/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2010 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define MTS_HAIR_USE_FANCY_CLIPPING 1
MTS_NAMESPACE_BEGIN
/**
* \brief Space-efficient acceleration structure for cylindrical hair
* segments with miter joints.
*/
class HairKDTree : public GenericKDTree {
friend class GenericKDTree;
public:
HairKDTree(std::vector &vertices,
std::vector &vertexStartsFiber, Float radius)
: m_radius(radius) {
/* Take the supplied vertex & start fiber arrays (without copying) */
m_vertices.swap(vertices);
m_vertexStartsFiber.swap(vertexStartsFiber);
m_hairCount = 0;
/* Compute the index of the first vertex in each segment. */
m_segIndex.reserve(m_vertices.size());
for (size_t i=0; i().swap(m_segIndex);
}
/// Return the AABB of the hair kd-tree
inline const AABB &getAABB() const {
return m_aabb;
}
/// Return the list of vertices underlying the hair kd-tree
inline const std::vector &getVertices() const {
return m_vertices;
}
/**
* Return a boolean list specifying whether a vertex
* marks the beginning of a new fiber
*/
inline const std::vector &getStartFiber() const {
return m_vertexStartsFiber;
}
/// Return the radius of the hairs stored in the kd-tree
inline Float getRadius() const {
return m_radius;
}
/// Return the total number of segments
inline size_t getSegmentCount() const {
return m_segmentCount;
}
/// Return the total number of hairs
inline size_t getHairCount() const {
return m_hairCount;
}
/// Return the total number of vertices
inline size_t getVertexCount() const {
return m_vertices.size();
}
/// Intersect a ray with all segments stored in the kd-tree
inline bool rayIntersect(const Ray &ray, Float _mint, Float _maxt,
Float &t, void *temp) const {
Float tempT = std::numeric_limits::infinity();
Float mint, maxt;
if (m_aabb.rayIntersect(ray, mint, maxt)) {
if (_mint > mint) mint = _mint;
if (_maxt < maxt) maxt = _maxt;
if (EXPECT_TAKEN(maxt > mint)) {
if (rayIntersectHavran(ray, mint, maxt, tempT, temp)) {
t = tempT;
return true;
}
}
}
return false;
}
/**
* \brief Intersect a ray with all segments stored in the kd-tree
* (Visiblity query version)
*/
inline bool rayIntersect(const Ray &ray, Float _mint, Float _maxt) const {
Float tempT = std::numeric_limits::infinity();
Float mint, maxt;
if (m_aabb.rayIntersect(ray, mint, maxt)) {
if (_mint > mint) mint = _mint;
if (_maxt < maxt) maxt = _maxt;
if (EXPECT_TAKEN(maxt > mint)) {
if (rayIntersectHavran(ray, mint, maxt, tempT, NULL))
return true;
}
}
return false;
}
#if defined(MTS_HAIR_USE_FANCY_CLIPPING)
/**
* Compute the ellipse created by the intersection of an infinite
* cylinder and a plane. Returns false in the degenerate case.
