/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include "ior.h"
MTS_NAMESPACE_BEGIN
/*! \plugin{coating}{Smooth dielectric coating}
* \order{9}
*
* \parameters{
* \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified
* numerically or using a known material name. \default{\texttt{bk7} / 1.5046}}
* \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
* \parameter{thickness}{\Float}{Denotes the thickness of the layer (to
* model absorption --- should be specified in inverse units of \code{sigmaA})\default{1}}
* \parameter{sigmaA}{\Spectrum\Or\Texture}{The absorption coefficient of the
* coating layer. \default{0, i.e. there is no absorption}}
* \parameter{\Unnamed}{\BSDF}{A nested BSDF model that should be coated.}
* }
*
* \renderings{
* \rendering{Rough copper}
* {bsdf_coating_uncoated}
* \rendering{The same material coated with a single layer of
* clear varnish (see \lstref{coating-roughcopper})}
* {bsdf_coating_roughconductor}
* }
*
* This plugin implements a smooth dielectric coating (e.g. a layer of varnish)
* in the style of the paper ``Arbitrarily Layered Micro-Facet Surfaces'' by
* Weidlich and Wilkie \cite{Weidlich2007Arbitrarily}. Any non-transmissive
* BSDF in Mitsuba can be coated using this plugin, and multiple coating layers
* can be applied in sequence. This allows designing interesting custom materials
* like car paint or glazed metal foil. The coating layer can optionally be
* tinted (i.e. filled with an absorbing medium), in which case this model also
* accounts for the directionally dependent absorption within the layer.
*
* Note that the plugin discards illumination that undergoes internal
* reflection within the coating. This can lead to a noticeable energy
* loss for materials that reflect much of their energy near or below the critical
* angle (i.e. diffuse or very rough materials).
* Therefore, users are discouraged to use this plugin to coat smooth
* diffuse materials, since there is a separately available plugin
* named \pluginref{plastic}, which covers the same case and does not
* suffer from energy loss.
*
* Evaluating the internal component of this model entails refracting the
* incident and exitant rays through the dielectric interface, followed by
* querying the nested material with this modified direction pair. The result
* is attenuated by the two Fresnel transmittances and the absorption, if
* any.\newpage
*
* \renderings{
* \smallrendering{$\code{thickness}=0$}{bsdf_coating_0}
* \smallrendering{$\code{thickness}=1$}{bsdf_coating_1}
* \smallrendering{$\code{thickness}=5$}{bsdf_coating_5}
* \smallrendering{$\code{thickness}=15$}{bsdf_coating_15}
* \caption{The effect of the layer thickness parameter on
* a tinted coating ($\code{sigmaT}=(0.1, 0.2, 0.5)$)}
* }
*
* \vspace{4mm}
*
* \begin{xml}[caption=Rough copper coated with a transparent layer of
* varnish, label=lst:coating-roughcopper]
*
*
*
*
*
*
*
*
* \end{xml}
*/
class SmoothCoating : public BSDF {
public:
SmoothCoating(const Properties &props)
: BSDF(props) {
/* Specifies the internal index of refraction at the interface */
m_intIOR = lookupIOR(props, "intIOR", "bk7");
/* Specifies the external index of refraction at the interface */
m_extIOR = lookupIOR(props, "extIOR", "air");
/* Specifies the layer's thickness using the inverse units of sigmaA */
m_thickness = props.getFloat("thickness", 1);
/* Specifies the absorption within the layer */
m_sigmaA = new ConstantSpectrumTexture(
props.getSpectrum("sigmaA", Spectrum(0.0f)));
}
SmoothCoating(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_intIOR = stream->readFloat();
m_extIOR = stream->readFloat();
m_thickness = stream->readFloat();
m_nested = static_cast(manager->getInstance(stream));
m_sigmaA = static_cast(manager->getInstance(stream));
configure();
}
void configure() {
if (!m_nested)
Log(EError, "A child BSDF instance is required");
if (m_nested->getType() & BSDF::ETransmission)
Log(EError, "Tried to put a smooth coating layer on top of a BSDF "
"with a transmission component -- this is currently not allowed!");
unsigned int extraFlags = 0;
if (!m_sigmaA->isConstant())
extraFlags |= ESpatiallyVarying;
m_components.clear();
for (int i=0; igetComponentCount(); ++i)
m_components.push_back(m_nested->getType(i) | extraFlags);
