mitsuba/src/bsdfs/ward.cpp

488 lines
17 KiB
C++

/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/hw/basicshader.h>
#include <boost/algorithm/string.hpp>
MTS_NAMESPACE_BEGIN
/*!\plugin{ward}{Anisotropic Ward BRDF}
* \order{11}
* \parameters{
* \parameter{variant}{\String}{
* Determines the variant of the Ward model to use:
* \begin{enumerate}[(i)]
* \item \code{ward}: The original model by Ward \cite{Ward1992Measuring}
* --- suffers from energy loss at grazing angles.
* \item \code{ward-duer}: Corrected Ward model with lower energy loss
* at grazing angles \cite{Dur2006Improved}.
* Does not always conserve energy.
* \item \code{balanced}: Improved version of the \code{ward-duer}
* model with energy balance at all angles \cite{Geisler2010New}.
* \vspace{-4mm}
* \end{enumerate}
* }
* \parameter{alphaU, alphaV}{\Float\Or\Texture}{
* Specifies the anisotropic roughness values along the tangent and
* bitangent directions.
* \default{0.1}.
* }
* \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{
* Specifies the weight of the specular reflectance component.\default{0.2}}
* \parameter{diffuse\showbreak Reflectance}{\Spectrum\Or\Texture}{
* Specifies the weight of the diffuse reflectance component\default{0.5}}
* }
* \renderings{
* \rendering{$\alpha_u=0.1,\ \alpha_v=0.3$}{bsdf_ward_01_03}
* \rendering{$\alpha_u=0.3,\ \alpha_v=0.1$}{bsdf_ward_03_01}
* }
* This plugin implements the anisotropic Ward reflectance model and
* several extensions. They are described in the papers
* \begin{enumerate}[(i)]
* \item ``Measuring and Modeling Anisotropic Reflection''
* by Greg Ward \cite{Ward1992Measuring}
* \item ``Notes on the Ward BRDF'' by Bruce Walter \cite{Walter2005Notes}
* \item ``An Improved Normalization for the Ward Reflectance Model''
* by Arne D\"ur \cite{Dur2006Improved}
* \item ``A New Ward BRDF Model with Bounded Albedo'' by
* Geisler-Moroder et al. \cite{Geisler2010New}
* \end{enumerate}
*
* Like the Phong BRDF, the Ward model does not take the Fresnel reflectance
* of the material into account. In an experimental study by Ngan et al.
* \cite{Ngan2005Experimental}, the Ward model performed noticeably worse than
* models based on microfacets.
*
* For this reason, it is usually preferable to switch to a microfacet model
* that incorporates knowledge about the material's index of refraction. In Mitsuba,
* two such alternatives to \pluginref{ward} are given by the plugins
* \pluginref{roughconductor} and \pluginref{roughplastic} (depending on the
* material type).
*
* When using this plugin, note that the diffuse and specular reflectance
* components should add up to a value less than or equal to one (for each
* color channel). Otherwise, they will automatically be scaled appropriately
* to ensure energy conservation.