* Based on:
* www.geometrictools.com/Documentation/IntersectionCylinderPlane.pdf
*/
bool intersectCylPlane(Point planePt, Normal planeNrml,
Point cylPt, Vector cylD, Float radius, Point ¢er,
Vector *axes, Float *lengths) const {
if (absDot(planeNrml, cylD) < Epsilon)
return false;
Assert(std::abs(planeNrml.length()-1) Epsilon && planeNrml != cylD) {
A /= length;
B = cross(planeNrml, A);
} else {
coordinateSystem(planeNrml, A, B);
}
Vector delta = planePt - cylPt,
deltaProj = delta - cylD*dot(delta, cylD);
Float aDotD = dot(A, cylD);
Float bDotD = dot(B, cylD);
Float c0 = 1-aDotD*aDotD;
Float c1 = 1-bDotD*bDotD;
Float c2 = 2*dot(A, deltaProj);
Float c3 = 2*dot(B, deltaProj);
Float c4 = dot(delta, deltaProj) - radius*radius;
Float lambda = (c2*c2/(4*c0) + c3*c3/(4*c1) - c4)/(c0*c1);
Float alpha0 = -c2/(2*c0),
beta0 = -c3/(2*c1);
lengths[0] = std::sqrt(c1*lambda),
lengths[1] = std::sqrt(c0*lambda);
center = planePt + alpha0 * A + beta0 * B;
axes[0] = A;
axes[1] = B;
return true;
}
/**
* \brief Intersect an infinite cylinder with an
* AABB face and bound the resulting clipped ellipse
*/
AABB intersectCylFace(int axis,
const Point &min, const Point &max,
const Point &cylPt, const Vector &cylD) const {
int axis1 = (axis + 1) % 3;
int axis2 = (axis + 2) % 3;
Normal planeNrml(0.0f);
planeNrml[axis] = 1;
Point ellipseCenter;
Vector ellipseAxes[2];
Float ellipseLengths[2];
AABB aabb;
if (!intersectCylPlane(min, planeNrml, cylPt, cylD, m_radius,
ellipseCenter, ellipseAxes, ellipseLengths)) {
/* Degenerate case -- return an invalid AABB. This is
not a problem, since one of the other faces will provide
enough information to arrive at a correct clipped AABB */
return aabb;
}
/* Intersect the ellipse against the sides of the AABB face */
for (int i=0; i<4; ++i) {
Point p1, p2;
p1[axis] = p2[axis] = min[axis];
p1[axis1] = ((i+1) & 2) ? min[axis1] : max[axis1];
p1[axis2] = ((i+0) & 2) ? min[axis2] : max[axis2];
p2[axis1] = ((i+2) & 2) ? min[axis1] : max[axis1];
p2[axis2] = ((i+1) & 2) ? min[axis2] : max[axis2];
Point2 p1l(
dot(p1 - ellipseCenter, ellipseAxes[0]) / ellipseLengths[0],
dot(p1 - ellipseCenter, ellipseAxes[1]) / ellipseLengths[1]);
Point2 p2l(
dot(p2 - ellipseCenter, ellipseAxes[0]) / ellipseLengths[0],
dot(p2 - ellipseCenter, ellipseAxes[1]) / ellipseLengths[1]);
Vector2 rel = p2l-p1l;
Float A = dot(rel, rel);
Float B = 2*dot(Vector2(p1l), rel);
Float C = dot(Vector2(p1l), Vector2(p1l))-1;
Float x0, x1;
if (solveQuadratic(A, B, C, x0, x1)) {
if (x0 >= 0 && x0 <= 1)
aabb.expandBy(p1+(p2-p1)*x0);
if (x1 >= 0 && x1 <= 1)
aabb.expandBy(p1+(p2-p1)*x1);
}
}
ellipseAxes[0] *= ellipseLengths[0];
ellipseAxes[1] *= ellipseLengths[1];
AABB faceBounds(min, max);
/* Find the componentwise maxima of the ellipse */
for (int i=0; i<2; ++i) {
int j = (i==0) ? axis1 : axis2;
Float alpha = ellipseAxes[0][j];
Float beta = ellipseAxes[1][j];
Float ratio = beta/alpha, tmp = std::sqrt(1+ratio*ratio);
Float cosTheta = 1/tmp, sinTheta = ratio/tmp;
Point p1 = ellipseCenter + cosTheta*ellipseAxes[0] + sinTheta*ellipseAxes[1];
Point p2 = ellipseCenter - cosTheta*ellipseAxes[0] - sinTheta*ellipseAxes[1];
if (faceBounds.contains(p1))
aabb.expandBy(p1);
