/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2011 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #if !defined(__MICROFACET_H) #define __MICROFACET_H #include #include MTS_NAMESPACE_BEGIN /** * Implements the microfacet distributions discussed in * "Microfacet Models for Refraction through Rough Surfaces" * by Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance */ class MicrofacetDistribution { public: /// Supported distribution types enum EType { /// Beckmann distribution derived from Gaussian random surfaces EBeckmann = 0, /// Classical Phong distribution EPhong = 1, /// Long-tailed distribution proposed by Walter et al. EGGX = 2 }; /// Create a microfacet distribution of the specified type MicrofacetDistribution(EType type = EBeckmann) : m_type(type) { } /** * \brief Create a microfacet distribution of the specified name * (ggx/phong/beckmann) */ MicrofacetDistribution(const std::string &name) { std::string distr = boost::to_lower_copy(name); if (distr == "beckmann") m_type = EBeckmann; else if (distr == "phong") m_type = EPhong; else if (distr == "ggx") m_type = EGGX; else SLog(EError, "Specified an invalid distribution \"%s\", must be " "\"beckmann\", \"phong\", or \"ggx\"!", distr.c_str()); } /// Return the distribution type inline EType getType() const { return m_type; } /** * \brief Convert the roughness values so that they behave similarly to the * Beckmann distribution. * * Also clamps to the minimal roughness 1e-4 to avoid numerical issues * (For lower roughness values, please switch to the smooth BSDF variants) */ Float transformRoughness(Float value) const { if (m_type == EPhong) value = 2 / (value * value) - 2; return std::max(value, (Float) 1e-4f); } /** * \brief Implements the microfacet distribution function D * * \param m The microsurface normal * \param v An arbitrary direction */ Float eval(const Vector &m, Float alpha) const { if (Frame::cosTheta(m) <= 0) return 0.0f; Float result; switch (m_type) { case EBeckmann: { /* Beckmann distribution function for Gaussian random surfaces */ const Float ex = Frame::tanTheta(m) / alpha; result = std::exp(-(ex*ex)) / (M_PI * alpha*alpha * std::pow(Frame::cosTheta(m), (Float) 4.0f)); } break; case EPhong: { /* Phong distribution function */ result = (alpha + 2) * INV_TWOPI * std::pow(Frame::cosTheta(m), alpha); } break; case EGGX: { /* Empirical GGX distribution function for rough surfaces */ const Float tanTheta = Frame::tanTheta(m), cosTheta = Frame::cosTheta(m); const Float root = alpha / (cosTheta*cosTheta * (alpha*alpha + tanTheta*tanTheta)); result = INV_PI * (root * root); } break; default: SLog(EError, "Invalid distribution function!"); return 0.0f; } /* Prevent potential numerical issues in other stages of the model */ if (result < 1e-20f) result = 0; return result; } /** * \brief Sample microsurface normals according to * the selected distribution * * \param sample A uniformly distributed 2D sample * \param alpha Surface roughness */ Normal sample(const Point2 &sample, Float alpha) const { /* The azimuthal component is always selected uniformly regardless of the distribution */ Float phiM = (2.0f * M_PI) * sample.y, thetaM = 0.0f; switch (m_type) { case EBeckmann: thetaM = std::atan(std::sqrt(-alpha*alpha * std::log(1.0f - sample.x))); break; case EPhong: thetaM = std::acos(std::pow(sample.x, (Float) 1 / (alpha + 2))); break; case EGGX: thetaM = std::atan(alpha * std::sqrt(sample.x) / std::sqrt(1.0f - sample.x)); break; default: SLog(EError, "Invalid distribution function!"); } return Normal(sphericalDirection(thetaM, phiM)); } /** * \brief Smith's shadow-masking function G1 for each * of the supported microfacet distributions * * \param v An arbitrary direction * \param m The microsurface normal * \param alpha The surface roughness */ Float smithG1(const Vector &v, const Vector &m, Float alpha) const { const Float tanTheta = std::abs(Frame::tanTheta(v)); /* perpendicular incidence -- no shadowing/masking */ if (tanTheta == 0.0f) return 1.0f; /* Can't see the back side from the front and vice versa */ if (dot(v, m) * Frame::cosTheta(v) <= 0) return 0.0f; switch (m_type) { case EPhong: /* Approximation recommended by Bruce Walter: Use the Beckmann shadowing-masking function with specially chosen roughness value */ alpha = std::sqrt(0.5f * alpha + 1) / tanTheta; case EBeckmann: { /* Use a fast and accurate (<0.35% rel. error) rational approximation to the shadowing-masking function */ const Float a = 1.0f / (alpha * tanTheta); const Float aSqr = a * a; if (a >= 1.6f) return 1.0f; return (3.535f * a + 2.181f * aSqr) / (1.0f + 2.276f * a + 2.577f * aSqr); } break; case EGGX: { const Float root = alpha * tanTheta; return 2.0f / (1.0f + std::sqrt(1.0f + root*root)); } break; default: SLog(EError, "Invalid distribution function!"); return 0.0f; } } /** * \brief Smith's shadow-masking function G1 for each * of the supported microfacet distributions * * \param wi The incident direction * \param wo The exitant direction * \param m The microsurface normal * \param alpha The surface roughness */ Float smithG(const Vector &wi, const Vector &wo, const Vector &m, Float alpha) const { return smithG1(wi, m, alpha) * smithG1(wo, m, alpha); } std::string toString() const { switch (m_type) { case EBeckmann: return "beckmann"; break; case EPhong: return "phong"; break; case EGGX: return "ggx"; break; default: SLog(EError, "Invalid distribution function"); return ""; } } private: EType m_type; }; MTS_NAMESPACE_END #endif /* __MICROFACET_H */