/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2012 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include MTS_NAMESPACE_BEGIN Float evalCubicInterp1D(Float x, const Float *values, size_t size, Float min, Float max, bool extrapolate) { /* Give up when given an out-of-range or NaN argument */ if (!(x >= min && x <= max) && !extrapolate) return 0.0f; /* Transform 'x' so that knots lie at integer positions */ Float t = ((x - min) * (size - 1)) / (max - min); /* Find the index of the left knot in the queried subinterval, be robust to cases where 't' lies exactly on the right endpoint */ size_t k = std::max((size_t) 0, std::min((size_t) t, size - 2)); Float f0 = values[k], f1 = values[k+1], d0, d1; /* Approximate the derivatives */ if (k > 0) d0 = 0.5f * (values[k+1] - values[k-1]); else d0 = values[k+1] - values[k]; if (k + 2 < size) d1 = 0.5f * (values[k+2] - values[k]); else d1 = values[k+1] - values[k]; /* Compute the relative position within the interval */ t = t - (Float) k; Float t2 = t*t, t3 = t2*t; return ( 2*t3 - 3*t2 + 1) * f0 + (-2*t3 + 3*t2) * f1 + ( t3 - 2*t2 + t) * d0 + ( t3 - t2) * d1; } Float evalCubicInterp1DN(Float x, const Float *nodes, const Float *values, size_t size, bool extrapolate) { /* Give up when given an out-of-range or NaN argument */ if (!(x >= nodes[0] && x <= nodes[size-1]) && !extrapolate) return 0.0f; size_t k = (size_t) std::max((ptrdiff_t) 0, std::min((ptrdiff_t) size - 2, std::lower_bound(nodes, nodes + size, x) - nodes - 1)); Float f0 = values[k], f1 = values[k+1], width = nodes[k+1] - nodes[k], d0, d1; /* Approximate the derivatives */ if (k > 0) d0 = width * (f1 - values[k-1]) / (nodes[k+1] - nodes[k-1]); else d0 = f1 - f0; if (k + 2 < size) d1 = width * (values[k+2] - f0) / (nodes[k+2] - nodes[k]); else d1 = f1 - f0; Float t = (x - nodes[k]) / width; Float t2 = t*t, t3 = t2*t; return ( 2*t3 - 3*t2 + 1) * f0 + (-2*t3 + 3*t2) * f1 + ( t3 - 2*t2 + t) * d0 + ( t3 - t2) * d1; } Float integrateCubicInterp1D(size_t idx, const Float *values, size_t size, Float min, Float max) { Float f0 = values[idx], f1 = values[idx+1], d0, d1; /* Approximate the derivatives */ if (idx > 0) d0 = 0.5f * (values[idx+1] - values[idx-1]); else d0 = values[idx+1] - values[idx]; if (idx + 2 < size) d1 = 0.5f * (values[idx+2] - values[idx]); else d1 = values[idx+1] - values[idx]; return ((d0-d1) * (Float) (1.0 / 12.0) + (f0+f1) * 0.5f) * (max-min) / (size - 1); } Float integrateCubicInterp1DN(size_t idx, const Float *nodes, const Float *values, size_t size) { Float f0 = values[idx], f1 = values[idx+1], width = nodes[idx+1] - nodes[idx], d0, d1; /* Approximate the derivatives */ if (idx > 0) d0 = width * (f1 - values[idx-1]) / (nodes[idx+1] - nodes[idx-1]); else d0 = f1 - f0; if (idx + 2 < size) d1 = width * (values[idx+2] - f0) / (nodes[idx+2] - nodes[idx]); else d1 = f1 - f0; return ((d0-d1) * (Float) (1.0 / 12.0) + (f0+f1) * 0.5f) * width; } Float sampleCubicInterp1D(size_t idx, Float *values, size_t size, Float min, Float max, Float sample, Float *fval) { Float f0 = values[idx], f1 = values[idx+1], d0, d1; /* Approximate the derivatives */ if (idx > 0) d0 = 0.5f * (values[idx+1] - values[idx-1]); else d0 = values[idx+1] - values[idx]; if (idx + 2 < size) d1 = 0.5f * (values[idx+2] - values[idx]); else d1 = values[idx+1] - values[idx]; /* Bracketing interval and starting guess */ Float a = 0, c = 1, b; if (f0 != f1) /* Importance sample linear interpolant */ b = (f0-math::safe_sqrt(f0*f0 + sample * (f1*f1-f0*f0))) / (f0-f1); else b = sample; sample *= ((d0-d1) * (Float) (1.0 / 12.0) + (f0+f1) * 0.5f); /* Invert CDF using Newton-Bisection */ while (true) { if (!(b >= a && b <= c)) b = 0.5f * (a + c); /* CDF and PDF in Horner form */ Float value = b*(f0 + b*(.5f*d0 + b*((Float) (1.0f/3.0f) * (-2*d0-d1) + f1 - f0 + b*(0.25f*(d0 + d1) + 0.5f * (f0 - f1))))) - sample; Float deriv = f0 + b*(d0 + b*(-2*d0 - d1 + 3*(f1-f0) + b*(d0 + d1 + 2*(f0 - f1)))); if (std::abs(value) < 1e-6f) { if (fval) *fval = deriv; return min + (idx+b) * (max-min) / (size-1); } if (value > 0) c = b; else a = b; b -= value / deriv; } } Float sampleCubicInterp1DN(size_t idx, Float *nodes, Float *values, size_t size, Float sample, Float *fval) { Float f0 = values[idx], f1 = values[idx+1], width = nodes[idx+1] - nodes[idx], d0, d1; /* Approximate the derivatives */ if (idx > 0) d0 = width * (f1 - values[idx-1]) / (nodes[idx+1] - nodes[idx-1]); else d0 = f1 - f0; if (idx + 2 < size) d1 = width * (values[idx+2] - f0) / (nodes[idx+2] - nodes[idx]); else d1 = f1 - f0; /* Bracketing interval and starting guess */ Float a = 0, c = 1, b; if (f0 != f1) /* Importance sample linear interpolant */ b = (f0-math::safe_sqrt(f0*f0 + sample * (f1*f1-f0*f0))) / (f0-f1); else b = sample; sample *= ((d0-d1) * (Float) (1.0 / 12.0) + (f0+f1) * 0.5f); /* Invert CDF using Newton-Bisection */ while (true) { if (!(b >= a && b <= c)) b = 0.5f * (a + c); /* CDF and PDF in Horner form */ Float value = b*(f0 + b*(.5f*d0 + b*((Float) (1.0f/3.0f) * (-2*d0-d1) + f1 - f0 + b*(0.25f*(d0 + d1) + 0.5f * (f0 - f1))))) - sample; Float deriv = f0 + b*(d0 + b*(-2*d0 - d1 + 3*(f1-f0) + b*(d0 + d1 + 2*(f0 - f1)))); if (std::abs(value) < 1e-6f) { if (fval) *fval = deriv; return nodes[idx] + width*b; } if (value > 0) c = b; else a = b; b -= value / deriv; } } Float evalCubicInterp2D(const Point2 &p, const Float *values, const Size2 &size, const Point2 &min, const Point2 &max, bool extrapolate) { Float knotWeights[2][4]; Size2 knot; /* Compute interpolation weights separately for each dimension */ for (int dim=0; dim<2; ++dim) { Float *weights = knotWeights[dim]; /* Give up when given an out-of-range or NaN argument */ if (!(p[dim] >= min[dim] && p[dim] <= max[dim]) && !extrapolate) return 0.0f; /* Transform 'p' so that knots lie at integer positions */ Float t = ((p[dim] - min[dim]) * (size[dim] - 1)) / (max[dim]-min[dim]); /* Find the index of the left knot in the queried subinterval, be robust to cases where 't' lies exactly on the right endpoint */ knot[dim] = std::min((size_t) t, size[dim] - 2); /* Compute the relative position within the interval */ t = t - (Float) knot[dim]; /* Compute node weights */ Float t2 = t*t, t3 = t2*t; weights[0] = 0.0f; weights[1] = 2*t3 - 3*t2 + 1; weights[2] = -2*t3 + 3*t2; weights[3] = 0.0f; /* Derivative weights */ Float d0 = t3 - 2*t2 + t, d1 = t3 - t2; /* Turn derivative weights into node weights using an appropriate chosen finite differences stencil */ if (knot[dim] > 0) { weights[2] += 0.5f * d0; weights[0] -= 0.5f * d0; } else { weights[2] += d0; weights[1] -= d0; } if (knot[dim] + 2 < size[dim]) { weights[3] += 0.5f * d1; weights[1] -= 0.5f * d1; } else { weights[2] += d1; weights[1] -= d1; } } Float result = 0.0f; for (int y=-1; y<=2; ++y) { Float wy = knotWeights[1][y+1]; for (int x=-1; x<=2; ++x) { Float wxy = knotWeights[0][x+1] * wy; if (wxy == 0) continue; size_t pos = (knot[1] + y) * size[0] + knot[0] + x; result += values[pos] * wxy; } } return result; } Float evalCubicInterp2DN(const Point2 &p, const Float **nodes_, const Float *values, const Size2 &size, bool extrapolate) { Float knotWeights[2][4]; Size2 knot; /* Compute interpolation weights separately for each dimension */ for (int dim=0; dim<2; ++dim) { const Float *nodes = nodes_[dim]; Float *weights = knotWeights[dim]; /* Give up when given an out-of-range or NaN argument */ if (!(p[dim] >= nodes[0] && p[dim] <= nodes[size[dim]-1]) && !extrapolate) return 0.0f; /* Find the index of the left knot in the queried subinterval, be robust to cases where 't' lies exactly on the right endpoint */ size_t k = (size_t) std::max((ptrdiff_t) 0, std::min((ptrdiff_t) size[dim] - 2, std::lower_bound(nodes, nodes + size[dim], p[dim]) - nodes - 1)); knot[dim] = k; Float width = nodes[k+1] - nodes[k]; /* Compute the relative position within the interval */ Float t = (p[dim] - nodes[k]) / width, t2 = t*t, t3 = t2*t; /* Compute node weights */ weights[0] = 0.0f; weights[1] = 2*t3 - 3*t2 + 1; weights[2] = -2*t3 + 3*t2; weights[3] = 0.0f; /* Derivative weights */ Float d0 = t3 - 2*t2 + t, d1 = t3 - t2; /* Turn derivative weights into node weights using an appropriate chosen finite differences stencil */ if (k > 0) { Float factor = width / (nodes[k+1]-nodes[k-1]); weights[2] += d0 * factor; weights[0] -= d0 * factor; } else { weights[2] += d0; weights[1] -= d0; } if (k + 2 < size[dim]) { Float factor = width / (nodes[k+2]-nodes[k]); weights[3] += d1 * factor; weights[1] -= d1 * factor; } else { weights[2] += d1; weights[1] -= d1; } } Float result = 0.0f; for (int y=-1; y<=2; ++y) { Float wy = knotWeights[1][y+1]; for (int x=-1; x<=2; ++x) { Float wxy = knotWeights[0][x+1] * wy; if (wxy == 0) continue; size_t pos = (knot[1] + y) * size[0] + knot[0] + x; result += values[pos] * wxy; } } return result; } Float evalCubicInterp3D(const Point3 &p, const Float *values, const Size3 &size, const Point3 &min, const Point3 &max, bool extrapolate) { Float knotWeights[3][4]; Size3 knot; /* Compute interpolation weights separately for each dimension */ for (int dim=0; dim<3; ++dim) { Float *weights = knotWeights[dim]; /* Give up when given an out-of-range or NaN argument */ if (!