if (faceBounds.contains(p2))
aabb.expandBy(p2);
}
return aabb;
}
AABB getAABB(index_type index) const {
index_type iv = m_segIndex.at(index);
Point center;
Vector axes[2];
Float lengths[2];
bool success = intersectCylPlane(firstVertex(iv), firstMiterNormal(iv),
firstVertex(iv), tangent(iv), m_radius, center, axes, lengths);
Assert(success);
AABB result;
axes[0] *= lengths[0]; axes[1] *= lengths[1];
for (int i=0; i<3; ++i) {
Float range = std::sqrt(axes[0][i]*axes[0][i] + axes[1][i]*axes[1][i]);
result.min[i] = std::min(result.min[i], center[i]-range);
result.max[i] = std::max(result.max[i], center[i]+range);
}
success = intersectCylPlane(secondVertex(iv), secondMiterNormal(iv),
secondVertex(iv), tangent(iv), m_radius, center, axes, lengths);
Assert(success);
axes[0] *= lengths[0]; axes[1] *= lengths[1];
for (int i=0; i<3; ++i) {
Float range = std::sqrt(axes[0][i]*axes[0][i] + axes[1][i]*axes[1][i]);
result.min[i] = std::min(result.min[i], center[i]-range);
result.max[i] = std::max(result.max[i], center[i]+range);
}
return result;
}
AABB getClippedAABB(index_type index, const AABB &box) const {
/* Compute a base bounding box */
AABB base(getAABB(index));
base.clip(box);
index_type iv = m_segIndex.at(index);
Point cylPt = firstVertex(iv);
Vector cylD = tangent(iv);
/* Now forget about the cylinder ends and
intersect an infinite cylinder with each AABB face */
AABB clippedAABB;
clippedAABB.expandBy(intersectCylFace(0,
Point(base.min.x, base.min.y, base.min.z),
Point(base.min.x, base.max.y, base.max.z),
cylPt, cylD));
clippedAABB.expandBy(intersectCylFace(0,
Point(base.max.x, base.min.y, base.min.z),
Point(base.max.x, base.max.y, base.max.z),
cylPt, cylD));
clippedAABB.expandBy(intersectCylFace(1,
Point(base.min.x, base.min.y, base.min.z),
Point(base.max.x, base.min.y, base.max.z),
cylPt, cylD));
clippedAABB.expandBy(intersectCylFace(1,
Point(base.min.x, base.max.y, base.min.z),
Point(base.max.x, base.max.y, base.max.z),
cylPt, cylD));
clippedAABB.expandBy(intersectCylFace(2,
Point(base.min.x, base.min.y, base.min.z),
Point(base.max.x, base.max.y, base.min.z),
cylPt, cylD));
clippedAABB.expandBy(intersectCylFace(2,
Point(base.min.x, base.min.y, base.max.z),
Point(base.max.x, base.max.y, base.max.z),
cylPt, cylD));
clippedAABB.clip(base);
return clippedAABB;
}
#else
/// Compute the AABB of a segment (only used during tree construction)
AABB getAABB(int index) const {
index_type iv = m_segIndex.at(index);
// cosine of steepest miter angle
const Float cos0 = dot(firstMiterNormal(iv), tangent(iv));
const Float cos1 = dot(secondMiterNormal(iv), tangent(iv));
const Float maxInvCos = 1.0 / std::min(cos0, cos1);
const Vector expandVec(m_radius * maxInvCos);
const Point a = firstVertex(iv);
const Point b = secondVertex(iv);
AABB aabb;
aabb.expandBy(a - expandVec);
aabb.expandBy(a + expandVec);
aabb.expandBy(b - expandVec);
aabb.expandBy(b + expandVec);
return aabb;
}
/// Compute the clipped AABB of a segment (only used during tree construction)
AABB getClippedAABB(int index, const AABB &box) const {
AABB aabb(getAABB(index));
aabb.clip(box);
return aabb;
}
#endif
/// Return the total number of segments
inline int getPrimitiveCount() const {
