/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2012 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "ior.h" MTS_NAMESPACE_BEGIN /*! \plugin{coating}{Smooth dielectric coating} * \order{10} * \icon{bsdf_coating} * * \parameters{ * \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified * numerically or using a known material name. \default{\texttt{bk7} / 1.5046}} * \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified * numerically or using a known material name. \default{\texttt{air} / 1.000277}} * \parameter{thickness}{\Float}{Denotes the thickness of the layer (to * model absorption --- should be specified in inverse units of \code{sigmaA})\default{1}} * \parameter{sigmaA}{\Spectrum\Or\Texture}{The absorption coefficient of the * coating layer. \default{0, i.e. there is no absorption}} * \parameter{specular\showbreak Transmittance}{\Spectrum\Or\Texture}{Optional * factor that can be used to modulate the specular transmission component. Note * that for physical realism, this parameter should never be touched. \default{1.0}} * \parameter{\Unnamed}{\BSDF}{A nested BSDF model that should be coated.} * } * * \renderings{ * \rendering{Rough copper} * {bsdf_coating_uncoated} * \rendering{The same material coated with a single layer of * clear varnish (see \lstref{coating-roughcopper})} * {bsdf_coating_roughconductor} * } * * This plugin implements a smooth dielectric coating (e.g. a layer of varnish) * in the style of the paper ``Arbitrarily Layered Micro-Facet Surfaces'' by * Weidlich and Wilkie \cite{Weidlich2007Arbitrarily}. Any BSDF in Mitsuba * can be coated using this plugin, and multiple coating layers can even * be applied in sequence. This allows designing interesting custom materials * like car paint or glazed metal foil. The coating layer can optionally be * tinted (i.e. filled with an absorbing medium), in which case this model also * accounts for the directionally dependent absorption within the layer. * * Note that the plugin discards illumination that undergoes internal * reflection within the coating. This can lead to a noticeable energy * loss for materials that reflect much of their energy near or below the critical * angle (i.e. diffuse or very rough materials). * Therefore, users are discouraged to use this plugin to coat smooth * diffuse materials, since there is a separately available plugin * named \pluginref{plastic}, which covers the same case and does not * suffer from energy loss.\newpage * * \renderings{ * \smallrendering{$\code{thickness}=0$}{bsdf_coating_0} * \smallrendering{$\code{thickness}=1$}{bsdf_coating_1} * \smallrendering{$\code{thickness}=5$}{bsdf_coating_5} * \smallrendering{$\code{thickness}=15$}{bsdf_coating_15} * \caption{The effect of the layer thickness parameter on * a tinted coating ($\code{sigmaT}=(0.1, 0.2, 0.5)$)} * } * * \vspace{4mm} * * \begin{xml}[caption=Rough copper coated with a transparent layer of * varnish, label=lst:coating-roughcopper] * * * * * * * * * \end{xml} * * \renderings{ * \rendering{Coated rough copper with a bump map applied on top}{bsdf_coating_coatedbump} * \rendering{Bump mapped rough copper with a coating on top}{bsdf_coating_bumpcoating} * \caption{Some interesting materials can be created simply by applying * Mitsuba's material modifiers in different orders.