/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2011 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "ior.h" MTS_NAMESPACE_BEGIN /*!\plugin{plastic}{Smooth plastic material} * \order{7} * \icon{bsdf_plastic} * \parameters{ * \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified * numerically or using a known material name. \default{\texttt{polypropylene} / 1.49}} * \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified * numerically or using a known material name. \default{\texttt{air} / 1.000277}} * \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional * factor used to modulate the specular reflection component. Note that for physical * realism, this parameter should never be touched. \default{1.0}} * \parameter{diffuse\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional * factor used to modulate the diffuse reflection component\default{0.5}} * } * * \renderings{ * \rendering{A rendering with the default parameters}{bsdf_plastic_default} * \rendering{A rendering with custom parameters (\lstref{plastic-shiny})} * {bsdf_plastic_shiny} * } * * This plugin describes a perfectly smooth plastic-like dielectric material * with internal scattering. The model interpolates between ideally specular * and ideally diffuse reflection based on the Fresnel reflectance (i.e. it * does so in a way that depends on the angle of incidence). Similar to the * \pluginref{dielectric} plugin, IOR values can either be specified * numerically, or based on a list of known materials (see * \tblref{dielectric-iors} for an overview). * * Since it is very simple and fast, this model is often a better choice * than the \pluginref{phong}, \pluginref{ward}, and \pluginref{roughplastic} * plugins when rendering very smooth plastic-like materials. \vspace{4mm} * * \begin{xml}[caption=A shiny material whose diffuse reflectance is * specified using sRGB, label=lst:plastic-shiny] * * * * * \end{xml} */ class SmoothPlastic : public BSDF { public: SmoothPlastic(const Properties &props) : BSDF(props) { /* Specifies the internal index of refraction at the interface */ m_intIOR = lookupIOR(props, "intIOR", "polypropylene"); /* Specifies the external index of refraction at the interface */ m_extIOR = lookupIOR(props, "extIOR", "air"); m_specularReflectance = new ConstantSpectrumTexture( props.getSpectrum("specularReflectance", Spectrum(1.0f))); m_diffuseReflectance = new ConstantSpectrumTexture( props.getSpectrum("diffuseReflectance", Spectrum(0.5f))); m_specularSamplingWeight = 0.0f; } SmoothPlastic(Stream *stream, InstanceManager *manager) : BSDF(stream, manager) { m_intIOR = stream->readFloat(); m_extIOR = stream->readFloat(); m_specularReflectance = static_cast(manager->getInstance(stream)); m_diffuseReflectance = static_cast(manager->getInstance(stream)); configure(); } void configure() { /* Verify the input parameters and fix them if necessary */ m_specularReflectance = ensureEnergyConservation( m_specularReflectance, "specularReflectance", 1.0f); m_diffuseReflectance = ensureEnergyConservation( m_diffuseReflectance, "diffuseReflectance", 1.0f); /* Compute weights that further steer samples towards the specular or diffuse components */ Float dAvg = m_diffuseReflectance->getAverage().getLuminance(), sAvg = m_specularReflectance->getAverage().getLuminance(); m_specularSamplingWeight = sAvg / (dAvg + sAvg); m_usesRayDifferentials = m_specularReflectance->usesRayDifferentials() || m_diffuseReflectance->usesRayDifferentials(); m_components.clear(); m_components.push_back(EDeltaReflection | EFrontSide | (m_specularReflectance->isConstant() ? 0 : ESpatiallyVarying)); m_components.push_back(EDiffuseReflection | EFrontSide | (m_diffuseReflectance->isConstant() ? 