/*
    This file is part of Mitsuba, a physically based rendering system.

    Copyright (c) 2007-2014 by Wenzel Jakob and others.

    Mitsuba is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License Version 3
    as published by the Free Software Foundation.

    Mitsuba is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program. If not, see <http://www.gnu.org/licenses/>.
*/

#if !defined(__MICROFACET_H)
#define __MICROFACET_H

#include <mitsuba/mitsuba.h>
#include <mitsuba/core/frame.h>
#include <mitsuba/core/properties.h>
#include <boost/algorithm/string.hpp>

MTS_NAMESPACE_BEGIN

/**
 * \brief Implementation of the Beckman and GGX / Trowbridge-Reitz microfacet
 * distributions and various useful sampling routines
 *
 * Based on the papers
 *
 *   "Microfacet Models for Refraction through Rough Surfaces"
 *    by Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance
 *
 * and
 *
 *   "Importance Sampling Microfacet-Based BSDFs using the Distribution of Visible Normals"
 *    by Eric Heitz and Eugene D'Eon
 *
 *  The visible normal sampling code was provided by Eric Heitz and Eugene D'Eon.
 */
class MicrofacetDistribution {
public:
	/// Supported distribution types
	enum EType {
		/// Beckmann distribution derived from Gaussian random surfaces
		EBeckmann         = 0,

		/// GGX: Long-tailed distribution for very rough surfaces (aka. Trowbridge-Reitz distr.)
		EGGX              = 1,

		/// Phong distribution (with the anisotropic extension by Ashikhmin and Shirley)
		EPhong            = 2
	};

	/**
	 * Create an isotropic microfacet distribution of the specified type
	 *
	 * \param type
	 *     The desired type of microfacet distribution
	 * \param alpha
	 *     The surface roughness
	 */
	inline MicrofacetDistribution(EType type, Float alpha, bool sampleVisible = true)
		: m_type(type), m_alphaU(alpha), m_alphaV(alpha), m_sampleVisible(sampleVisible),
	      m_exponentU(0.0f), m_exponentV(0.0f) {
		if (m_type == EPhong)
			computePhongExponent();
	}

	/**
	 * Create an anisotropic microfacet distribution of the specified type
	 *
	 * \param type
	 *     The desired type of microfacet distribution
	 * \param alphaU
	 *     The surface roughness in the tangent direction
	 * \param alphaV
	 *     The surface roughness in the bitangent direction
	 */
	inline MicrofacetDistribution(EType type, Float alphaU, Float alphaV, bool sampleVisible = true)
		: m_type(type), m_alphaU(alphaU), m_alphaV(alphaV), m_sampleVisible(sampleVisible),
	      m_exponentU(0.0f), m_exponentV(0.0f) {
		if (m_type == EPhong)
			computePhongExponent();
	}

	/**
	 * \brief Create a microfacet distribution from a Property data
	 * structure
	 */
	MicrofacetDistribution(const Properties &props, EType type = EBeckmann,
		Float alphaU = 0.1f, Float alphaV = 0.1f, bool sampleVisible = true)
		: m_type(type), m_alphaU(alphaU), m_alphaV(alphaV), m_exponentU(0.0f),
		  m_exponentV(0.0f) {

		if (props.hasProperty("distribution")) {
			std::string distr = boost::to_lower_copy(props.getString("distribution"));
			if (distr == "beckmann")
				m_type = EBeckmann;
			else if (distr == "ggx")
				m_type = EGGX;
			else if (distr == "phong" || distr == "as")
				m_type = EPhong;
			else
				SLog(EError, "Specified an invalid distribution \"%s\", must be "
					"\"beckmann\", \"ggx\", or \"phong\"/\"as\"!", distr.c_str());
		}

		if (props.hasProperty("alpha")) {
			m_alphaU = m_alphaV = props.getFloat("alpha");
			if (props.hasProperty("alphaU") || props.hasProperty("alphaV"))
				SLog(EError, "Microfacet model: please specify either 'alpha' or 'alphaU'/'alphaV'.");
		} else if (props.hasProperty("alphaU") || props.hasProperty("alphaV")) {
			if (!props.hasProperty("alphaU") || !props.hasProperty("alphaV"))
				SLog(EError, "Microfacet model: both 'alphaU' and 'alphaV' must be specified.");
			if (props.hasProperty("alpha"))
				SLog(EError, "Microfacet model: please specify either 'alpha' or 'alphaU'/'alphaV'.");
			m_alphaU = props.getFloat("alphaU");
			m_alphaV = props.getFloat("alphaV");
		}

		m_sampleVisible = props.getBoolean("sampleVisible", sampleVisible);