} * } * * \subsubsection*{Technical details} * Evaluating the internal component of this model entails refracting the * incident and exitant rays through the dielectric interface, followed by * querying the nested material with this modified direction pair. The result * is attenuated by the two Fresnel transmittances and the absorption, if * any. */ class SmoothCoating : public BSDF { public: SmoothCoating(const Properties &props) : BSDF(props) { /* Specifies the internal index of refraction at the interface */ Float intIOR = lookupIOR(props, "intIOR", "bk7"); /* Specifies the external index of refraction at the interface */ Float extIOR = lookupIOR(props, "extIOR", "air"); if (intIOR < 0 || extIOR < 0 || intIOR == extIOR) Log(EError, "The interior and exterior indices of " "refraction must be positive and differ!"); m_eta = intIOR / extIOR; m_invEta = 1 / m_eta; /* Specifies the layer's thickness using the inverse units of sigmaA */ m_thickness = props.getFloat("thickness", 1); /* Specifies the absorption within the layer */ m_sigmaA = new ConstantSpectrumTexture( props.getSpectrum("sigmaA", Spectrum(0.0f))); /* Specifies a multiplier for the specular reflectance component */ m_specularReflectance = new ConstantSpectrumTexture( props.getSpectrum("specularReflectance", Spectrum(1.0f))); } SmoothCoating(Stream *stream, InstanceManager *manager) : BSDF(stream, manager) { m_eta = stream->readFloat(); m_thickness = stream->readFloat(); m_nested = static_cast(manager->getInstance(stream)); m_sigmaA = static_cast(manager->getInstance(stream)); m_specularReflectance = static_cast(manager->getInstance(stream)); m_invEta = 1 / m_eta; configure(); } void serialize(Stream *stream, InstanceManager *manager) const { BSDF::serialize(stream, manager); stream->writeFloat(m_eta); stream->writeFloat(m_thickness); manager->serialize(stream, m_nested.get()); manager->serialize(stream, m_sigmaA.get()); manager->serialize(stream, m_specularReflectance.get()); } void configure() { if (!m_nested) Log(EError, "A child BSDF instance is required"); unsigned int extraFlags = 0; if (!m_sigmaA->isConstant()) extraFlags |= ESpatiallyVarying; m_components.clear(); for (int i=0; igetComponentCount(); ++i) m_components.push_back(m_nested->getType(i) | extraFlags); m_components.push_back(EDeltaReflection | EFrontSide | EBackSide | (m_specularReflectance->isConstant() ? 0 : ESpatiallyVarying)); m_usesRayDifferentials = m_nested->usesRayDifferentials() || m_sigmaA->usesRayDifferentials() || m_specularReflectance->usesRayDifferentials(); /* Compute weights that further steer samples towards the specular or nested components */ Float avgAbsorption = (m_sigmaA->getAverage() *(-2*m_thickness)).exp().average(); m_specularSamplingWeight = 1.0f / (avgAbsorption + 1.0f); /* Verify the input parameters and fix them if necessary */ m_specularReflectance = ensureEnergyConservation( m_specularReflectance, "specularReflectance", 1.0f); BSDF::configure(); } void addChild(const std::string &name, ConfigurableObject *child) { if (child->getClass()->derivesFrom(MTS_CLASS(BSDF))) { if (m_nested != NULL) Log(EError, "Only a single nested BRDF can be added!"); m_nested = static_cast(child); } else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "sigmaA") { m_sigmaA = static_cast(child); } else { BSDF::addChild(name, child); } } /// Reflection in local coordinates inline Vector reflect(const Vector &wi) const { return Vector(-wi.x, -wi.y, wi.z); } /// Refract into the material, preserve sign of direction inline Vector refractIn(const Vector &wi, Float &R) const { Float cosThetaT; R = fresnelDielectricExt(std::abs(Frame::cosTheta(wi)), cosThetaT, m_eta); return Vector(m_invEta*wi.x, m_invEta*wi.y, -math::signum(Frame::cosTheta(wi)) * cosThetaT); } /// Refract out of the material, preserve sign of direction inline Vector refractOut(const