*/
class Ward : public BSDF {
public:
/// Supported model types
enum EModelVariant {
/// The original Ward model
EWard = 0,
/// Ward model with correction by Arne Duer
EWardDuer = 1,
/// Energy-balanced Ward model
EBalanced = 2
};
Ward(const Properties &props)
: BSDF(props) {
m_diffuseReflectance = new ConstantSpectrumTexture(
props.getSpectrum("diffuseReflectance", Spectrum(0.5f)));
m_specularReflectance = new ConstantSpectrumTexture(
props.getSpectrum("specularReflectance", Spectrum(0.2f)));
std::string type =
boost::to_lower_copy(props.getString("variant", "balanced"));
if (type == "ward")
m_modelVariant = EWard;
else if (type == "ward-duer")
m_modelVariant = EWardDuer;
else if (type == "balanced")
m_modelVariant = EBalanced;
else
Log(EError, "Specified an invalid model type \"%s\", must be "
"\"ward\", \"ward-duer\", or \"balanced\"!", type.c_str());
Float alpha = props.getFloat("alpha", 0.1f),
alphaU = props.getFloat("alphaU", alpha),
alphaV = props.getFloat("alphaV", alpha);
m_alphaU = new ConstantFloatTexture(alphaU);
if (alphaU == alphaV)
m_alphaV = m_alphaU;
else
m_alphaV = new ConstantFloatTexture(alphaV);
m_specularSamplingWeight = 0.0f;
}
Ward(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_modelVariant = (EModelVariant) stream->readUInt();
m_diffuseReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_alphaU = static_cast<Texture *>(manager->getInstance(stream));
m_alphaV = static_cast<Texture *>(manager->getInstance(stream));
configure();
}
void configure() {
unsigned int extraFlags = 0;
if (m_alphaU != m_alphaV)
extraFlags |= EAnisotropic;
m_components.clear();
m_components.push_back(EGlossyReflection | EFrontSide | extraFlags
| ((!m_specularReflectance->isConstant() || !m_alphaU->isConstant()
|| !m_alphaV->isConstant()) ? ESpatiallyVarying : 0));
m_components.push_back(EDiffuseReflection | EFrontSide | extraFlags
| (m_diffuseReflectance->isConstant() ? 0 : ESpatiallyVarying));
/* Verify the input parameters and fix them if necessary */
std::pair<Texture *, Texture *> result = ensureEnergyConservation(
m_specularReflectance, m_diffuseReflectance,
"specularReflectance", "diffuseReflectance", 1.0f);
m_specularReflectance = result.first;
m_diffuseReflectance = result.second;
/* Compute weights that steer samples towards
the specular or diffuse components */
Float dAvg = m_diffuseReflectance->getAverage().getLuminance(),
sAvg = m_specularReflectance->getAverage().getLuminance();
m_specularSamplingWeight = sAvg / (dAvg + sAvg);
m_usesRayDifferentials =
m_diffuseReflectance->usesRayDifferentials() ||
m_specularReflectance->usesRayDifferentials() ||
m_alphaU->usesRayDifferentials() ||
m_alphaV->usesRayDifferentials();
BSDF::configure();
}
Spectrum getDiffuseReflectance(const Intersection &its) const {
return m_diffuseReflectance->getValue(its);
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0 || measure != ESolidAngle)
return Spectrum(0.0f);
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection)
&& (bRec.component == -1 || bRec.component == 1);
Spectrum result(0.0f);
if (hasSpecular) {
Vector H = bRec.wi+bRec.wo;
Float alphaU = m_alphaU->getValue(bRec.its).average();
Float alphaV = m_alphaV->getValue(bRec.its).average();
Float factor1 = 0.0f;
switch (m_modelVariant) {
case EWard:
factor1 = 1.0f / (4.0f * M_PI * alphaU * alphaV *
std::sqrt(Frame::cosTheta(bRec.wi)*Frame::cosTheta(bRec.wo)));
break;
case EWardDuer:
factor1 = 1.0f / (4.0f * M_PI * alphaU * alphaV *
Frame::cosTheta(bRec.wi)*Frame::cosTheta(bRec.wo));
break;
case EBalanced:
factor1 = dot(H,H) / (M_PI * alphaU * alphaV
* std::pow(Frame::cosTheta(H),4));
break;
default:
Log(EError, "Unknown model type!");
}
Float factor2 = H.x / alphaU, factor3 = H.y / alphaV;
Float exponent = -(factor2*factor2+factor3*factor3)/(H.z*H.z);
Float specRef = factor1 * std::exp(exponent);
/* Important to prevent numeric issues when evaluating the
sampling density of the Ward model in places where it takes
on miniscule values (Veach-MLT does this for instance) */
if (specRef > 1e-10f)
result += m_specularReflectance->getValue(bRec.its) * specRef;
}
if (hasDiffuse)
result += m_diffuseReflectance->getValue(bRec.its) * INV_PI;
return result * Frame::cosTheta(bRec.wo);
}
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0 || measure != ESolidAngle)
return 0.0f;
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection)