m_components.push_back(EDeltaReflection | EFrontSide);
m_usesRayDifferentials = m_nested->usesRayDifferentials()
|| m_sigmaA->usesRayDifferentials();
/* Compute weights that further steer samples towards
the specular or nested components */
Float avgAbsorption = (m_sigmaA->getAverage()
*(-2*m_thickness)).exp().average();
m_specularSamplingWeight = 1.0f / (avgAbsorption + 1.0f);
BSDF::configure();
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
stream->writeFloat(m_intIOR);
stream->writeFloat(m_extIOR);
stream->writeFloat(m_thickness);
manager->serialize(stream, m_nested.get());
manager->serialize(stream, m_sigmaA.get());
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(BSDF))) {
if (m_nested != NULL)
Log(EError, "Only a single nested BRDF can be added!");
m_nested = static_cast(child);
} else {
BSDF::addChild(name, child);
}
}
/// Reflection in local coordinates
inline Vector reflect(const Vector &wi) const {
return Vector(-wi.x, -wi.y, wi.z);
}
/**
* \brief Refraction in local coordinates
*
* To be used when some of the data is already available
*/
inline Vector refract(const Vector &wi, Float eta, Float cosThetaT) const {
return Vector(-eta*wi.x, -eta*wi.y, cosThetaT);
}
/// Refraction in local coordinates (full version)
inline Vector refract(const Vector &wi, Float &F) const {
Float cosThetaI = Frame::cosTheta(wi),
etaI = m_extIOR, etaT = m_intIOR;
bool entering = cosThetaI > 0.0f;
/* Determine the respective indices of refraction */
if (!entering)
std::swap(etaI, etaT);
/* Using Snell's law, calculate the squared sine of the
angle between the normal and the transmitted ray */
Float eta = etaI / etaT,
sinThetaTSqr = eta*eta * Frame::sinTheta2(wi);
if (sinThetaTSqr >= 1.0f) {
/* Total internal reflection */
F = 1.0f;
return Vector(0.0f);
} else {
Float cosThetaT = std::sqrt(1.0f - sinThetaTSqr);
/* Compute the Fresnel transmittance */
F = fresnelDielectric(std::abs(Frame::cosTheta(wi)),
cosThetaT, m_extIOR, m_intIOR);
return Vector(-eta*wi.x, -eta*wi.y,
entering ? -cosThetaT : cosThetaT);
}
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0)
return Spectrum(0.0f);
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1);
bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || bRec.component < (int) m_components.size()-1);
if (measure == EDiscrete && sampleSpecular &&
std::abs(1-dot(reflect(bRec.wi), bRec.wo)) < Epsilon) {
return Spectrum(fresnel(
Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR));
} else if (sampleNested) {
Float R12, R21;
BSDFQueryRecord bRec2(bRec);
bRec2.wi = -refract(bRec.wi, R12);
bRec2.wo = -refract(bRec.wo, R21);
if (R12 == 1 || R21 == 1) /* Total internal reflection */
return Spectrum(0.0f);
Float eta = m_extIOR / m_intIOR;
Spectrum result = m_nested->eval(bRec2, measure)
* ((1-R12) * (1-R21) * eta * eta);
Spectrum sigmaA = m_sigmaA->getValue(bRec.its) * m_thickness;
if (!sigmaA.isZero())
result *= (-sigmaA *
(1/std::abs(Frame::cosTheta(bRec2.wi)) +
1/std::abs(Frame::cosTheta(bRec2.wo)))).exp();
if (measure == ESolidAngle)
result *= Frame::cosTheta(bRec.wo)
/ Frame::cosTheta(bRec2.wo);
return result;
}
return Spectrum(0.0f);
}
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0)
return 0.0f;
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1);
bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || bRec.component < (int) m_components.size()-1);
Float R12;
Vector wiPrime = -refract(bRec.wi, R12);
/* Reallocate samples */
Float probSpecular = (R12*m_specularSamplingWeight) /
(R12*m_specularSamplingWeight +
(1-R12) * (1-m_specularSamplingWeight));
if (measure == EDiscrete && sampleSpecular &&
std::abs(1-dot(reflect(bRec.wi), bRec.wo)) < Epsilon) {
return sampleNested ? probSpecular : 1.0f;
} else if (sampleNested) {
Float R21;
BSDFQueryRecord bRec2(bRec);
bRec2.wi = wiPrime;
bRec2.wo = -refract(bRec.wo, R21);
if (R12 == 1 || R21 == 1) /* Total internal reflection */
return 0.0f;
Float pdf = m_nested->pdf(bRec2, measure);
if (measure == ESolidAngle)
pdf *= Frame::cosTheta(bRec.wo)
/ Frame::cosTheta(bRec2.wo);
Float eta = m_extIOR / m_intIOR;
pdf *= eta * eta;
return sampleSpecular ? (pdf * (1 - probSpecular)) : pdf;
} else {
return 0.0f;
}
}
Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &_sample) const {
