/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHROOTS_H #define INCLUDED_IMATHROOTS_H //--------------------------------------------------------------------- // // Functions to solve linear, quadratic or cubic equations // //--------------------------------------------------------------------- #include #include namespace Imath { //-------------------------------------------------------------------------- // Find the real solutions of a linear, quadratic or cubic equation: // // function equation solved // // solveLinear (a, b, x) a * x + b == 0 // solveQuadratic (a, b, c, x) a * x*x + b * x + c == 0 // solveNormalizedCubic (r, s, t, x) x*x*x + r * x*x + s * x + t == 0 // solveCubic (a, b, c, d, x) a * x*x*x + b * x*x + c * x + d == 0 // // Return value: // // 3 three real solutions, stored in x[0], x[1] and x[2] // 2 two real solutions, stored in x[0] and x[1] // 1 one real solution, stored in x[1] // 0 no real solutions // -1 all real numbers are solutions // // Notes: // // * It is possible that an equation has real solutions, but that the // solutions (or some intermediate result) are not representable. // In this case, either some of the solutions returned are invalid // (nan or infinity), or, if floating-point exceptions have been // enabled with Iex::mathExcOn(), an Iex::MathExc exception is // thrown. // // * Cubic equations are solved using Cardano's Formula; even though // only real solutions are produced, some intermediate results are // complex (std::complex). // //-------------------------------------------------------------------------- template int solveLinear (T a, T b, T &x); template int solveQuadratic (T a, T b, T c, T x[2]); template int solveNormalizedCubic (T r, T s, T t, T x[3]); template int solveCubic (T a, T b, T c, T d, T x[3]); //--------------- // Implementation //--------------- template int solveLinear (T a, T b, T &x) { if (a != 0) { x = -b / a; return 1; } else if (b != 0) { return 0; } else { return -1; } } template int solveQuadratic (T a, T b, T c, T x[2]) { if (a == 0) { return solveLinear (b, c, x[0]); } else { T D = b * b - 4 * a * c; if (D > 0) { T s = Math::sqrt (D); x[0] = (-b + s) / (2 * a); x[1] = (-b - s) / (2 * a); return 2; } if (D == 0) { x[0] = -b / (2 * a); return 1; } else { return 0; } } } template int solveNormalizedCubic (T r, T s, T t, T x[3]) { T p = (3 * s - r * r) / 3; T q = 2 * r * r * r / 27 - r * s / 3 + t; T p3 = p / 3; T q2 = q / 2; T D = p3 * p3 * p3 + q2 * q2; if (D == 0 && p3 == 0) { x[0] = -r / 3; x[1] = -r / 3; x[2] = -r / 3; return 1; } std::complex u = std::pow (-q / 2 + std::sqrt (std::complex (D)), T (1) / T (3)); std::complex v = -p / (T (3) * u); const T sqrt3 = T (1.73205080756887729352744634150587); // enough digits // for long double std::complex y0 (u + v); std::complex y1 (-(u + v) / T (2) + (u - v) / T (2) * std::complex (0, sqrt3)); std::complex y2 (-(u + v) / T (2) - (u - v) / T (2) * std::complex (0, sqrt3)); if (D > 0) { x[0] = y0.real() - r / 3; return 1; } else if (D == 0) { x[0] = y0.real() - r / 3; x[1] = y1.real() - r / 3; return 2; } else { x[0] = y0.real() - r / 3; x[1] = y1.real() - r / 3; x[2] = y2.real() - r / 3; return 3; } } template int solveCubic (T a, T b, T c, T d, T x[3]) { if (a == 0) { return solveQuadratic (b, c, d, x); } else { return solveNormalizedCubic (b / a, c / a, d / a, x); } } } // namespace Imath #endif