&& (bRec.component == -1 || bRec.component == 1);
Float diffuseProb = 0.0f, specProb = 0.0f;
if (hasSpecular) {
Float alphaU = m_alphaU->getValue(bRec.its).average();
Float alphaV = m_alphaV->getValue(bRec.its).average();
Vector H = normalize(bRec.wi+bRec.wo);
Float factor1 = 1.0f / (4.0f * M_PI * alphaU * alphaV *
dot(H, bRec.wi) * std::pow(Frame::cosTheta(H), 3));
Float factor2 = H.x / alphaU, factor3 = H.y / alphaV;
Float exponent = -(factor2*factor2+factor3*factor3)/(H.z*H.z);
specProb = factor1 * std::exp(exponent);
}
if (hasDiffuse)
diffuseProb = Frame::cosTheta(bRec.wo) * INV_PI;
if (hasDiffuse && hasSpecular)
return m_specularSamplingWeight * specProb +
(1-m_specularSamplingWeight) * diffuseProb;
else if (hasDiffuse)
return diffuseProb;
else if (hasSpecular)
return specProb;
else
return 0.0f;
}
inline Spectrum sample(BSDFQueryRecord &bRec, Float &_pdf, const Point2 &_sample) const {
Point2 sample(_sample);
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection)
&& (bRec.component == -1 || bRec.component == 1);
if (!hasSpecular && !hasDiffuse)
return Spectrum(0.0f);
bool choseSpecular = hasSpecular;
if (hasDiffuse && hasSpecular) {
if (sample.x <= m_specularSamplingWeight) {
sample.x /= m_specularSamplingWeight;
} else {
sample.x = (sample.x - m_specularSamplingWeight)
/ (1-m_specularSamplingWeight);
choseSpecular = false;
}
}
if (choseSpecular) {
Float alphaU = m_alphaU->getValue(bRec.its).average();
Float alphaV = m_alphaV->getValue(bRec.its).average();
Float phiH = std::atan(alphaV/alphaU
* std::tan(2.0f * M_PI * sample.y));
if (sample.y > 0.5f)
phiH += M_PI;
Float cosPhiH = std::cos(phiH);
Float sinPhiH = std::sqrt(std::max((Float) 0.0f,
1.0f-cosPhiH*cosPhiH));
Float thetaH = std::atan(std::sqrt(std::max((Float) 0.0f,
-std::log(sample.x) / (
(cosPhiH*cosPhiH) / (alphaU*alphaU) +
(sinPhiH*sinPhiH) / (alphaV*alphaV)
))));
Vector H = sphericalDirection(thetaH, phiH);
bRec.wo = H * (2.0f * dot(bRec.wi, H)) - bRec.wi;
bRec.sampledComponent = 1;
bRec.sampledType = EGlossyReflection;
if (Frame::cosTheta(bRec.wo) <= 0.0f)
return Spectrum(0.0f);
} else {
bRec.wo = squareToHemispherePSA(sample);
bRec.sampledComponent = 0;
bRec.sampledType = EDiffuseReflection;
}
_pdf = pdf(bRec, ESolidAngle);
if (_pdf == 0)
return Spectrum(0.0f);
else
return eval(bRec, ESolidAngle);
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
Float pdf=0;
Spectrum result = Ward::sample(bRec, pdf, sample);
if (result.isZero())
return Spectrum(0.0f);
else
return result / pdf;
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
if (name == "alphaU")
m_alphaU = static_cast<Texture *>(child);
else if (name == "alphaV")
m_alphaV = static_cast<Texture *>(child);
else if (name == "diffuseReflectance")
m_diffuseReflectance = static_cast<Texture *>(child);
else if (name == "specularReflectance")
m_specularReflectance = static_cast<Texture *>(child);
else
BSDF::addChild(name, child);
} else {
BSDF::addChild(name, child);
}
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
stream->writeUInt(m_modelVariant);
manager->serialize(stream, m_diffuseReflectance.get());
manager->serialize(stream, m_specularReflectance.get());
manager->serialize(stream, m_alphaU.get());
manager->serialize(stream, m_alphaV.get());
}
Shader *createShader(Renderer *renderer) const;
std::string toString() const {
std::ostringstream oss;
oss << "Ward[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " variant = ";
switch (m_modelVariant) {
case EWard: oss << "ward," << endl; break;
case EWardDuer: oss << "wardDuer," << endl; break;
case EBalanced: oss << "balanced," << endl; break;
default: Log(EError, "Unknown model type!");
}
oss << " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
<< " alphaU = " << indent(m_alphaU->toString()) << "," << endl
<< " alphaV = " << indent(m_alphaV->toString()) << endl
<< "]";
return oss.str();
}
MTS_DECLARE_CLASS()
private:
EModelVariant m_modelVariant;
ref<Texture> m_diffuseReflectance;
ref<Texture> m_specularReflectance;
ref<Texture> m_alphaU;
ref<Texture> m_alphaV;
Float m_specularSamplingWeight;
};
// ================ Hardware shader implementation ================
/**
* GLSL port of the Ward shader. This version only implements the variant
* with energy balance. When the roughness is lower than
* \alpha < 0.2, the shader clamps it to 0.2 so that it will still perform
* reasonably well in a VPL-based preview.