		/* Visible normal sampling is not supported for the Phong / Ashikhmin-Shirley distribution */
		if (m_type == EPhong) {
			m_sampleVisible = false;
			computePhongExponent();
		}
	}

	/// Return the distribution type
	inline EType getType() const { return m_type; }

	/// Return the roughness (isotropic case)
	inline Float getAlpha() const { return m_alphaU; }

	/// Return the roughness along the tangent direction
	inline Float getAlphaU() const { return m_alphaU; }

	/// Return the roughness along the bitangent direction
	inline Float getAlphaV() const { return m_alphaV; }

	/// Return the Phong exponent (isotropic case)
	inline Float getExponent() const { return m_exponentU; }

	/// Return the Phong exponent along the tangent direction
	inline Float getExponentU() const { return m_exponentU; }

	/// Return the Phong exponent along the bitangent direction
	inline Float getExponentV() const { return m_exponentV; }

	/// Return whether or not only visible normals are sampled?
	inline bool getSampleVisible() const { return m_sampleVisible; }

	/// Is this an anisotropic microfacet distribution?
	inline bool isAnisotropic() const { return m_alphaU != m_alphaV; }

	/// Is this an anisotropic microfacet distribution?
	inline bool isIsotropic() const { return m_alphaU == m_alphaV; }

	/// Scale the roughness values by some constant
	inline void scaleAlpha(Float value) {
		m_alphaU *= value;
		m_alphaV *= value;
		if (m_type == EPhong)
			computePhongExponent();
	}

	/**
	 * \brief Evaluate the microfacet distribution function
	 *
	 * \param m
	 *     The microfacet normal
	 */
	inline Float eval(const Vector &m) const {
		if (Frame::cosTheta(m) <= 0)
			return 0.0f;

		Float cosTheta2 = Frame::cosTheta2(m);
		Float beckmannExponent = ((m.x*m.x) / (m_alphaU * m_alphaU)
				+ (m.y*m.y) / (m_alphaV * m_alphaV)) / cosTheta2;

		Float result;
		switch (m_type) {
			case EBeckmann: {
					/* Beckmann distribution function for Gaussian random surfaces - [Walter 2005] evaluation */
					result = math::fastexp(-beckmannExponent) /
						(M_PI * m_alphaU * m_alphaV * cosTheta2 * cosTheta2);
				}
				break;

			case EGGX: {
					/* GGX / Trowbridge-Reitz distribution function for rough surfaces */
					Float root = ((Float) 1 + beckmannExponent) * cosTheta2;
					result = (Float) 1 / (M_PI * m_alphaU * m_alphaV * root * root);
				}
				break;

			case EPhong: {
					/* Isotropic case: Phong distribution. Anisotropic case: Ashikhmin-Shirley distribution */
					Float exponent = interpolatePhongExponent(m);
					result = std::sqrt((m_exponentU + 2) * (m_exponentV + 2))
						* INV_TWOPI * std::pow(Frame::cosTheta(m), exponent);
				}
				break;


			default:
				SLog(EError, "Invalid distribution type!");
				return -1;
		}

		/* Prevent potential numerical issues in other stages of the model */
		if (result * Frame::cosTheta(m) < 1e-20f)
			result = 0;

		return result;
	}

	/**
	 * \brief Wrapper function which calls \ref sampleAll() or \ref sampleVisible()
	 * depending on the parameters of this class
	 */
	inline Normal sample(const Vector &wi, const Point2 &sample, Float &pdf) const {
		Normal m;
		if (m_sampleVisible) {
			m = sampleVisible(wi, sample);
			pdf = pdfVisible(wi, m);
		} else {
			m = sampleAll(sample, pdf);
		}
		return m;
	}

	/**
	 * \brief Wrapper function which calls \ref sampleAll() or \ref sampleVisible()
	 * depending on the parameters of this class
	 */
	inline Normal sample(const Vector &wi, const Point2 &sample) const {
		Normal m;
		if (m_sampleVisible) {
			m = sampleVisible(wi, sample);
		} else {
			Float pdf;
			m = sampleAll(sample, pdf);
		}
		return m;
	}

