/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2011 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include /* Some of the implementations in this file are based on PBRT */ #if defined(__OSX__) #include #elif defined(WIN32) #include #else #include #endif #if defined(WIN32) #include #include #else #include #include #include #include #endif #if !defined(L1_CACHE_LINE_SIZE) #define L1_CACHE_LINE_SIZE 64 #endif MTS_NAMESPACE_BEGIN #ifdef MTS_SSE static const float pinf = std::numeric_limits::infinity(); static const float flt_max = std::numeric_limits::max(); const MM_ALIGN16 SSEVector SSEConstants::zero = SSEVector(-1.0f, 0.0f, 0.0f, 0.0f); const MM_ALIGN16 SSEVector SSEConstants::one = SSEVector(1.0f, 1.0f, 1.0f, 1.0f); const MM_ALIGN16 SSEVector SSEConstants::max = SSEVector(flt_max, flt_max, flt_max, flt_max); const MM_ALIGN16 SSEVector SSEConstants::eps = SSEVector(Epsilon, Epsilon, Epsilon, Epsilon); const MM_ALIGN16 SSEVector SSEConstants::op_eps = SSEVector(1+Epsilon, 1+Epsilon, 1+Epsilon, 1+Epsilon); const MM_ALIGN16 SSEVector SSEConstants::om_eps = SSEVector(1-Epsilon, 1-Epsilon, 1-Epsilon, 1-Epsilon); const MM_ALIGN16 SSEVector SSEConstants::p_inf = SSEVector(pinf, pinf, pinf, pinf); const MM_ALIGN16 SSEVector SSEConstants::n_inf = SSEVector(-pinf, -pinf, -pinf, -pinf); const MM_ALIGN16 SSEVector SSEConstants::ffffffff = SSEVector((int32_t) 0xFFFFFFFF, (int32_t) 0xFFFFFFFF, (int32_t) 0xFFFFFFFF, (int32_t) 0xFFFFFFFF); #endif const int primeTable[primeTableSize] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919 }; // ----------------------------------------------------------------------- // General utility functions // ----------------------------------------------------------------------- std::vector tokenize(const std::string &string, const std::string &delim) { std::string::size_type lastPos = string.find_first_not_of(delim, 0); std::string::size_type pos = string.find_first_of(delim, lastPos); std::vector tokens; while (std::string::npos != pos || std::string::npos != lastPos) { tokens.push_back(string.substr(lastPos, pos - lastPos)); lastPos = string.find_first_not_of(delim, pos); pos = string.find_first_of(delim, lastPos); } return tokens; } std::string trim(const std::string& str) { std::string::size_type start = str.find_first_not_of(" \t\r\n"), end = str.find_last_not_of(" \t\r\n"); return str.substr(start == std::string::npos ? 0 : start, end == std::string::npos ? str.length() - 1 : end - start + 1); } std::string indent(const std::string &string, int amount) { /* This could probably be done faster (is not really speed-critical though) */ std::istringstream iss(string); std::ostringstream oss; std::string str; bool firstLine = true; while (!iss.eof()) { std::getline(iss, str); if (!firstLine) { for (int i=0; i 1024.0f) { value /= 1024.0f; ++prefix; } return formatString(prefix == 0 ? "%.0f %s" : "%.2f %s", value, prefixes[prefix]); } void * __restrict allocAligned(size_t size) { #if defined(WIN32) return _aligned_malloc(size, L1_CACHE_LINE_SIZE); #elif defined(__OSX__) /* OSX malloc already returns 16-byte aligned data suitable for AltiVec and SSE computations */ return malloc(size); #else return memalign(L1_CACHE_LINE_SIZE, size); #endif } void freeAligned(void *ptr) { #if defined(WIN32) _aligned_free(ptr); #else free(ptr); #endif } int getProcessorCount() { #if defined(WIN32) SYSTEM_INFO sys_info; GetSystemInfo(&sys_info); return sys_info.dwNumberOfProcessors; #elif defined(__OSX__) int nprocs; size_t nprocsSize = sizeof(int); if (sysctlbyname("hw.activecpu", &nprocs, &nprocsSize, NULL, 0)) SLog(EError, "Could not detect