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1);
bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || bRec.component < (int) m_components.size()-1);
if ((!sampleSpecular && !sampleNested) || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
/* Refract the incident direction and compute the Fresnel reflectance */
Float eta = m_extIOR / m_intIOR,
sinThetaTSqr = eta*eta * Frame::sinTheta2(bRec.wi),
R12, cosThetaT = 0;
if (sinThetaTSqr >= 1.0f) {
R12 = 1.0f; /* Total internal reflection */
} else {
cosThetaT = -std::sqrt(1.0f - sinThetaTSqr);
R12 = fresnelDielectric(Frame::cosTheta(bRec.wi),
-cosThetaT, m_extIOR, m_intIOR);
}
/* Reallocate samples */
Float probSpecular = (R12*m_specularSamplingWeight) /
(R12*m_specularSamplingWeight +
(1-R12) * (1-m_specularSamplingWeight));
bool choseSpecular = sampleSpecular;
Point2 sample(_sample);
if (sampleSpecular && sampleNested) {
if (sample.x > probSpecular) {
sample.x = (sample.x - probSpecular) / (1 - probSpecular);
choseSpecular = false;
}
}
if (choseSpecular) {
bRec.sampledComponent = m_components.size()-1;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
pdf = sampleNested ? probSpecular : 1.0f;
return Spectrum(R12);
} else {
if (R12 == 1.0f) /* Total internal reflection */
return Spectrum(0.0f);
Vector wiBackup = bRec.wi;
bRec.wi = -refract(bRec.wi, eta, cosThetaT);
Spectrum result = m_nested->sample(bRec, pdf, sample);
if (result.isZero())
return Spectrum(0.0f);
Spectrum sigmaA = m_sigmaA->getValue(bRec.its) * m_thickness;
if (!sigmaA.isZero())
result *= (-sigmaA *
(1/std::abs(Frame::cosTheta(bRec.wi)) +
1/std::abs(Frame::cosTheta(bRec.wo)))).exp();
Float R21, cosThetaWoPrime = Frame::cosTheta(bRec.wo);
bRec.wo = refract(-bRec.wo, R21);
bRec.wi = wiBackup;
if (R21 == 1.0f) /* Total internal reflection */
return Spectrum(0.0f);
bool sampledSA = (BSDF::getMeasure(bRec.sampledType) == ESolidAngle);
Float cosRatio = Frame::cosTheta(bRec.wo) / cosThetaWoPrime,
commonTerms = (sampledSA ? cosRatio : 1.0f)* eta * eta;
pdf *= (sampleSpecular ? (1 - probSpecular) : 1.0f) * commonTerms;
result *= (1 - R12) * (1 - R21) * commonTerms;
return result;
}
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
Float pdf;
Spectrum result = SmoothCoating::sample(bRec, pdf, sample);
if (result.isZero())
return Spectrum(0.0f);
else
return result / pdf;
}
Shader *createShader(Renderer *renderer) const;
std::string toString() const {
std::ostringstream oss;
oss << "SmoothCoating[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " intIOR = " << m_intIOR << "," << endl
<< " extIOR = " << m_extIOR << "," << endl
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
<< " sigmaA = " << indent(m_sigmaA->toString()) << "," << endl
<< " thickness = " << m_thickness << "," << endl
<< " nested = " << indent(m_nested->toString()) << endl
<< "]";
return oss.str();
}
MTS_DECLARE_CLASS()
protected:
Float m_specularSamplingWeight;
Float m_intIOR, m_extIOR;
ref m_sigmaA;
ref m_nested;
Float m_thickness;
};
// ================ Hardware shader implementation ================
/* Crude GLSL approximation -- just forwards to the nested model */
class SmoothCoatingShader : public Shader {
public:
SmoothCoatingShader(Renderer *renderer, const BSDF *nested)
: Shader(renderer, EBSDFShader), m_nested(nested) {
m_nestedShader = renderer->registerShaderForResource(m_nested.get());
}
bool isComplete() const {
return m_nestedShader.get() != NULL;
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_nested.get());
}
void putDependencies(std::vector &deps) {
deps.push_back(m_nestedShader.get());
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector &depNames) const {
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " return " << depNames[0] << "(uv, wi, wo);" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " return " << depNames[0] << "_diffuse(uv, wi, wo);" << endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
private:
ref m_nested;
ref m_nestedShader;
};
Shader *SmoothCoating::createShader(Renderer *renderer) const {
return new SmoothCoatingShader(renderer, m_nested.get());
}
MTS_IMPLEMENT_CLASS(SmoothCoatingShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(SmoothCoating, false, BSDF)
MTS_EXPORT_PLUGIN(SmoothCoating, "Smooth dielectric coating");
MTS_NAMESPACE_END