	/**
	 * \brief Wrapper function which calls \ref pdfAll() or \ref pdfVisible()
	 * depending on the parameters of this class
	 */
	inline Float pdf(const Vector &wi, const Vector &m) const {
		if (m_sampleVisible)
			return pdfVisible(wi, m);
		else
			return pdfAll(m);
	}

	/**
	 * \brief Draw a sample from the microfacet normal distribution
	 * (including *all* normals) and return the associated
	 * probability density
	 *
	 * \param sample
	 *    A uniformly distributed 2D sample
	 * \param pdf
	 *    The probability density wrt. solid angles
	 */
	inline Normal sampleAll(const Point2 &sample, Float &pdf) const {
		/* The azimuthal component is always selected
		   uniformly regardless of the distribution */
		Float cosThetaM = 0.0f;
		Float sinPhiM, cosPhiM;
		Float alphaSqr;

		switch (m_type) {
			case EBeckmann: {
					/* Beckmann distribution function for Gaussian random surfaces */
					if (isIsotropic()) {
						/* Sample phi component (isotropic case) */
						math::sincos((2.0f * M_PI) * sample.y, &sinPhiM, &cosPhiM);

						alphaSqr = m_alphaU * m_alphaU;
					} else {
						/* Sample phi component (anisotropic case) */
						Float phiM = std::atan(m_alphaV / m_alphaU *
							std::tan(M_PI + 2*M_PI*sample.y)) + M_PI * std::floor(2*sample.y + 0.5f);
						math::sincos(phiM, &sinPhiM, &cosPhiM);

						Float cosSc = cosPhiM / m_alphaU, sinSc = sinPhiM / m_alphaV;
						alphaSqr = 1.0f / (cosSc*cosSc + sinSc*sinSc);
					}

					/* Sample theta component */
					Float tanThetaMSqr = alphaSqr * -math::fastlog(1.0f - sample.x);
					cosThetaM = 1.0f / std::sqrt(1.0f + tanThetaMSqr);

					/* Compute probability density of the sampled position */
					pdf = (1.0f - sample.x) / (M_PI*m_alphaU*m_alphaV*cosThetaM*cosThetaM*cosThetaM);
				}
				break;

			case EGGX: {
					/* GGX / Trowbridge-Reitz distribution function for rough surfaces */
					if (isIsotropic()) {
						/* Sample phi component (isotropic case) */
						math::sincos((2.0f * M_PI) * sample.y, &sinPhiM, &cosPhiM);

						/* Sample theta component */
						alphaSqr = m_alphaU*m_alphaU;
					} else {
						/* Sample phi component (anisotropic case) */
						Float phiM = std::atan(m_alphaV / m_alphaU *
							std::tan(M_PI + 2*M_PI*sample.y)) + M_PI * std::floor(2*sample.y + 0.5f);
						math::sincos(phiM, &sinPhiM, &cosPhiM);

						Float cosSc = cosPhiM / m_alphaU, sinSc = sinPhiM / m_alphaV;
						alphaSqr = 1.0f / (cosSc*cosSc + sinSc*sinSc);
					}

					/* Sample theta component */
					Float tanThetaMSqr = alphaSqr * sample.x / (1.0f - sample.x);
					cosThetaM = 1.0f / std::sqrt(1.0f + tanThetaMSqr);

					/* Compute probability density of the sampled position */
					Float temp = 1+tanThetaMSqr/alphaSqr;
					pdf = INV_PI / (m_alphaU*m_alphaV*cosThetaM*cosThetaM*cosThetaM*temp*temp);
				}
				break;

			case EPhong: {
					Float phiM;
					Float exponent;
					if (isIsotropic()) {
						phiM = (2.0f * M_PI) * sample.y;
						exponent = m_exponentU;
					} else {
						/* Sampling method based on code from PBRT */
						if (sample.y < 0.25f) {
							sampleFirstQuadrant(4 * sample.y, phiM, exponent);
						} else if (sample.y < 0.5f) {
							sampleFirstQuadrant(4 * (0.5f - sample.y), phiM, exponent);
							phiM = M_PI - phiM;
						} else if (sample.y < 0.75f) {
							sampleFirstQuadrant(4 * (sample.y - 0.5f), phiM, exponent);
							phiM += M_PI;
						} else {
							sampleFirstQuadrant(4 * (1 - sample.y), phiM, exponent);
							phiM = 2 * M_PI - phiM;
						}
					}
					math::sincos(phiM, &sinPhiM, &cosPhiM);
					cosThetaM = std::pow(sample.x, 1.0f / (exponent + 2.0f));
					pdf = std::sqrt((m_exponentU + 2.0f) * (m_exponentV + 2.0f))
						* INV_TWOPI * std::pow(cosThetaM, exponent + 1.0f);
				}
				break;