the number of processors!"); return (int) nprocs; #else return sysconf(_SC_NPROCESSORS_CONF); #endif } #if defined(WIN32) std::string lastErrorText() { DWORD errCode = GetLastError(); char *errorText = NULL; if (!FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, errCode, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR) &errorText, 0, NULL)) { return "Internal error while looking up an error code"; } std::string result(errorText); LocalFree(errorText); return result; } #endif bool enableFPExceptions() { bool exceptionsWereEnabled = false; #if defined(WIN32) _clearfp(); uint32_t cw = _controlfp(0, 0); exceptionsWereEnabled = ~cw & (_EM_INVALID | _EM_ZERODIVIDE | _EM_OVERFLOW); cw &= ~(_EM_INVALID | _EM_ZERODIVIDE | _EM_OVERFLOW); _controlfp(cw, _MCW_EM); #elif defined(__OSX__) #if !defined(MTS_SSE) #warning SSE must be enabled to handle FP exceptions on OSX #else exceptionsWereEnabled = query_fpexcept_sse() != 0; #endif #else exceptionsWereEnabled = fegetexcept() & (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW); feenableexcept(FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW); #endif #if defined(MTS_SSE) enable_fpexcept_sse(); #endif return exceptionsWereEnabled; } bool disableFPExceptions() { bool exceptionsWereEnabled = false; #if defined(WIN32) _clearfp(); uint32_t cw = _controlfp(0, 0); exceptionsWereEnabled = ~cw & (_EM_INVALID | _EM_ZERODIVIDE | _EM_OVERFLOW); cw |= _EM_INVALID | _EM_ZERODIVIDE | _EM_OVERFLOW; _controlfp(cw, _MCW_EM); #elif defined(__OSX__) #if !defined(MTS_SSE) #warning SSE must be enabled to handle FP exceptions on OSX #else exceptionsWereEnabled = query_fpexcept_sse() != 0; #endif #else exceptionsWereEnabled = fegetexcept() & (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW); fedisableexcept(FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW); #endif #if defined(MTS_SSE) disable_fpexcept_sse(); #endif return exceptionsWereEnabled; } void restoreFPExceptions(bool oldState) { bool currentState; #if defined(WIN32) uint32_t cw = _controlfp(0, 0); currentState = ~cw & (_EM_INVALID | _EM_ZERODIVIDE | _EM_OVERFLOW); #elif defined(__OSX__) #if !defined(MTS_SSE) #warning SSE must be enabled to handle FP exceptions on OSX #else currentState = query_fpexcept_sse() != 0; #endif #else currentState = fegetexcept() & (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW); #endif if (oldState != currentState) { if (oldState) enableFPExceptions(); else disableFPExceptions(); } } std::string getHostName() { char hostName[128]; if (gethostname(hostName, sizeof(hostName)) != 0) #if defined(WIN32) SLog(EError, "Could not retrieve the computer's host name: %s!", lastErrorText().c_str()); #else SLog(EError, "Could not retrieve the computer's host name : %s!", strerror(errno)); #endif return hostName; } std::string getFQDN() { struct addrinfo *addrInfo = NULL, hints; memset(&hints, 0, sizeof(addrinfo)); // Only look for IPv4 addresses -- perhaps revisit this later hints.ai_family = AF_INET; // AF_UNSPEC hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; int retVal = getaddrinfo(getHostName().c_str(), NULL, &hints, &addrInfo); if (addrInfo == NULL || retVal != 0) { SLog(EWarn, "Could not retrieve the computer's fully " "qualified domain name: could not resolve host address \"%s\"!", getHostName().c_str()); return getHostName(); } char fqdn[NI_MAXHOST]; retVal = getnameinfo(addrInfo->ai_addr, sizeof(struct sockaddr_in), fqdn, NI_MAXHOST, NULL, 0, 0); if (retVal != 0) { freeaddrinfo(addrInfo); #if defined(WIN32) SLog(EWarn, "Could not retrieve the computer's fully " "qualified domain name: error %i!", WSAGetLastError()); #else SLog(EWarn, "Could not retrieve the computer's fully " "qualified domain name: error %i!", gai_strerror(retVal)); #endif return getHostName(); } freeaddrinfo(addrInfo); return fqdn; } Float log2(Float value) { const Float invLn2 = (Float) 1.0f / std::log((Float) 2.0f); return std::log(value) * invLn2; } std::string formatString(const char *fmt, ...) { char tmp[512]; va_list iterator; #if defined(WIN32) va_start(iterator, fmt); size_t size = _vscprintf(fmt, iterator) + 1; if (size >= sizeof(tmp)) { char *dest = new char[size]; vsnprintf_s(dest, size, size-1, fmt, iterator); va_end(iterator); std::string result(dest); delete[] dest; return result; } vsnprintf_s(tmp, size, size-1, fmt, iterator); va_end(iterator); #else va_start(iterator, fmt); size_t size = vsnprintf(tmp, sizeof(tmp), fmt, iterator); va_end(iterator); if (size >= sizeof(tmp)) { /* Overflow! -- dynamically allocate memory */ char *dest = new char[size+1]; va_start(iterator, fmt); vsnprintf(dest, size+1, fmt, iterator); va_end(iterator); std::string result(dest); delete[] dest; return result; } #endif return std::string(tmp); } int log2i(uint32_t value) { int r = 0; while ((value >> r) != 0) r++; return r-1; } int log2i(uint64_t value) { int r = 0; while ((value >> r) != 0) r++; return r-1; } int modulo(int a, int b) { int result = a - int(a/b) * b; return (result < 0) ? result+b : result; } /* Fast rounding & power-of-two test algorithms from PBRT */ uint32_t roundToPow2(uint32_t i) { i--; i |= i >> 1; i |= i >> 2; i |= i >> 4; i |= i >> 8; i |= i >> 16; return i+1; } uint64_t roundToPow2(uint64_t i) { i--; i |= i >> 1; i |= i >> 2; i |= i >> 4; i |= i >> 8; i |= i >> 16; i |= i >> 32; return i+1; } // ----------------------------------------------------------------------- // Numerical utility functions // ----------------------------------------------------------------------- bool solveQuadratic(Float a, Float b, Float c, Float &x0, Float &x1) { /* Linear case */ if (a == 0) { if (b != 0) { x0 = x1 = -c / b; return true; } return false; } Float discrim = b*b - 4.0f*a*c; /* Leave if there is no solution */ if (discrim < 0) return false; Float temp, sqrtDiscrim = std::sqrt(discrim); /* Numerically stable version of (-b (+/-) sqrtDiscrim) / (2 * a) * * Based on the observation that one solution is always * accurate while the other is not. Finds the solution of * greater magnitude which does not suffer from loss of * precision and then uses the identity x1 * x2 = c / a */ if (b < 0) temp = -0.5f * (b - sqrtDiscrim); else temp = -0.5f * (b + sqrtDiscrim); x0 = temp / a; x1 = c / temp; /* Return the results so that x0 < x1 */ if (x0 > x1) std::swap(x0, x1); return true; } bool solveLinearSystem2x2(const Float a[2][2], const Float b[2], Float x[2]) { Float det = a[0][0] * a[1][1] - a[0][1] * a[1][0]; if (std::abs(det) < Epsilon) return false; Float inverse = (Float) 1.0f / det; x[0] = (a[1][1] * b[0] - a[0][1] * b[1]) * inverse; x[1] = (a[0][0] * b[1] - a[1][0] * b[0]) * inverse; return true; } void stratifiedSample1D(Random *random, Float *dest, int count, bool jitter) { Float invCount = 1.0f / count; for (int i=0; inextFloat() : 0.5f; *dest++ = (i + offset) * invCount; } } void stratifiedSample2D(Random *random, Point2 *dest, int countX, int countY, bool jitter) { Float invCountX = 1.0f / countX; Float invCountY = 1.0f / countY; for (int x=0; xnextFloat() : 0.5f; Float offsetY = jitter ? random->nextFloat() : 0.5f; *dest++ = Point2( (x + offsetX) * invCountX, (y + offsetY) * invCountY ); } } } void latinHypercube(Random *random, Float *dest, size_t nSamples, size_t nDim) { Float