(p[dim] >= min[dim] && p[dim] <= max[dim]) && !extrapolate) return 0.0f; /* Transform 'p' so that knots lie at integer positions */ Float t = ((p[dim] - min[dim]) * (size[dim] - 1)) / (max[dim]-min[dim]); /* Find the index of the left knot in the queried subinterval, be robust to cases where 't' lies exactly on the right endpoint */ knot[dim] = std::min((size_t) t, size[dim] - 2); /* Compute the relative position within the interval */ t = t - (Float) knot[dim]; /* Compute node weights */ Float t2 = t*t, t3 = t2*t; weights[0] = 0.0f; weights[1] = 2*t3 - 3*t2 + 1; weights[2] = -2*t3 + 3*t2; weights[3] = 0.0f; /* Derivative weights */ Float d0 = t3 - 2*t2 + t, d1 = t3 - t2; /* Turn derivative weights into node weights using an appropriate chosen finite differences stencil */ if (knot[dim] > 0) { weights[2] += 0.5f * d0; weights[0] -= 0.5f * d0; } else { weights[2] += d0; weights[1] -= d0; } if (knot[dim] + 2 < size[dim]) { weights[3] += 0.5f * d1; weights[1] -= 0.5f * d1; } else { weights[2] += d1; weights[1] -= d1; } } Float result = 0.0f; for (int z=-1; z<=2; ++z) { Float wz = knotWeights[2][z+1]; for (int y=-1; y<=2; ++y) { Float wyz = knotWeights[1][y+1] * wz; for (int x=-1; x<=2; ++x) { Float wxyz = knotWeights[0][x+1] * wyz; if (wxyz == 0) continue; size_t pos = ((knot[2] + z) * size[1] + (knot[1] + y)) * size[0] + knot[0] + x; result += values[pos] * wxyz; } } } return result; } Float evalCubicInterp3DN(const Point3 &p, const Float **nodes_, const Float *values, const Size3 &size, bool extrapolate) { Float knotWeights[3][4]; Size3 knot; /* Compute interpolation weights separately for each dimension */ for (int dim=0; dim<3; ++dim) { const Float *nodes = nodes_[dim]; Float *weights = knotWeights[dim]; /* Give up when given an out-of-range or NaN argument */ if (!(p[dim] >= nodes[0] && p[dim] <= nodes[size[dim]-1]) && !extrapolate) return 0.0f; /* Find the index of the left knot in the queried subinterval, be robust to cases where 't' lies exactly on the right endpoint */ size_t k = (size_t) std::max((ptrdiff_t) 0, std::min((ptrdiff_t) size[dim] - 2, std::lower_bound(nodes, nodes + size[dim], p[dim]) - nodes - 1)); knot[dim] = k; Float width = nodes[k+1] - nodes[k]; /* Compute the relative position within the interval */ Float t = (p[dim] - nodes[k]) / width, t2 = t*t, t3 = t2*t; /* Compute node weights */ weights[0] = 0.0f; weights[1] = 2*t3 - 3*t2 + 1; weights[2] = -2*t3 + 3*t2; weights[3] = 0.0f; /* Derivative weights */ Float d0 = t3 - 2*t2 + t, d1 = t3 - t2; /* Turn derivative weights into node weights using an appropriate chosen finite differences stencil */ if (k > 0) { Float factor = width / (nodes[k+1]-nodes[k-1]); weights[2] += d0 * factor; weights[0] -= d0 * factor; } else { weights[2] += d0; weights[1] -= d0; } if (k + 2 < size[dim]) { Float factor = width / (nodes[k+2]-nodes[k]); weights[3] += d1 * factor; weights[1] -= d1 * factor; } else { weights[2] += d1; weights[1] -= d1; } } Float result = 0.0f; for (int z=-1; z<=2; ++z) { Float wz = knotWeights[2][z+1]; for (int y=-1; y<=2; ++y) { Float wyz = knotWeights[1][y+1] * wz; for (int x=-1; x<=2; ++x) { Float wxyz = knotWeights[0][x+1] * wyz; if (wxyz == 0) continue; size_t pos = ((knot[2] + z) * size[1] + (knot[1] + y)) * size[0] + knot[0] + x; result += values[pos] * wxyz; } } } return result; } MTS_NAMESPACE_END