			default:
				SLog(EError, "Invalid distribution type!");
				pdf = -1;
				return Vector(-1);
		}

		/* Prevent potential numerical issues in other stages of the model */
		if (pdf < 1e-20f)
			pdf = 0;

		Float sinThetaM = std::sqrt(
			std::max((Float) 0, 1 - cosThetaM*cosThetaM));

		return Vector(
			sinThetaM * cosPhiM,
			sinThetaM * sinPhiM,
			cosThetaM
		);
	}

	/**
	 * \brief Returns the density function associated with
	 * the \ref sampleAll() function.
	 *
	 * \param m
	 *     The microfacet normal
	 */
	inline Float pdfAll(const Vector &m) const {
		/* PDF is just D(m) * cos(theta_M) */
		return eval(m) * Frame::cosTheta(m);
	}


	/**
	 * \brief Draw a sample from the distribution of visible normals
	 * and return the associated probability density
	 *
	 * \param _wi
	 *    A reference direction that defines the set of visible normals
	 * \param sample
	 *    A uniformly distributed 2D sample
	 * \param pdf
	 *    The probability density wrt. solid angles
	 */
	inline Normal sampleVisible(const Vector &_wi, const Point2 &sample) const {
		/* Step 1: stretch wi */
		Vector wi = normalize(Vector(
			m_alphaU * _wi.x,
			m_alphaV * _wi.y,
			_wi.z
		));

		/* Get polar coordinates */
		Float theta = 0, phi = 0;
		if (wi.z < (Float) 0.99999) {
			theta = std::acos(wi.z);
			phi = std::atan2(wi.y, wi.x);
		}
		Float sinPhi, cosPhi;
		math::sincos(phi, &sinPhi, &cosPhi);

		/* Step 2: simulate P22_{wi}(slope.x, slope.y, 1, 1) */
		Vector2 slope = sampleVisible11(theta, sample);

		/* Step 3: rotate */
		slope = Vector2(
			cosPhi * slope.x - sinPhi * slope.y,
			sinPhi * slope.x + cosPhi * slope.y);

		/* Step 4: unstretch */
		slope.x *= m_alphaU;
		slope.y *= m_alphaV;

		/* Step 5: compute normal */
		Float normalization = (Float) 1 / std::sqrt(slope.x*slope.x
				+ slope.y*slope.y + (Float) 1.0);

		return Normal(
			-slope.x * normalization,
			-slope.y * normalization,
			normalization
		);
	}

	/// Implements the probability density of the function \ref sampleVisible()
	Float pdfVisible(const Vector &wi, const Vector &m) const {
		return smithG1(wi, m) * absDot(wi, m) * eval(m) / std::abs(Frame::cosTheta(wi));
	}

	/**
	 * \brief Smith's shadowing-masking function G1 for each
	 * of the supported microfacet distributions
	 *
	 * \param v
	 *     An arbitrary direction
	 * \param m
	 *     The microfacet normal
	 */
	Float smithG1(const Vector &v, const Vector &m) const {
		/* Ensure consistent orientation (can't see the back
		   of the microfacet from the front and vice versa) */
		if (dot(v, m) * Frame::cosTheta(v) <= 0)
			return 0.0f;

		/* Perpendicular incidence -- no shadowing/masking */
		Float tanTheta = std::abs(Frame::tanTheta(v));
		if (tanTheta == 0.0f)
			return 1.0f;

		Float alpha = projectRoughness(v);
		switch (m_type) {
			case EPhong:
			case EBeckmann: {
					Float a = 1.0f / (alpha * tanTheta);
					if (a >= 1.6f)
						return 1.0f;