delta = 1 / (Float) nSamples; for (size_t i = 0; i < nSamples; ++i) for (size_t j = 0; j < nDim; ++j) dest[nDim * i + j] = (i + random->nextFloat()) * delta; for (size_t i = 0; i < nDim; ++i) { for (size_t j = 0; j < nSamples; ++j) { size_t other = random->nextSize(nSamples); std::swap(dest[nDim * j + i], dest[nDim * other + i]); } } } Vector sphericalDirection(Float theta, Float phi) { Float sinTheta = std::sin(theta); return Vector( sinTheta * std::cos(phi), sinTheta * std::sin(phi), std::cos(theta) ); } Vector squareToSphere(const Point2 &sample) { Float z = 1.0f - 2.0f * sample.y; Float r = 1.0f - z * z; r = std::sqrt(std::max((Float) 0, r)); Float phi = 2.0f * M_PI * sample.x; return Vector(r * std::cos(phi), r * std::sin(phi), z); } Vector squareToHemisphere(const Point2 &sample) { Float phi = 2.0f * M_PI * sample.x; Float r2 = sample.y; Float tmp = std::sqrt(1-std::min((Float) 1, r2*r2)); return Vector( std::cos(phi) * tmp, std::sin(phi) * tmp, r2 ); } Vector squareToHemispherePSA(const Point2 &sample) { Float r = std::sqrt(sample.x); Float phi = 2.0f * M_PI * sample.y; Float dirX = r * std::cos(phi); Float dirY = r * std::sin(phi); Float z = std::sqrt(1 - std::min((Float) 1, dirX*dirX + dirY*dirY)); if (EXPECT_NOT_TAKEN(z == 0)) { /* Guard against numerical imprecisions */ return normalize(Vector( dirX, dirY, Epsilon)); } return Vector( dirX, dirY, z ); } Point2 squareToDisk(const Point2 &sample) { Float r = std::sqrt(sample.x); Float phi = 2.0f * M_PI * sample.y; Float dirX = r * std::cos(phi); Float dirY = r * std::sin(phi); return Point2( dirX, dirY ); } void coordinateSystem(const Vector &a, Vector &b, Vector &c) { if (std::abs(a.x) > std::abs(a.y)) { Float invLen = 1.0f / std::sqrt(a.x * a.x + a.z * a.z); b = Vector(-a.z * invLen, 0.0f, a.x * invLen); } else { Float invLen = 1.0f / std::sqrt(a.y * a.y + a.z * a.z); b = Vector(0.0f, -a.z * invLen, a.y * invLen); } c = cross(a, b); } Point2 squareToTriangle(const Point2 &sample) { Float a = std::sqrt(1.0f - sample.x); return Point2(1 - a, a * sample.y); } Point2 toSphericalCoordinates(const Vector &v) { Point2 result( std::acos(v.z), std::atan2(v.y, v.x) ); if (result.y < 0) result.y += 2*M_PI; return result; } Point2 squareToDiskConcentric(const Point2 &sample) { Float r1 = 2.0f*sample.x - 1.0f; Float r2 = 2.0f*sample.y - 1.0f; Point2 coords; if (r1 == 0 && r2 == 0) { coords = Point2(0, 0); } else if (r1 > -r2) { /* Regions 1/2 */ if (r1 > r2) coords = Point2(r1, (M_PI/4.0f) * r2/r1); else coords = Point2(r2, (M_PI/4.0f) * (2.0f - r1/r2)); } else { /* Regions 3/4 */ if (r1 1.0f) return 0.0f; t *= M_PI; Float sincTerm = std::sin(t*tau)/(t*tau); Float windowTerm = std::sin(t)/t; return sincTerm * windowTerm; } /* The following functions calculate the reflected and refracted directions in addition to the fresnel coefficients. Based on PBRT and the paper "Derivation of Refraction Formulas" by Paul S. Heckbert. */ Float fresnelDielectric(Float cosThetaI, Float cosThetaT, Float etaI, Float etaT) { Float Rs = (etaI * cosThetaI - etaT * cosThetaT) / (etaI * cosThetaI + etaT * cosThetaT); Float Rp = (etaT * cosThetaI - etaI * cosThetaT) / (etaT * cosThetaI + etaI * cosThetaT); return (Rs * Rs + Rp * Rp) / 2.0f; } Spectrum fresnelConductor(Float cosThetaI, const Spectrum &eta, const Spectrum &k) { Spectrum tmp = (eta*eta + k*k) * (cosThetaI * cosThetaI); Spectrum rParl2 = (tmp - (eta * (2.0f * cosThetaI)) + Spectrum(1.0f)) / (tmp + (eta * (2.0f * cosThetaI)) + Spectrum(1.0f)); Spectrum tmpF = eta*eta + k*k; Spectrum rPerp2 = (tmpF - (eta * (2.0f * cosThetaI)) + Spectrum(cosThetaI*cosThetaI)) / (tmpF + (eta * (2.0f * cosThetaI)) + Spectrum(cosThetaI*cosThetaI)); return (rParl2 + rPerp2) / 2.0f; } Float fresnel(Float cosThetaI, Float etaExt, Float etaInt) { Float etaI = etaExt, etaT = etaInt; /* Swap the indices of refraction if the interaction starts at the inside of the object */ if (cosThetaI < 0.0f) std::swap(etaI, etaT); /* Using Snell's law, calculate the sine of the angle between the transmitted ray and the surface normal */ Float sinThetaT = etaI / etaT * std::sqrt(std::max((Float) 0.0f, 1.0f - cosThetaI*cosThetaI)); if (sinThetaT > 1.0f) return 1.0f; /* Total internal reflection! */ Float cosThetaT = std::sqrt(1.0f - sinThetaT*sinThetaT); /* Finally compute the reflection coefficient */ return fresnelDielectric(std::abs(cosThetaI), cosThetaT, etaI, etaT); } Float radicalInverse(int b, size_t i) { Float invB = (Float) 1 / (Float) b; Float x = 0.0f, f = invB; while (i) { x += f * (Float) (i % b); i /= b; f *= invB; } return x; } Float radicalInverseIncremental(int b, Float x) { Float invB = (Float) 1 / (Float) b; Float h, hh, r = 1.0f - x - (Float) 1e-10; if (invB < r) { x += invB; } else { h = invB; do { hh = h; h *= invB; } while (h >= r); x += hh + h - 1.0f; } return x; } std::string timeString(Float time, bool precise) { std::ostringstream os; char suffix = 's'; #ifdef WIN32 if (mts_isnan(time) || std::isinf(time)) { #else if (mts_isnan(time) || std::fpclassify(time) == FP_INFINITE) { #endif return "inf"; } os << std::setprecision(precise ? 4 : 1) << std::fixed; if (time > 60) { time /= 60; suffix = 'm'; if (time > 60) { time /= 60; suffix = 'h'; if (time > 12) { time /= 12; suffix = 'd'; } } } os << time << suffix; return os.str(); } double normalQuantile(double p) { // By Peter J. Acklam // http://home.online.no/~pjacklam/notes/invnorm/impl/sprouse/ltqnorm.c static const double LOW = 0.02425; static const double HIGH = 0.97575; double q, r; /* Coefficients in rational approximations. */ static const double a[] = { -3.969683028665376e+01, 2.209460984245205e+02, -2.759285104469687e+02, 1.383577518672690e+02, -3.066479806614716e+01, 2.506628277459239e+00 }; static const double b[] = { -5.447609879822406e+01, 1.615858368580409e+02, -1.556989798598866e+02, 6.680131188771972e+01, -1.328068155288572e+01 }; static const double c[] = { -7.784894002430293e-03, -3.223964580411365e-01, -2.400758277161838e+00, -2.549732539343734e+00, 4.374664141464968e+00, 2.938163982698783e+00 }; static const double d[] = { 7.784695709041462e-03, 3.224671290700398e-01, 2.445134137142996e+00, 3.754408661907416e+00 }; errno = 0; if (p < 0 || p > 1) { errno = EDOM; return 0.0; } else if (p == 0) { errno = ERANGE; return -HUGE_VAL /* minus "infinity" */; } else if (p == 1) { errno = ERANGE; return HUGE_VAL /* "infinity" */; } else if (p < LOW) { /* Rational approximation for lower region */ q = sqrt(-2*log(p)); return (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) / ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1); } else if (p > HIGH) { /* Rational approximation for upper region */ q = sqrt(-2*log(1-p)); return -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) / ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1); } else { /* Rational approximation for central region */ q = p - 0.5; r = q*q; return (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q / (((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1); } } Float hypot2(Float a, Float b) { Float r; if (std::abs(a) > std::abs(b)) { r = b/a; r = std::abs(a)*std::sqrt(1+r*r); } else if (b != 0) { r = a/b; r = std::abs(b)*std::sqrt(1+r*r); } else { r = 0; } return r; } MTS_NAMESPACE_END