return m_segIndex.size();
}
inline EIntersectionResult intersect(const Ray &ray, index_type iv,
Float mint, Float maxt, Float &t, void *tmp) const {
/* First compute the intersection with the infinite cylinder */
Float nearT, farT;
Vector axis = tangent(iv);
// Projection of ray onto subspace normal to axis
Vector relOrigin = ray.o - firstVertex(iv);
Vector projOrigin = relOrigin - dot(axis, relOrigin) * axis;
Vector projDirection = ray.d - dot(axis, ray.d) * axis;
// Quadratic to intersect circle in projection
const Float A = projDirection.lengthSquared();
const Float B = 2 * dot(projOrigin, projDirection);
const Float C = projOrigin.lengthSquared() - m_radius*m_radius;
if (!solveQuadratic(A, B, C, nearT, farT))
return ENever;
if (nearT > maxt || farT < mint)
return ENo;
/* Next check the intersection points against the miter planes */
Point pointNear = ray(nearT);
Point pointFar = ray(farT);
if (dot(pointNear - firstVertex(iv), firstMiterNormal(iv)) >= 0 &&
dot(pointNear - secondVertex(iv), secondMiterNormal(iv)) <= 0 &&
nearT >= mint) {
t = nearT;
} else if (dot(pointFar - firstVertex(iv), firstMiterNormal(iv)) >= 0 &&
dot(pointFar - secondVertex(iv), secondMiterNormal(iv)) <= 0) {
if (farT > maxt)
return ENo;
t = farT;
} else {
return ENo;
}
index_type *storage = static_cast(tmp);
if (storage)
*storage = iv;
return EYes;
}
inline EIntersectionResult intersect(const Ray &ray, index_type iv,
Float mint, Float maxt) const {
Float tempT;
return intersect(ray, iv, mint, maxt, tempT, NULL);
}
/* Some utility functions */
inline Point firstVertex(index_type iv) const { return m_vertices[iv]; }
inline Point secondVertex(index_type iv) const { return m_vertices[iv+1]; }
inline Point prevVertex(index_type iv) const { return m_vertices[iv-1]; }
inline Point nextVertex(index_type iv) const { return m_vertices[iv+2]; }
inline bool prevSegmentExists(index_type iv) const { return !m_vertexStartsFiber[iv]; }
inline bool nextSegmentExists(index_type iv) const { return !m_vertexStartsFiber[iv+2]; }
inline Vector tangent(index_type iv) const { return normalize(secondVertex(iv) - firstVertex(iv)); }
inline Vector prevTangent(index_type iv) const { return normalize(firstVertex(iv) - prevVertex(iv)); }
inline Vector nextTangent(index_type iv) const { return normalize(nextVertex(iv) - secondVertex(iv)); }
inline Vector firstMiterNormal(index_type iv) const {
if (prevSegmentExists(iv))
return normalize(prevTangent(iv) + tangent(iv));
else
return tangent(iv);
}
inline Vector secondMiterNormal(index_type iv) const {
if (nextSegmentExists(iv))
return normalize(tangent(iv) + nextTangent(iv));
else
return tangent(iv);
}
MTS_DECLARE_CLASS()
protected:
std::vector m_vertices;
std::vector m_vertexStartsFiber;
std::vector m_segIndex;
size_t m_segmentCount;
size_t m_hairCount;
Float m_radius;
};
class Hair : public Shape {
public:
Hair(const Properties &props) : Shape(props) {
fs::path path = Thread::getThread()->getFileResolver()->resolve(
props.getString("filename"));
Float radius = props.getFloat("radius", 0.05f);
/* Skip segments, whose tangent differs by less than one degree
compared to the previous one */
