/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2011 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #if !defined(__MICROFACET_H) #define __MICROFACET_H #include #include MTS_NAMESPACE_BEGIN /** * Implements the microfacet distributions discussed in * "Microfacet Models for Refraction through Rough Surfaces" * by Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance */ class MicrofacetDistribution { public: /// Supported distribution types enum EType { /// Beckmann distribution derived from Gaussian random surfaces EBeckmann = 0, /// Classical Phong distribution EPhong = 1, /// Long-tailed distribution proposed by Walter et al. EGGX = 2, /// Anisotropic distribution by Ashikhmin and Shirley EAshikhminShirley = 3 }; /// Create a microfacet distribution of the specified type MicrofacetDistribution(EType type = EBeckmann) : m_type(type) { } /** * \brief Create a microfacet distribution of the specified name * (ggx/phong/beckmann/as) */ MicrofacetDistribution(const std::string &name) { std::string distr = boost::to_lower_copy(name); if (distr == "beckmann") m_type = EBeckmann; else if (distr == "phong") m_type = EPhong; else if (distr == "ggx") m_type = EGGX; else if (distr == "as") m_type = EAshikhminShirley; else SLog(EError, "Specified an invalid distribution \"%s\", must be " "\"beckmann\", \"phong\", \"ggx\", or \"as\"!", distr.c_str()); } /// Return the distribution type inline EType getType() const { return m_type; } /** * \brief Convert the roughness values so that they behave similarly to the * Beckmann distribution. * * Also clamps to the minimal roughness 1e-4 to avoid numerical issues * (For lower roughness values, please switch to the smooth BSDF variants) */ Float transformRoughness(Float value) const { if (m_type == EPhong || m_type == EAshikhminShirley) value = 2 / (value * value) - 2; return std::max(value, (Float) 1e-4f); } /** * \brief Implements the microfacet distribution function D * * \param m The microsurface normal * \param alphaU Surface roughness in the tangent directoin * \param alphaV Surface roughness in the bitangent direction */ Float eval(const Vector &m, Float alphaU, Float alphaV) const { if (Frame::cosTheta(m) <= 0) return 0.0f; Float result; switch (m_type) { case EBeckmann: { /* Beckmann distribution function for Gaussian random surfaces */ const Float ex = Frame::tanTheta(m) / alphaU; result = std::exp(-(ex*ex)) / (M_PI * alphaU*alphaU * std::pow(Frame::cosTheta(m), (Float) 4.0f)); } break; case EPhong: { /* Phong distribution function */ result = (alphaU + 2) * INV_TWOPI * std::pow(Frame::cosTheta(m), alphaU); } break; case EGGX: { /* Empirical GGX distribution function for rough surfaces */ const Float tanTheta = Frame::tanTheta(m), cosTheta = Frame::cosTheta(m); const Float root = alphaU / (cosTheta*cosTheta * (alphaU*alphaU + tanTheta*tanTheta)); result = INV_PI * (root * root); } break; case EAshikhminShirley: { const Float cosTheta = Frame::cosTheta(m); const Float ds = 1 - cosTheta * cosTheta; if (ds < 0) return 0.0f; const Float exponent = (alphaU * m.x * m.x + alphaV * m.y * m.y) / ds; result = std::sqrt((alphaU + 2) * (alphaV + 2)) * INV_TWOPI * std::pow(cosTheta, exponent); } break; default: SLog(EError, "Invalid distribution function!"); return 0.0f; } /* Prevent potential numerical issues in other stages of the model */ if (result < 1e-20f) result = 0; return result; } /** * \brief Returns the density function associated with * the \ref{sample} function. */ Float pdf(const Vector &m, Float alphaU, Float alphaV) const { /* Usually, this is just D(m) * cos(theta_M) */ if (m_type != EAshikhminShirley) return eval(m, alphaU, alphaV) * Frame::cosTheta(m); /* For the Ashikhmin-Shirley model, the sampling density does not include the cos(theta_M) factor, and the normalization is slightly different than in eval(). */ const Float cosTheta = Frame::cosTheta(m); const Float ds = 1 - cosTheta * cosTheta; if (ds < 0) return 0.0f; const Float exponent = (alphaU * m.x * m.x + alphaV * m.y * m.y) / ds; Float result = std::sqrt((alphaU + 1) * (alphaV + 1)) * INV_TWOPI * std::pow(cosTheta, exponent); /* Prevent potential numerical issues in other stages of the model */ if (result < 1e-20f) result = 0; return result; } /// Helper routine: sample the first quadrant of the A&S distribution void sampleFirstQuadrant(Float alphaU, Float alphaV, Float u1, Float u2, Float &phi, Float &cosTheta) const { if (alphaU == alphaV) phi = M_PI * u1 * 0.5f; else phi = std::atan( std::sqrt((alphaU + 1.0f) / (alphaV + 1.0f)) * std::tan(M_PI * u1 * 0.5f)); const Float cosPhi = std::cos(phi), sinPhi = std::sin(phi); cosTheta = std::pow(u2, 1.0f / (alphaU * cosPhi * cosPhi + alphaV * sinPhi * sinPhi + 1.0f)); } /** * \brief Draw a sample from the microsurface normal distribution * * \param sample A uniformly distributed 2D sample * \param alphaU Surface roughness in the tangent directoin * \param alphaV Surface roughness in the bitangent direction */ Normal sample(const Point2 &sample, Float alphaU, Float alphaV) const { /* The azimuthal component is always selected uniformly regardless of the distribution */ Float phiM = (2.0f * M_PI) * sample.y, thetaM = 0.0f; switch (m_type) { case EBeckmann: thetaM = std::atan(std::sqrt(-alphaU*alphaU * std::log(1.0f - sample.x))); break; case EPhong: thetaM = std::acos(std::pow(sample.x, (Float) 1 / (alphaU + 2))); break; case EGGX: thetaM = std::atan(alphaU * std::sqrt(sample.x) / std::sqrt(1.0f - sample.x)); break; case EAshikhminShirley: { /* Sampling method based on code from PBRT */ Float phi, cosTheta; if (sample.x < 0.25f) { sampleFirstQuadrant(alphaU, alphaV, 4 * sample.x, sample.y, phi, cosTheta); } else if (sample.x < 0.5f) { sampleFirstQuadrant(alphaU, alphaV, 4 * (0.5f - sample.x), sample.y, phi, cosTheta); phi = M_PI - phi; } else if (sample.x < 0.75f) { sampleFirstQuadrant(alphaU, alphaV, 4 * (sample.x - 0.5f), sample.y, phi, cosTheta); phi += M_PI; } else { sampleFirstQuadrant(alphaU, alphaV, 4 * (1 - sample.x), sample.y, phi, cosTheta); phi = 2 * M_PI - phi; } const Float sinTheta = std::sqrt( std::max((Float) 0, 1 - cosTheta*cosTheta)); return Vector( sinTheta * std::cos(phi), sinTheta * std::sin(phi), cosTheta ); } break; default: SLog(EError, "Invalid distribution function!"); } return Normal(sphericalDirection(thetaM, phiM)); } /** * \brief Smith's shadow-masking function G1 for each * of the supported microfacet distributions * * \param v An arbitrary direction * \param m The microsurface normal * \param alpha The surface roughness */ Float smithG1(const Vector &v, const Vector &m, Float alpha) const { const Float tanTheta = std::abs(Frame::tanTheta(v)); /* perpendicular incidence -- no shadowing/masking */ if (tanTheta == 0.0f) return 1.0f; /* Can't see the back side from the front and vice versa */ if (dot(v, m) * Frame::cosTheta(v) <= 0) return 0.0f; switch (m_type) { case EAshikhminShirley: case EPhong: /* Approximation recommended by Bruce Walter: Use the Beckmann shadowing-masking function with specially chosen roughness value */ cout << alpha << endl; alpha = std::sqrt(0.5f * alpha + 1) / tanTheta; cout << " becomes " << alpha << endl; case EBeckmann: { /* Use a fast and accurate (<0.35% rel. error) rational approximation to the shadowing-masking function */ const Float a = 1.0f / (alpha * tanTheta); const Float aSqr = a * a; if (a >= 1.6f) return 1.0f; return (3.535f * a + 2.181f * aSqr) / (1.0f + 2.276f * a + 2.577f * aSqr); } break; case EGGX: { const Float root = alpha * tanTheta; return 2.0f / (1.0f + std::sqrt(1.0f + root*root)); } break; default: SLog(EError, "Invalid distribution function!"); return 0.0f; } } /** * \brief Shadow-masking function for each of the supported * microfacet distributions * * \param wi The incident direction * \param wo The exitant direction * \param m The microsurface normal * \param alpha The surface roughness */ Float G(const Vector &wi, const Vector &wo, const Vector &m, Float alphaU, Float alphaV) const { Float alpha = std::max(alphaU, alphaV); return smithG1(wi, m, alpha) * smithG1(wo, m, alpha); } std::string toString() const { switch (m_type) { case EBeckmann: return "beckmann"; break; case EPhong: return "phong"; break; case EGGX: return "ggx"; break; case EAshikhminShirley: return "as"; break; default: SLog(EError, "Invalid distribution function"); return ""; } } private: EType m_type; }; MTS_NAMESPACE_END #endif /* __MICROFACET_H */