Vector &wi, Float &R) const { Float cosThetaT; R = fresnelDielectricExt(std::abs(Frame::cosTheta(wi)), cosThetaT, m_invEta); return Vector(m_eta*wi.x, m_eta*wi.y, -math::signum(Frame::cosTheta(wi)) * cosThetaT); } Spectrum eval(const BSDFSamplingRecord &bRec, EMeasure measure) const { bool sampleSpecular = (bRec.typeMask & EDeltaReflection) && (bRec.component == -1 || bRec.component == (int) m_components.size()-1); bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); if (measure == EDiscrete && sampleSpecular && absDot(reflect(bRec.wi), bRec.wo) > 1-DeltaEpsilon) { return m_specularReflectance->eval(bRec.its) * fresnelDielectricExt(std::abs(Frame::cosTheta(bRec.wi)), m_eta); } else if (sampleNested) { Float R12, R21; BSDFSamplingRecord bRecInt(bRec); bRecInt.wi = refractIn(bRec.wi, R12); bRecInt.wo = refractIn(bRec.wo, R21); if (R12 == 1 || R21 == 1) /* Total internal reflection */ return Spectrum(0.0f); Spectrum result = m_nested->eval(bRecInt, measure) * (1-R12) * (1-R21); Spectrum sigmaA = m_sigmaA->eval(bRec.its) * m_thickness; if (!sigmaA.isZero()) result *= (-sigmaA * (1/std::abs(Frame::cosTheta(bRecInt.wi)) + 1/std::abs(Frame::cosTheta(bRecInt.wo)))).exp(); if (measure == ESolidAngle) { /* Solid angle compression & irradiance conversion factors */ result *= m_invEta * m_invEta * Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo) / (Frame::cosTheta(bRecInt.wi) * Frame::cosTheta(bRecInt.wo)); } return result; } return Spectrum(0.0f); } Float pdf(const BSDFSamplingRecord &bRec, EMeasure measure) const { bool sampleSpecular = (bRec.typeMask & EDeltaReflection) && (bRec.component == -1 || bRec.component == (int) m_components.size()-1); bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); Float R12; Vector wiPrime = refractIn(bRec.wi, R12); /* Reallocate samples */ Float probSpecular = (R12*m_specularSamplingWeight) / (R12*m_specularSamplingWeight + (1-R12) * (1-m_specularSamplingWeight)); if (measure == EDiscrete && sampleSpecular && absDot(reflect(bRec.wi), bRec.wo) > 1-DeltaEpsilon) { return sampleNested ? probSpecular : 1.0f; } else if (sampleNested) { Float R21; BSDFSamplingRecord bRecInt(bRec); bRecInt.wi = wiPrime; bRecInt.wo = refractIn(bRec.wo, R21); if (R12 == 1 || R21 == 1) /* Total internal reflection */ return 0.0f; Float pdf = m_nested->pdf(bRecInt, measure); if (measure == ESolidAngle) pdf *= m_invEta * m_invEta * Frame::cosTheta(bRec.wo) / Frame::cosTheta(bRecInt.wo); return sampleSpecular ? (pdf * (1 - probSpecular)) : pdf; } else { return 0.0f; } } Spectrum sample(BSDFSamplingRecord &bRec, Float &pdf, const Point2 &_sample) const { bool sampleSpecular = (bRec.typeMask & EDeltaReflection) && (bRec.component == -1 || bRec.component == (int) m_components.size()-1); bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); if ((!sampleSpecular && !sampleNested)) return Spectrum(0.0f); Float R12; Vector wiPrime = refractIn(bRec.wi, R12); /* Reallocate samples */ Float probSpecular = (R12*m_specularSamplingWeight) / (R12*m_specularSamplingWeight + (1-R12) * (1-m_specularSamplingWeight)); bool choseSpecular = sampleSpecular; Point2 sample(_sample); if (sampleSpecular && sampleNested) { if (sample.x > probSpecular) { sample.x = (sample.x - probSpecular) / (1 - probSpecular); choseSpecular = false; } else { sample.x /= probSpecular; } } if (choseSpecular) { bRec.sampledComponent = (int) m_components.size() - 1; bRec.sampledType = EDeltaReflection; bRec.wo = reflect(bRec.wi); bRec.eta = 1.0f; pdf = sampleNested ? probSpecular : 1.0f; return m_specularReflectance->eval(bRec.its) * (R12/pdf); } else { if (R12 == 1.0f) /* Total internal reflection */ return Spectrum(0.0f); Vector wiBackup = bRec.wi; bRec.wi = wiPrime; Spectrum result = m_nested->sample(bRec, pdf, sample); bRec.wi = wiBackup; if (result.isZero()) return Spectrum(0.0f); Vector woPrime = bRec.wo; Spectrum sigmaA = m_sigmaA->eval(bRec.its) * m_thickness; if (!sigmaA.isZero()) result *= (-sigmaA * (1/std::abs(Frame::cosTheta(wiPrime)) + 1/std::abs(Frame::cosTheta(woPrime)))).exp(); Float R21; bRec.wo = refractOut(woPrime, R21); if (R21 == 1.0f) /* Total internal reflection */ return Spectrum(0.0f); if (sampleSpecular) { pdf *= 1.0f - probSpecular; result /= 1.0f - probSpecular; } result *= (1 - R12) * (1 - R21); if (BSDF::getMeasure(bRec.sampledType) == ESolidAngle) { /* Solid angle compression & irradiance conversion factors */ result *= Frame::cosTheta(bRec.wi) / Frame::cosTheta(wiPrime); pdf *= m_invEta * m_invEta * Frame::cosTheta(bRec.wo) / Frame::cosTheta(woPrime); } return result; } } Spectrum sample(BSDFSamplingRecord &bRec, const Point2 &sample) const { Float pdf; return SmoothCoating::sample(bRec, pdf, sample); } Float getRoughness(const Intersection &its, int component) const { return component < (int) m_components.size() ? m_nested->getRoughness(its, component) : (Float) 0; } std::string toString() const { std::ostringstream oss; oss << "SmoothCoating[" << endl << " id = \"" << getID() << "\"," << endl << " eta = " << m_eta << "," << endl << " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl << " sigmaA = " << indent(m_sigmaA->toString()) << "," << endl << " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl << " thickness = " << m_thickness << "," << endl << " nested = " << indent(m_nested.toString()) << endl << "]"; return oss.str(); } Shader *createShader(Renderer *renderer) const; MTS_DECLARE_CLASS() protected: Float m_specularSamplingWeight; Float m_eta, m_invEta; ref m_sigmaA; ref m_specularReflectance; ref m_nested; Float m_thickness; }; // ================ Hardware shader implementation ================ /** * Simple GLSL version -- uses Schlick's approximation and approximates the * ideally specular reflection with a somewhat smoothed out reflection lobe */ class SmoothCoatingShader : public Shader { public: SmoothCoatingShader(Renderer *renderer, Float eta, const BSDF *nested, const Texture *sigmaA) : Shader(renderer, EBSDFShader), m_nested(nested), m_sigmaA(sigmaA), m_eta(eta) { m_nestedShader = renderer->registerShaderForResource(m_nested.get()); m_sigmaAShader = renderer->registerShaderForResource(m_sigmaA.get()); m_R0 = fresnelDielectricExt(1.0f, eta); } bool isComplete() const { return m_nestedShader.get() != NULL && m_sigmaAShader.get() != NULL; } void cleanup(Renderer *renderer) { renderer->unregisterShaderForResource(m_nested.get()); renderer->unregisterShaderForResource(m_sigmaA.get()); } void putDependencies(std::vector &deps) { deps.push_back(m_nestedShader.get()); deps.push_back(m_sigmaAShader.get()); } void resolve(const GPUProgram *program, const std::string &evalName, std::vector ¶meterIDs) const { parameterIDs.push_back(program->getParameterID(evalName + "_R0", false)); parameterIDs.push_back(program->getParameterID(evalName + "_eta", false)); parameterIDs.push_back(program->getParameterID(evalName + "_alpha", false)); } void bind(GPUProgram *program, const std::vector ¶meterIDs, int &textureUnitOffset) const { program->setParameter(parameterIDs[0], m_R0); program->setParameter(parameterIDs[1], m_eta); program->setParameter(parameterIDs[2], 0.4f); } void generateCode(std::ostringstream &oss, const std::string &evalName, const std::vector &depNames) const { oss << "uniform float " << evalName << "_R0;" << endl << "uniform float " << evalName << "_eta;" << endl << "uniform float " << evalName << "_alpha;" << endl << endl << "float " << evalName << "_schlick(float ct) {" << endl << " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl << " return " << evalName << "_R0 + (1.0 - " << evalName << "_R0) * ct5;" << endl << "}" << endl << endl << "vec3 " << evalName << "_refract(vec3 wi, out float T) {" << endl << " float cosThetaI = cosTheta(wi);" << endl << " bool entering = cosThetaI > 0.0;" << endl << " float eta = " << evalName << "_eta;" << endl << " float sinThetaTSqr = eta * eta * sinTheta2(wi);" << endl << " if (sinThetaTSqr >= 1.0) {" << endl << " T = 0.0; /* Total internal reflection */" << endl << " return vec3(0.0);" << endl << " } else {" << endl << " float cosThetaT = sqrt(1.0 - sinThetaTSqr);" << endl << " T = 1.0 - " << evalName << "_schlick(1.0 - abs(cosThetaI));" << endl << " return vec3(eta*wi.x, eta*wi.y, entering ? cosThetaT : -cosThetaT);" << endl << " }" << endl << "}" << endl << endl << "float " << evalName << "_D(vec3 m) {" << endl << " float ct = cosTheta(m);" << endl << " if (cosTheta(m) <= 0.0)" << endl << " return 0.0;" << endl << " float ex = tanTheta(m) / " << evalName << "_alpha;" << endl << " return exp(-(ex*ex)) / (pi * " << evalName << "_alpha" << endl << " * " << evalName << "_alpha * pow(cosTheta(m), 4.0));" << endl << "}" << endl << endl << "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl << " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl << " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl << " return 0.0;" << endl << " float nDotM = cosTheta(m);" << endl << " return min(1.0, min(" << endl << " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl << " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl << "}" << endl << endl << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl << " float T12, T21;" << endl << " vec3 wiPrime = " << evalName << "_refract(wi, T12);" << endl << " vec3 woPrime = " << evalName << "_refract(wo, T21);" << endl << " vec3 nested = " << depNames[0] << "(uv, wiPrime, woPrime);" << endl << " vec3 sigmaA = " << depNames[1] << "(uv);" << endl << " vec3 result = nested * " << evalName << "_eta * " << evalName << "_eta" << endl << " * T12 * T21 * (cosTheta(wi)*cosTheta(wo)) /" << endl << " (cosTheta(wiPrime)*cosTheta(woPrime));" << endl << " if (sigmaA != vec3(0.0))" << endl << " result *= exp(-sigmaA * (1/abs(cosTheta(wiPrime)) + " << endl << " 1/abs(cosTheta(woPrime))));" << endl << " if (cosTheta(wi)*cosTheta(wo) > 0) {" << endl << " vec3 H = normalize(wi + wo);" << endl << " float D = " << evalName << "_D(H)" << ";" << endl << " float G = " << evalName << "_G(H, wi, wo);" << endl << " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl << " result += vec3(F * D * G / (4*cosTheta(wi)));" << endl << " }" << endl << " return result;" << endl << "}" << endl << endl << "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl << " return " << depNames[0] << "_diffuse(uv, wi, wo);" << endl << "}" << endl; } MTS_DECLARE_CLASS() private: ref m_nested; ref m_nestedShader; ref m_sigmaA; ref m_sigmaAShader; Float m_R0, m_eta; }; Shader *SmoothCoating::createShader(Renderer *renderer) const { return new SmoothCoatingShader(renderer, m_eta, m_nested.get(), m_sigmaA.get()); } MTS_IMPLEMENT_CLASS(SmoothCoatingShader, false, Shader) MTS_IMPLEMENT_CLASS_S(SmoothCoating, false, BSDF) MTS_EXPORT_PLUGIN(SmoothCoating, "Smooth dielectric coating"); MTS_NAMESPACE_END