					/* Use a fast and accurate (<0.35% rel. error) rational
					   approximation to the shadowing-masking function */
					Float aSqr = a*a;
					return (3.535f * a + 2.181f * aSqr)
						 / (1.0f + 2.276f * a + 2.577f * aSqr);
				}
				break;

			case EGGX: {
					Float root = alpha * tanTheta;
					return 2.0f / (1.0f + std::sqrt(1.0f + root*root));
				}
				break;

			default:
				SLog(EError, "Invalid distribution type!");
				return -1.0f;
		}
	}

	/**
	 * \brief Separable shadow-masking function based on Smith's
	 * one-dimensional masking model
	 */
	inline Float G(const Vector &wi, const Vector &wo, const Vector &m) const {
		return smithG1(wi, m) * smithG1(wo, m);
	}

	/// Return a string representation of the name of a distribution
	inline static std::string distributionName(EType type) {
		switch (type) {
			case EBeckmann: return "beckmann"; break;
			case EGGX: return "ggx"; break;
			case EPhong: return "phong"; break;
			default: return "invalid"; break;
		}
	}

	/// Return a string representation of the contents of this instance
	std::string toString() const {
		return formatString("MicrofacetDistribution[type=\"%s\", alphaU=%f, alphaV=%f]",
			distributionName(m_type).c_str(), m_alphaU, m_alphaV);
	}
protected:
	/// Compute the effective roughness projected on direction \c v
	inline Float projectRoughness(const Vector &v) const {
		Float invSinTheta2 = 1 / Frame::sinTheta2(v);

		if (isIsotropic() || invSinTheta2 <= 0)
			return m_alphaU;

		Float cosPhi2 = v.x * v.x * invSinTheta2;
		Float sinPhi2 = v.y * v.y * invSinTheta2;

		return std::sqrt(cosPhi2 * m_alphaU * m_alphaU + sinPhi2 * m_alphaV * m_alphaV);
	}

	/// Compute the interpolated roughness for the Phong model
	inline Float interpolatePhongExponent(const Vector &v) const {
		Float invSinTheta2 = 1 / Frame::sinTheta2(v);

		if (isIsotropic() || invSinTheta2 <= 0)
			return m_exponentU;

		Float cosPhi2 = v.x * v.x * invSinTheta2;
		Float sinPhi2 = v.y * v.y * invSinTheta2;

		return m_exponentU * cosPhi2 + m_exponentV * sinPhi2;
	}

	/**
	 * \brief Visible normal sampling code for the alpha=1 case
	 *
	 * Source: supplemental material of "Importance Sampling
	 * Microfacet-Based BSDFs using the Distribution of Visible Normals"
	 */
	Vector2 sampleVisible11(Float thetaI, Point2 sample) const {
		const Float SQRT_PI_INV = 1 / std::sqrt(M_PI);
		Vector2 slope;

		switch (m_type) {
			case EBeckmann: {
					/* Special case (normal incidence) */
					if (thetaI < 1e-4f) {
						Float sinPhi, cosPhi;
						Float r = std::sqrt(-math::fastlog(1.0f-sample.x));
						math::sincos(2 * M_PI * sample.y, &sinPhi, &cosPhi);
						return Vector2(r * cosPhi, r * sinPhi);
					}

					/* The original inversion routine from the paper contained
					   discontinuities, which causes issues for QMC integration
					   and techniques like Kelemen-style MLT. The following code
					   performs a numerical inversion with better behavior */
					Float tanThetaI = std::tan(thetaI);
					Float cotThetaI = 1 / tanThetaI;

					/* Search interval -- everything is parameterized
					   in the erf() domain */
					Float a = -1, c = math::erf(cotThetaI);
					Float sample_x = std::max(sample.x, (Float) 1e-6f);

					/* Start with a good initial guess */
					//Float b = (1-sample_x) * a + sample_x * c;

					/* We can do better (inverse of an approximation computed in Mathematica) */
					Float fit = 1 + thetaI*(-0.876f + thetaI * (0.4265f - 0.0594f*thetaI));
					Float b = c - (1+c) * std::pow(1-sample_x, fit);

					/* Normalization factor for the CDF */
					Float normalization = 1 / (1 + c + SQRT_PI_INV*
						tanThetaI*std::exp(-cotThetaI*cotThetaI));

					int it = 0;
					while (++it < 10) {
						/* Bisection criterion -- the oddly-looking
						   boolean expression are intentional to check
						   for NaNs at little additional cost */
						if (!(b >= a && b <= c))
							b = 0.5f * (a + c);