0 : ESpatiallyVarying)); BSDF::configure(); } Spectrum getDiffuseReflectance(const Intersection &its) const { return m_diffuseReflectance->getValue(its); } void serialize(Stream *stream, InstanceManager *manager) const { BSDF::serialize(stream, manager); stream->writeFloat(m_intIOR); stream->writeFloat(m_extIOR); manager->serialize(stream, m_specularReflectance.get()); manager->serialize(stream, m_diffuseReflectance.get()); } void addChild(const std::string &name, ConfigurableObject *child) { if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) { if (name == "specularReflectance") m_specularReflectance = static_cast(child); else if (name == "diffuseReflectance") m_diffuseReflectance = static_cast(child); else BSDF::addChild(name, child); } else { BSDF::addChild(name, child); } } /// Reflection in local coordinates inline Vector reflect(const Vector &wi) const { return Vector(-wi.x, -wi.y, wi.z); } Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const { bool hasSpecular = (bRec.typeMask & EDeltaReflection) && (bRec.component == -1 || bRec.component == 0); bool hasDiffuse = (bRec.typeMask & EDiffuseReflection) && (bRec.component == -1 || bRec.component == 1); if (Frame::cosTheta(bRec.wo) <= 0 || Frame::cosTheta(bRec.wi) <= 0) return Spectrum(0.0f); Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR); if (measure == EDiscrete && hasSpecular) { /* Check if the provided direction pair matches an ideal specular reflection; tolerate some roundoff errors */ bool reflection = std::abs(1 - dot(reflect(bRec.wi), bRec.wo)) < Epsilon; if (reflection) return m_specularReflectance->getValue(bRec.its) * Fr; } else if (measure == ESolidAngle && hasDiffuse) { if (hasDiffuse) return m_diffuseReflectance->getValue(bRec.its) * (INV_PI * Frame::cosTheta(bRec.wo) * (1-Fr)); } return Spectrum(0.0f); } Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const { bool hasSpecular = (bRec.typeMask & EDeltaReflection) && (bRec.component == -1 || bRec.component == 0); bool hasDiffuse = (bRec.typeMask & EDiffuseReflection) && (bRec.component == -1 || bRec.component == 1); if (Frame::cosTheta(bRec.wo) <= 0 || Frame::cosTheta(bRec.wi) <= 0) return 0.0f; Float probSpecular = 1.0f; if (hasSpecular && hasDiffuse) { Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR); probSpecular = (Fr*m_specularSamplingWeight) / (Fr*m_specularSamplingWeight + (1-Fr) * (1-m_specularSamplingWeight)); } if (measure == EDiscrete && hasSpecular) { /* Check if the provided direction pair matches an ideal specular reflection; tolerate some roundoff errors */ if (std::abs(1 - dot(reflect(bRec.wi), bRec.wo)) < Epsilon) return probSpecular; } else if (measure == ESolidAngle && hasDiffuse) { return Frame::cosTheta(bRec.wo) * INV_PI * (hasSpecular ? (1 - probSpecular) : 1.0f); } return 0.0f; } Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const { bool hasSpecular = (bRec.typeMask & EDeltaReflection) && (bRec.component == -1 || bRec.component == 0); bool hasDiffuse = (bRec.typeMask & EDiffuseReflection) && (bRec.component == -1 || bRec.component == 1); if ((!hasDiffuse && !hasSpecular) || Frame::cosTheta(bRec.wi) <= 0) return Spectrum(0.0f); Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR); Float probSpecular = (Fr*m_specularSamplingWeight) / (Fr*m_specularSamplingWeight + (1-Fr) * (1-m_specularSamplingWeight)); if (hasDiffuse && hasSpecular) { /* Importance sample wrt. the Fresnel reflectance */ if (sample.x <= probSpecular) { bRec.sampledComponent = 0; bRec.sampledType = EDeltaReflection; bRec.wo = reflect(bRec.wi); return m_specularReflectance->getValue(bRec.its) * (Fr / probSpecular); } else { bRec.sampledComponent = 1; bRec.sampledType = EDiffuseReflection; bRec.wo = squareToHemispherePSA(Point2( (sample.x - probSpecular) / (1 - probSpecular), sample.y )); return m_diffuseReflectance->getValue(bRec.its) * ((1-Fr) / (1-probSpecular)); } } else if (hasSpecular) { bRec.sampledComponent = 0; bRec.sampledType = EDeltaReflection; bRec.wo = reflect(bRec.wi); return m_specularReflectance->getValue(bRec.its) * Fr; } else { bRec.sampledComponent = 1; bRec.sampledType = EDiffuseReflection; if (Fr == 1.0f) /* Total internal reflection */ return Spectrum(0.0f); bRec.wo = squareToHemispherePSA(sample); return m_diffuseReflectance->getValue(bRec.its) * (1-Fr); } } Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &sample) const { bool hasSpecular = (bRec.typeMask & EDeltaReflection) && (bRec.component == -1 || bRec.component == 0); bool hasDiffuse = (bRec.typeMask & EDiffuseReflection) && (bRec.component == -1 || bRec.component == 1); if ((!hasDiffuse && !hasSpecular) || Frame::cosTheta(bRec.wi) <= 0) return Spectrum(0.0f); Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR); Float probSpecular = (Fr*m_specularSamplingWeight) / (Fr*m_specularSamplingWeight + (1-Fr) * (1-m_specularSamplingWeight)); if (hasDiffuse && hasSpecular) { /* Importance sample wrt. the Fresnel reflectance */ if (sample.x <= probSpecular) { bRec.sampledComponent = 0; bRec.sampledType = EDeltaReflection; bRec.wo = reflect(bRec.wi); pdf = probSpecular; return m_specularReflectance->getValue(bRec.its) * Fr / probSpecular; } else { bRec.sampledComponent = 1; bRec.sampledType = EDiffuseReflection; bRec.wo = squareToHemispherePSA(Point2( (sample.x - probSpecular) / (1 - probSpecular), sample.y )); pdf = (1-probSpecular) * Frame::cosTheta(bRec.wo) * INV_PI; return m_diffuseReflectance->getValue(bRec.its) * (1-Fr) / (1-probSpecular); } } else if (hasSpecular) { bRec.sampledComponent = 0; bRec.sampledType = EDeltaReflection; bRec.wo = reflect(bRec.wi); pdf = 1; return m_specularReflectance->getValue(bRec.its) * Fr; } else { bRec.sampledComponent = 1; bRec.sampledType = EDiffuseReflection; if (Fr == 1.0f) /* Total internal reflection */ return Spectrum(0.0f); bRec.wo = squareToHemispherePSA(sample); pdf = Frame::cosTheta(bRec.wo) * INV_PI; return m_diffuseReflectance->getValue(bRec.its) * (1-Fr); } } Shader *createShader(Renderer *renderer) const; std::string toString() const { std::ostringstream oss; oss << "SmoothPlastic[" << endl << " name = \"" << getName() << "\"," << endl << " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl << " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl << " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl << " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl << " intIOR = " << m_intIOR << "," << endl << " extIOR = " << m_extIOR << endl << "]"; return oss.str(); } MTS_DECLARE_CLASS() private: Float m_intIOR, m_extIOR; ref m_diffuseReflectance; ref m_specularReflectance; Float m_specularSamplingWeight; }; /** * Smooth plastic shader -- it is really hopeless to visualize * this material in the VPL renderer, so let's try to do at least * something that suggests the presence of a specularly-reflecting * dielectric coating. */ class SmoothPlasticShader : public Shader { public: SmoothPlasticShader(Renderer *renderer, const Texture *specularReflectance, const Texture *diffuseReflectance, Float extIOR, Float intIOR) : Shader(renderer, EBSDFShader), m_specularReflectance(specularReflectance), m_diffuseReflectance(diffuseReflectance), m_extIOR(extIOR), m_intIOR(intIOR) { m_specularReflectanceShader = renderer->registerShaderForResource(m_specularReflectance.get()); m_diffuseReflectanceShader = renderer->registerShaderForResource(m_diffuseReflectance.get()); m_alpha = 0.4f; m_R0 = fresnel(1.0f, m_extIOR, m_intIOR); } bool isComplete() const { return m_specularReflectanceShader.get() != NULL && m_diffuseReflectanceShader.get() != NULL; } void putDependencies(std::vector &deps) { deps.push_back(m_specularReflectanceShader.get()); deps.push_back(m_diffuseReflectanceShader.get()); } void cleanup(Renderer *renderer) { renderer->unregisterShaderForResource(m_specularReflectance.get()); renderer->unregisterShaderForResource(m_diffuseReflectance.get()); } void resolve(const GPUProgram *program, const std::string &evalName, std::vector ¶meterIDs) const { parameterIDs.push_back(program->getParameterID(evalName + "_alpha", false)); parameterIDs.push_back(program->getParameterID(evalName + "_R0", false)); } void bind(GPUProgram *program, const std::vector ¶meterIDs, int &textureUnitOffset) const { program->setParameter(parameterIDs[0], m_alpha); program->setParameter(parameterIDs[1], m_R0); } void generateCode(std::ostringstream &oss, const std::string &evalName, const std::vector &depNames) const { oss << "uniform float " << evalName << "_alpha;" << endl << "uniform float " << evalName << "_R0;" << endl << endl << "float " << evalName << "_D(vec3 m) {" << endl << " float ct = cosTheta(m);" << endl << " if (cosTheta(m) <= 0.0)" << endl << " return 0.0;" << endl << " float ex = tanTheta(m) / " << evalName << "_alpha;" << endl << " return exp(-(ex*ex)) / (pi * " << evalName << "_alpha" << endl << " * " << evalName << "_alpha * pow(cosTheta(m), 4.0));" << endl << "}" << endl << endl << "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl << " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl << " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl << " return 0.0;" << endl << " float nDotM = cosTheta(m);" << endl << " return min(1.0, min(" << endl << " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl << " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl << "}" << endl << endl << "float " << evalName << "_schlick(float ct) {" << endl << " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl << " return " << evalName << "_R0 + (1.0 - " << evalName << "_R0) * ct5;" << endl << "}" << endl << endl << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl << " if (cosTheta(wi) <= 0 || cosTheta(wo) <= 0)" << endl << " return vec3(0.0);" << endl << " vec3 H = normalize(wi + wo);" << endl << " vec3 specRef = " << depNames[0] << "(uv);" << endl << " vec3 diffuseRef = " << depNames[1] << "(uv);" << endl << " float D = " << evalName << "_D(H)" << ";" << endl << " float G = " << evalName << "_G(H, wi, wo);" << endl << " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl << " return specRef * (F * D * G / (4*cosTheta(wi))) + " << endl << " diffuseRef * ((1-F) * cosTheta(wo) * 0.31831);" << endl << "}" << endl << endl << "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl << " vec3 diffuseRef = " << depNames[1] << "(uv);" << endl << " return diffuseRef * 0.31831 * cosTheta(wo);"<< endl << "}" << endl; } MTS_DECLARE_CLASS() private: ref m_specularReflectance; ref m_diffuseReflectance; ref m_specularReflectanceShader; ref m_diffuseReflectanceShader; Float m_alpha, m_extIOR, m_intIOR, m_R0; }; Shader *SmoothPlastic::createShader(Renderer *renderer) const { return new SmoothPlasticShader(renderer, m_specularReflectance.get(), m_diffuseReflectance.get(), m_extIOR, m_intIOR); } MTS_IMPLEMENT_CLASS(SmoothPlasticShader, false, Shader) MTS_IMPLEMENT_CLASS_S(SmoothPlastic, false, BSDF) MTS_EXPORT_PLUGIN(SmoothPlastic, "Smooth plastic BRDF"); MTS_NAMESPACE_END