Float angleThreshold = degToRad(props.getFloat("angleThreshold", 1.0f));
Float dpThresh = std::cos(angleThreshold);
/* Object-space -> World-space transformation */
Transform objectToWorld = props.getTransform("toWorld", Transform());
Log(EInfo, "Loading hair geometry from \"%s\" ..", path.leaf().c_str());
fs::ifstream is(path);
if (is.fail())
Log(EError, "Could not open \"%s\"!", path.file_string().c_str());
std::string line;
bool newFiber = true;
Point p, lastP(0.0f);
std::vector vertices;
std::vector vertexStartsFiber;
Vector tangent(0.0f);
size_t nDegenerate = 0, nSkipped = 0;
while (is.good()) {
std::getline(is, line);
if (line.length() > 0 && line[0] == '#') {
newFiber = true;
continue;
}
std::istringstream iss(line);
iss >> p.x >> p.y >> p.z;
if (!iss.fail()) {
p = objectToWorld(p);
if (newFiber) {
vertices.push_back(p);
vertexStartsFiber.push_back(newFiber);
lastP = p;
tangent = Vector(0.0f);
} else if (p != lastP) {
if (tangent.isZero()) {
vertices.push_back(p);
vertexStartsFiber.push_back(newFiber);
tangent = normalize(p - lastP);
lastP = p;
} else {
Vector nextTangent = normalize(p - lastP);
if (dot(nextTangent, tangent) > dpThresh) {
/* Too small of a difference in the tangent value,
just overwrite the previous vertex by the current one */
tangent = normalize(p - vertices[vertices.size()-2]);
vertices[vertices.size()-1] = p;
++nSkipped;
} else {
vertices.push_back(p);
vertexStartsFiber.push_back(newFiber);
tangent = nextTangent;
}
lastP = p;
}
} else {
nDegenerate++;
}
newFiber = false;
} else {
newFiber = true;
}
}
if (nDegenerate > 0)
Log(EInfo, "Encountered " SIZE_T_FMT
" degenerate segments!", nDegenerate);
if (nSkipped > 0)
Log(EInfo, "Skipped " SIZE_T_FMT
" low-curvature segments.", nSkipped);
vertexStartsFiber.push_back(true);
m_kdtree = new HairKDTree(vertices, vertexStartsFiber, radius);
}
Hair(Stream *stream, InstanceManager *manager)
: Shape(stream, manager) {
Float radius = stream->readFloat();
size_t vertexCount = (size_t) stream->readUInt();
std::vector vertices(vertexCount);
std::vector vertexStartsFiber(vertexCount+1);
stream->readFloatArray((Float *) &vertices[0], vertexCount * 3);
for (size_t i=0; ireadBool();
vertexStartsFiber[vertexCount] = true;
m_kdtree = new HairKDTree(vertices, vertexStartsFiber, radius);
}
void serialize(Stream *stream, InstanceManager *manager) const {
Shape::serialize(stream, manager);
const std::vector &vertices = m_kdtree->getVertices();
const std::vector &vertexStartsFiber = m_kdtree->getStartFiber();
stream->writeFloat(m_kdtree->getRadius());
stream->writeUInt((uint32_t) vertices.size());
stream->writeFloatArray((Float *) &vertices[0], vertices.size() * 3);
for (size_t i=0; iwriteBool(vertexStartsFiber[i]);
}
bool rayIntersect(const Ray &ray, Float mint,
Float maxt, Float &t, void *temp) const {
return m_kdtree->rayIntersect(ray, mint, maxt, t, temp);
}
bool rayIntersect(const Ray &ray, Float mint, Float maxt) const {
return m_kdtree->rayIntersect(ray, mint, maxt);
}
void fillIntersectionRecord(const Ray &ray, Float t,
const void *temp, Intersection &its) const {
its.p = ray(t);
/* No UV coordinates for now */
its.uv = Point2(0,0);
its.dpdu = Vector(0,0,0);
its.dpdv = Vector(0,0,0);
