.wi)*Frame::cosTheta(bRec.wo)));
|
|
break;
|
|
case EWardDuer:
|
|
factor1 = 1.0f / (4.0f * M_PI * alphaU * alphaV *
|
|
Frame::cosTheta(bRec.wi)*Frame::cosTheta(bRec.wo));
|
|
break;
|
|
case EBalanced:
|
|
factor1 = dot(H,H) / (M_PI * alphaU * alphaV
|
|
* std::pow(Frame::cosTheta(H),4));
|
|
break;
|
|
default:
|
|
Log(EError, "Unknown model type!");
|
|
}
|
|
|
|
Float factor2 = H.x / alphaU, factor3 = H.y / alphaV;
|
|
Float exponent = -(factor2*factor2+factor3*factor3)/(H.z*H.z);
|
|
Float specRef = factor1 * std::exp(exponent);
|
|
/* Important to prevent numeric issues when evaluating the
|
|
sampling density of the Ward model in places where it takes
|
|
on miniscule values (Veach-MLT does this for instance) */
|
|
if (specRef > 1e-10f)
|
|
result += m_specularReflectance->getValue(bRec.its) * specRef;
|
|
}
|
|
|
|
if (hasDiffuse)
|
|
result += m_diffuseReflectance->getValue(bRec.its) * INV_PI;
|
|
|
|
return result * Frame::cosTheta(bRec.wo);
|
|
}
|
|
|
|
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
|
|
if (Frame::cosTheta(bRec.wi) <= 0 ||
|
|
Frame::cosTheta(bRec.wo) <= 0 || measure != ESolidAngle)
|
|
return 0.0f;
|
|
|
|
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
|
|
&& (bRec.component == -1 || bRec.component == 0);
|
|
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection)
|
|
&& (bRec.component == -1 || bRec.component == 1);
|
|
|
|
Float diffuseProb = 0.0f, specProb = 0.0f;
|
|
|
|
if (hasSpecular) {
|
|
Float alphaU = m_alphaU->getValue(bRec.its).average();
|
|
Float alphaV = m_alphaV->getValue(bRec.its).average();
|
|
Vector H = normalize(bRec.wi+bRec.wo);
|
|
Float factor1 = 1.0f / (4.0f * M_PI * alphaU * alphaV *
|
|
dot(H, bRec.wi) * std::pow(Frame::cosTheta(H), 3));
|
|
Float factor2 = H.x / alphaU, factor3 = H.y / alphaV;
|
|
|
|
Float exponent = -(factor2*factor2+factor3*factor3)/(H.z*H.z);
|
|
specProb = factor1 * std::exp(exponent);
|
|
}
|
|
|
|
if (hasDiffuse)
|
|
diffuseProb = Frame::cosTheta(bRec.wo) * INV_PI;
|
|
|
|
if (hasDiffuse && hasSpecular)
|
|
return m_specularSamplingWeight * specProb +
|
|
(1-m_specularSamplingWeight) * diffuseProb;
|
|
else if (hasDiffuse)
|
|
return diffuseProb;
|
|
else if (hasSpecular)
|
|
return specProb;
|
|
else
|
|
return 0.0f;
|
|
}
|
|
|
|
inline Spectrum sample(BSDFQueryRecord &bRec, Float &_pdf, const Point2 &_sample) const {
|
|
Point2 sample(_sample);
|
|
|
|
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
|
|
&& (bRec.component == -1 || bRec.component == 0);
|
|
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection)
|
|
&& (bRec.component == -1 || bRec.component == 1);
|
|
|
|
if (!hasSpecular && !hasDiffuse)
|
|
return Spectrum(0.0f);
|
|
|
|
bool choseSpecular = hasSpecular;
|
|
|
|
if (hasDiffuse && hasSpecular) {
|
|
if (sample.x <= m_specularSamplingWeight) {
|
|
sample.x /= m_specularSamplingWeight;
|
|
} else {
|
|
sample.x = (sample.x - m_specularSamplingWeight)
|
|
/ (1-m_specularSamplingWeight);
|
|
choseSpecular = false;
|
|
}
|
|
}
|
|
|
|
if (choseSpecular) {
|
|
Float alphaU = m_alphaU->getValue(bRec.its).average();
|
|
Float alphaV = m_alphaV->getValue(bRec.its).average();
|
|
|
|
Float phiH = std::atan(alphaV/alphaU
|
|
* std::tan(2.0f * M_PI * sample.y));
|
|
if (sample.y > 0.5f)
|
|
phiH += M_PI;
|
|
Float cosPhiH = std::cos(phiH);
|
|
Float sinPhiH = std::sqrt(std::max((Float) 0.0f,