						/* Evaluate the CDF and its derivative
						   (i.e. the density function) */
						Float invErf = math::erfinv(b);
						Float value = normalization*(1 + b + SQRT_PI_INV*
							tanThetaI*std::exp(-invErf*invErf)) - sample_x;
						Float derivative = normalization * (1
							- invErf*tanThetaI);

						if (std::abs(value) < 1e-5f)
							break;

						/* Update bisection intervals */
						if (value > 0)
							c = b;
						else
							a = b;

						b -= value / derivative;
					}

					/* Now convert back into a slope value */
					slope.x = math::erfinv(b);

					/* Simulate Y component */
					slope.y = math::erfinv(2.0f*std::max(sample.y, (Float) 1e-6f) - 1.0f);
				};
				break;

			case EGGX: {
					/* Special case (normal incidence) */
					if (thetaI < 1e-4f) {
						Float sinPhi, cosPhi;
						Float r = math::safe_sqrt(sample.x / (1 - sample.x));
						math::sincos(2 * M_PI * sample.y, &sinPhi, &cosPhi);
						return Vector2(r * cosPhi, r * sinPhi);
					}

					/* Precomputations */
					Float tanThetaI = std::tan(thetaI);
					Float a = 1 / tanThetaI;
					Float G1 = 2.0f / (1.0f + math::safe_sqrt(1.0f + 1.0f / (a*a)));

					/* Simulate X component */
					Float A = 2.0f * sample.x / G1 - 1.0f;
					if (std::abs(A) == 1)
						A -= math::signum(A)*Epsilon;
					Float tmp = 1.0f / (A*A - 1.0f);
					Float B = tanThetaI;
					Float D = math::safe_sqrt(B*B*tmp*tmp - (A*A - B*B) * tmp);
					Float slope_x_1 = B * tmp - D;
					Float slope_x_2 = B * tmp + D;
					slope.x = (A < 0.0f || slope_x_2 > 1.0f / tanThetaI) ? slope_x_1 : slope_x_2;

					/* Simulate Y component */
					Float S;
					if (sample.y > 0.5f) {
						S = 1.0f;
						sample.y = 2.0f * (sample.y - 0.5f);
					} else {
						S = -1.0f;
						sample.y = 2.0f * (0.5f - sample.y);
					}

					/* Improved fit */
					Float z =
						(sample.y * (sample.y * (sample.y * (-(Float) 0.365728915865723) + (Float) 0.790235037209296) -
							(Float) 0.424965825137544) + (Float) 0.000152998850436920) /
						(sample.y * (sample.y * (sample.y * (sample.y * (Float) 0.169507819808272 - (Float) 0.397203533833404) -
							(Float) 0.232500544458471) + (Float) 1) - (Float) 0.539825872510702);

					slope.y = S * z * std::sqrt(1.0f + slope.x*slope.x);
				};
				break;

			default:
				SLog(EError, "Invalid distribution type!");
				return Vector2(-1);
		};
		return slope;
	}


	/// Helper routine: convert from Beckmann-style roughness values to Phong exponents (Walter et al.)
	void computePhongExponent() {
		m_exponentU = std::max(2.0f / (m_alphaU * m_alphaU) - 2.0f, (Float) 0.0f);
		m_exponentV = std::max(2.0f / (m_alphaV * m_alphaV) - 2.0f, (Float) 0.0f);
	}

	/// Helper routine: sample the azimuthal part of the first quadrant of the A&S distribution
	void sampleFirstQuadrant(Float u1, Float &phi, Float &exponent) const {
		Float cosPhi, sinPhi;
		phi = std::atan(
				std::sqrt((m_exponentU + 2.0f) / (m_exponentV + 2.0f)) *
				std::tan(M_PI * u1 * 0.5f));
		math::sincos(phi, &sinPhi, &cosPhi);
		/* Return the interpolated roughness */
		exponent = m_exponentU * cosPhi * cosPhi + m_exponentV * sinPhi * sinPhi;
	}
protected:
	EType m_type;
	Float m_alphaU, m_alphaV;
	bool m_sampleVisible;
	Float m_exponentU, m_exponentV;
};

MTS_NAMESPACE_END

#endif /* __MICROFACET_H */