const HairKDTree::index_type *storage =
static_cast(temp);
HairKDTree::index_type iv = *storage;
const Vector axis = m_kdtree->tangent(iv);
its.geoFrame.s = axis;
const Vector relHitPoint = its.p - m_kdtree->firstVertex(iv);
its.geoFrame.n = Normal(normalize(relHitPoint - dot(axis, relHitPoint) * axis));
its.geoFrame.t = cross(its.geoFrame.n, its.geoFrame.s);
its.shFrame = its.geoFrame;
its.wi = its.toLocal(-ray.d);
its.hasUVPartials = false;
its.shape = this;
}
ref createTriMesh() {
size_t nSegments = m_kdtree->getSegmentCount();
/// Use very approximate geometry for coarse hair meshes
const size_t phiSteps = (nSegments > 100000) ? 4 : 10;
const Float dPhi = (2*M_PI) / phiSteps;
ref mesh = new TriMesh("Hair mesh approximation",
phiSteps*2*nSegments, phiSteps*2*nSegments, true, false, false);
Point *vertices = mesh->getVertexPositions();
Normal *normals = mesh->getVertexNormals();
Triangle *triangles = mesh->getTriangles();
size_t triangleIdx = 0, vertexIdx = 0;
const std::vector &hairVertices = m_kdtree->getVertices();
const std::vector &vertexStartsFiber = m_kdtree->getStartFiber();
const Float radius = m_kdtree->getRadius();
Float *cosPhi = new Float[phiSteps];
Float *sinPhi = new Float[phiSteps];
for (size_t i=0; itangent(iv);
Vector dir = Frame(tangent).toWorld(
Vector(cosPhi[phi], sinPhi[phi], 0));
Normal miterNormal1 = m_kdtree->firstMiterNormal(iv);
Normal miterNormal2 = m_kdtree->secondMiterNormal(iv);
Float t1 = dot(miterNormal1, radius*dir) / dot(miterNormal1, tangent);
Float t2 = dot(miterNormal2, radius*dir) / dot(miterNormal2, tangent);
Normal normal(normalize(dir));
normals[vertexIdx] = normal;
vertices[vertexIdx++] = m_kdtree->firstVertex(iv) + radius*dir - tangent*t1;
normals[vertexIdx] = normal;
vertices[vertexIdx++] = m_kdtree->secondVertex(iv) + radius*dir - tangent*t2;
int idx0 = 2*(phi + hairIdx*phiSteps), idx1 = idx0+1;
int idx2 = (2*phi+2) % (2*phiSteps) + 2*hairIdx*phiSteps, idx3 = idx2+1;
triangles[triangleIdx].idx[0] = idx0;
triangles[triangleIdx].idx[1] = idx2;
triangles[triangleIdx].idx[2] = idx1;
triangleIdx++;
triangles[triangleIdx].idx[0] = idx1;
triangles[triangleIdx].idx[1] = idx2;
triangles[triangleIdx].idx[2] = idx3;
triangleIdx++;
}
hairIdx++;
}
}
Assert(triangleIdx == phiSteps*2*nSegments);
Assert(vertexIdx == phiSteps*2*nSegments);
delete[] cosPhi;
delete[] sinPhi;
mesh->setBSDF(m_bsdf);
mesh->setLuminaire(m_luminaire);
mesh->configure();
return mesh.get();
}
const AbstractKDTree *getKDTree() const {
return m_kdtree.get();
}
AABB getAABB() const {
return m_kdtree->getAABB();
}
Float getSurfaceArea() const {
Log(EError, "Hair::getSurfaceArea(): Not implemented.");
return -1;
}
std::string toString() const {
std::ostringstream oss;
oss << "Hair[" << endl
<< " numVertices = " << m_kdtree->getVertexCount() << ","
<< " numSegments = " << m_kdtree->getSegmentCount() << ","
<< " numHairs = " << m_kdtree->getHairCount() << ","
<< " radius = " << m_kdtree->getRadius()
<< "]";
return oss.str();
}
MTS_DECLARE_CLASS()
private:
ref m_kdtree;
};
MTS_IMPLEMENT_CLASS(HairKDTree, false, GenericKDTree)
MTS_IMPLEMENT_CLASS_S(Hair, false, Shape)
MTS_EXPORT_PLUGIN(Hair, "Hair intersection primitive");
MTS_NAMESPACE_END