|
|
1.0f-cosPhiH*cosPhiH));
|
|
|
|
Float thetaH = std::atan(std::sqrt(std::max((Float) 0.0f,
|
|
-std::log(sample.x) / (
|
|
(cosPhiH*cosPhiH) / (alphaU*alphaU) +
|
|
(sinPhiH*sinPhiH) / (alphaV*alphaV)
|
|
))));
|
|
Vector H = sphericalDirection(thetaH, phiH);
|
|
bRec.wo = H * (2.0f * dot(bRec.wi, H)) - bRec.wi;
|
|
|
|
bRec.sampledComponent = 1;
|
|
bRec.sampledType = EGlossyReflection;
|
|
|
|
if (Frame::cosTheta(bRec.wo) <= 0.0f)
|
|
return Spectrum(0.0f);
|
|
} else {
|
|
bRec.wo = squareToHemispherePSA(sample);
|
|
bRec.sampledComponent = 0;
|
|
bRec.sampledType = EDiffuseReflection;
|
|
}
|
|
|
|
_pdf = pdf(bRec, ESolidAngle);
|
|
|
|
if (_pdf == 0)
|
|
return Spectrum(0.0f);
|
|
else
|
|
return eval(bRec, ESolidAngle);
|
|
}
|
|
|
|
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
|
|
Float pdf=0;
|
|
Spectrum result = Ward::sample(bRec, pdf, sample);
|
|
|
|
if (result.isZero())
|
|
return Spectrum(0.0f);
|
|
else
|
|
return result / pdf;
|
|
}
|
|
|
|
void addChild(const std::string &name, ConfigurableObject *child) {
|
|
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
|
|
if (name == "alphaU")
|
|
m_alphaU = static_cast<Texture *>(child);
|
|
else if (name == "alphaV")
|
|
m_alphaV = static_cast<Texture *>(child);
|
|
else if (name == "diffuseReflectance")
|
|
m_diffuseReflectance = static_cast<Texture *>(child);
|
|
else if (name == "specularReflectance")
|
|
m_specularReflectance = static_cast<Texture *>(child);
|
|
else
|
|
BSDF::addChild(name, child);
|
|
} else {
|
|
BSDF::addChild(name, child);
|
|
}
|
|
}
|
|
|
|
void serialize(Stream *stream, InstanceManager *manager) const {
|
|
BSDF::serialize(stream, manager);
|
|
|
|
stream->writeUInt(m_modelVariant);
|
|
manager->serialize(stream, m_diffuseReflectance.get());
|
|
manager->serialize(stream, m_specularReflectance.get());
|
|
manager->serialize(stream, m_alphaU.get());
|
|
manager->serialize(stream, m_alphaV.get());
|
|
}
|
|
|
|
Shader *createShader(Renderer *renderer) const;
|
|
|
|
std::string toString() const {
|
|
std::ostringstream oss;
|
|
oss << "Ward[" << endl
|
|
<< " name = \"" << getName() << "\"," << endl
|
|
<< " variant = ";
|
|
|
|
switch (m_modelVariant) {
|
|
case EWard: oss << "ward," << endl; break;
|
|
case EWardDuer: oss << "wardDuer," << endl; break;
|
|
case EBalanced: oss << "balanced," << endl; break;
|
|
default: Log(EError, "Unknown model type!");
|
|
}
|
|
|
|
oss << " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl
|
|
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
|
|
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
|
|
<< " alphaU = " << indent(m_alphaU->toString()) << "," << endl
|
|
<< " alphaV = " << indent(m_alphaV->toString()) << endl
|
|
<< "]";
|
|
return oss.str();
|
|
}
|
|
|
|
MTS_DECLARE_CLASS()
|
|
private:
|
|
EModelVariant m_modelVariant;
|
|
ref<Texture> m_diffuseReflectance;
|
|
ref<Texture> m_specularReflectance;
|
|
ref<Texture> m_alphaU;
|
|
ref<Texture> m_alphaV;
|
|
Float m_specularSamplingWeight;
|
|
};
|
|
|
|
// ================ Hardware shader implementation ================
|
|
|
|
/**
|
|
* GLSL port of the Ward shader. This version only implements the variant
|
|
* with energy balance. When the roughness is lower than
|
|
* \alpha < 0.2, the shader clamps it to 0.2 so that it will still perform
|
|
* reasonably well in a VPL-based preview.