*/
class WardShader : public Shader {
public:
WardShader(Renderer *renderer,
const Texture *diffuseColor,
const Texture *specularColor,
const Texture *alphaU,
const Texture *alphaV) : Shader(renderer, EBSDFShader),
m_diffuseReflectance(diffuseColor),
m_specularReflectance(specularColor),
m_alphaU(alphaU), m_alphaV(alphaV) {
m_diffuseReflectanceShader = renderer->registerShaderForResource(m_diffuseReflectance.get());
m_specularReflectanceShader = renderer->registerShaderForResource(m_specularReflectance.get());
m_alphaUShader = renderer->registerShaderForResource(m_alphaU.get());
m_alphaVShader = renderer->registerShaderForResource(m_alphaV.get());
}
bool isComplete() const {
return m_diffuseReflectanceShader.get() != NULL &&
m_specularReflectanceShader.get() != NULL &&
m_alphaU.get() != NULL &&
m_alphaV.get() != NULL;
}
void putDependencies(std::vector<Shader *> &deps) {
deps.push_back(m_diffuseReflectanceShader.get());
deps.push_back(m_specularReflectanceShader.get());
deps.push_back(m_alphaUShader.get());
deps.push_back(m_alphaVShader.get());
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_diffuseReflectance.get());
renderer->unregisterShaderForResource(m_specularReflectance.get());
renderer->unregisterShaderForResource(m_alphaU.get());
renderer->unregisterShaderForResource(m_alphaV.get());
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " if (wi.z <= 0.0 || wo.z <= 0.0)" << endl
<< " return vec3(0.0);" << endl
<< " vec3 H = wi + wo;" << endl
<< " float cosSqr = H.z * H.z;" << endl
<< " float alphaU = max(0.3, " << depNames[2] << "(uv)[0]);" << endl
<< " float alphaV = max(0.3, " << depNames[3] << "(uv)[0]);" << endl
<< " float factor1 = dot(H, H)/(3.1415*alphaU*alphaV*cosSqr*cosSqr);" << endl
<< " float factor2 = H.x / alphaU, factor3 = H.y / alphaV;" << endl
<< " float exponent = -(factor2*factor2 + factor3*factor3)/(H.z*H.z);" << endl
<< " float specRef = factor1 * exp(exponent);" << endl
<< " return (" << depNames[0] << "(uv) * 0.31831" << endl
<< " + " << depNames[1] << "(uv) * specRef) * cosTheta(wo);" << endl
<< "}" << endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " if (wi.z <= 0.0 || wo.z <= 0.0)" << endl
<< " return vec3(0.0);" << endl
<< " return " << depNames[0] << "(uv) * (0.31831 * cosTheta(wo));" << endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
private:
ref<const Texture> m_diffuseReflectance;
ref<const Texture> m_specularReflectance;
ref<const Texture> m_alphaU;
ref<const Texture> m_alphaV;
ref<Shader> m_diffuseReflectanceShader;
ref<Shader> m_specularReflectanceShader;
ref<Shader> m_alphaUShader;
ref<Shader> m_alphaVShader;
};
Shader *Ward::createShader(Renderer *renderer) const {
return new WardShader(renderer, m_diffuseReflectance.get(),
m_specularReflectance.get(), m_alphaU.get(), m_alphaV.get());
}
MTS_IMPLEMENT_CLASS(WardShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(Ward, false, BSDF);
MTS_EXPORT_PLUGIN(Ward, "Anisotropic Ward BRDF");
MTS_NAMESPACE_END