|
|
*/
|
|
class WardShader : public Shader {
|
|
public:
|
|
WardShader(Renderer *renderer,
|
|
const Texture *diffuseColor,
|
|
const Texture *specularColor,
|
|
const Texture *alphaU,
|
|
const Texture *alphaV) : Shader(renderer, EBSDFShader),
|
|
m_diffuseReflectance(diffuseColor),
|
|
m_specularReflectance(specularColor),
|
|
m_alphaU(alphaU), m_alphaV(alphaV) {
|
|
m_diffuseReflectanceShader = renderer->registerShaderForResource(m_diffuseReflectance.get());
|
|
m_specularReflectanceShader = renderer->registerShaderForResource(m_specularReflectance.get());
|
|
m_alphaUShader = renderer->registerShaderForResource(m_alphaU.get());
|
|
m_alphaVShader = renderer->registerShaderForResource(m_alphaV.get());
|
|
}
|
|
|
|
bool isComplete() const {
|
|
return m_diffuseReflectanceShader.get() != NULL &&
|
|
m_specularReflectanceShader.get() != NULL &&
|
|
m_alphaU.get() != NULL &&
|
|
m_alphaV.get() != NULL;
|
|
}
|
|
|
|
void putDependencies(std::vector<Shader *> &deps) {
|
|
deps.push_back(m_diffuseReflectanceShader.get());
|
|
deps.push_back(m_specularReflectanceShader.get());
|
|
deps.push_back(m_alphaUShader.get());
|
|
deps.push_back(m_alphaVShader.get());
|
|
}
|
|
|
|
void cleanup(Renderer *renderer) {
|
|
renderer->unregisterShaderForResource(m_diffuseReflectance.get());
|
|
renderer->unregisterShaderForResource(m_specularReflectance.get());
|
|
renderer->unregisterShaderForResource(m_alphaU.get());
|
|
renderer->unregisterShaderForResource(m_alphaV.get());
|
|
}
|
|
|
|
void generateCode(std::ostringstream &oss,
|
|
const std::string &evalName,
|
|
const std::vector<std::string> &depNames) const {
|
|
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
|
|
<< " if (wi.z <= 0.0 || wo.z <= 0.0)" << endl
|
|
<< " return vec3(0.0);" << endl
|
|
<< " vec3 H = wi + wo;" << endl
|
|
<< " float cosSqr = H.z * H.z;" << endl
|
|
<< " float alphaU = max(0.3, " << depNames[2] << "(uv)[0]);" << endl
|
|
<< " float alphaV = max(0.3, " << depNames[3] << "(uv)[0]);" << endl
|
|
<< " float factor1 = dot(H, H)/(3.1415*alphaU*alphaV*cosSqr*cosSqr);" << endl
|
|
<< " float factor2 = H.x / alphaU, factor3 = H.y / alphaV;" << endl
|
|
<< " float exponent = -(factor2*factor2 + factor3*factor3)/(H.z*H.z);" << endl
|
|
<< " float specRef = factor1 * exp(exponent);" << endl
|
|
<< " return (" << depNames[0] << "(uv) * 0.31831" << endl
|
|
<< " + " << depNames[1] << "(uv) * specRef) * cosTheta(wo);" << endl
|
|
<< "}" << endl
|
|
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
|
|
<< " if (wi.z <= 0.0 || wo.z <= 0.0)" << endl
|
|
<< " return vec3(0.0);" << endl
|
|
<< " return " << depNames[0] << "(uv) * (0.31831 * cosTheta(wo));" << endl
|
|
<< "}" << endl;
|
|
}
|
|
|
|
MTS_DECLARE_CLASS()
|
|
private:
|
|
ref<const Texture> m_diffuseReflectance;
|
|
ref<const Texture> m_specularReflectance;
|
|
ref<const Texture> m_alphaU;
|
|
ref<const Texture> m_alphaV;
|
|
ref<Shader> m_diffuseReflectanceShader;
|
|
ref<Shader> m_specularReflectanceShader;
|
|
ref<Shader> m_alphaUShader;
|
|
ref<Shader> m_alphaVShader;
|
|
};
|
|
|
|
Shader *Ward::createShader(Renderer *renderer) const {
|
|
return new WardShader(renderer, m_diffuseReflectance.get(),
|
|
m_specularReflectance.get(), m_alphaU.get(), m_alphaV.get());
|
|
}
|
|
|
|
MTS_IMPLEMENT_CLASS(WardShader, false, Shader)
|
|
MTS_IMPLEMENT_CLASS_S(Ward, false, BSDF);
|
|
MTS_EXPORT_PLUGIN(Ward, "Anisotropic Ward BRDF");
|
|
MTS_NAMESPACE_END
|