/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2011 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "microfacet.h" #include "rtrans.h" #include "ior.h" MTS_NAMESPACE_BEGIN /*!\plugin{roughplastic}{Rough plastic material} * \order{8} * \icon{bsdf_roughplastic} * \parameters{ * \parameter{distribution}{\String}{ * Specifies the type of microfacet normal distribution * used to model the surface roughness. * \begin{enumerate}[(i)] * \item \code{beckmann}: Physically-based distribution derived from * Gaussian random surfaces. This is the default. * \item \code{ggx}: New distribution proposed by * Walter et al. \cite{Walter07Microfacet}, which is meant to better handle * the long tails observed in measurements of ground surfaces. * Renderings with this distribution may converge slowly. * \item \code{phong}: Classical $\cos^p\theta$ distribution. * Due to the underlying microfacet theory, * the use of this distribution here leads to more realistic * behavior than the separately available \pluginref{phong} plugin. * \vspace{-3mm} * \end{enumerate} * } * \parameter{alpha}{\Float\Or\Texture}{ * Specifies the roughness of the unresolved surface micro-geometry. * When the Beckmann distribution is used, this parameter is equal to the * \emph{root mean square} (RMS) slope of the microfacets. * \default{0.1}. * } * \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified * numerically or using a known material name. \default{\texttt{polypropylene} / 1.49}} * \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified * numerically or using a known material name. \default{\texttt{air} / 1.000277}} * \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional * factor that can be used to modulate the specular reflection component. Note * that for physical realism, this parameter should never be touched. \default{1.0}} * \parameter{diffuse\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional * factor used to modulate the diffuse reflection component\default{0.5}} * \parameter{nonlinear}{\Boolean}{ * Account for nonlinear color shifts due to internal scattering? See the * \pluginref{plastic} plugin for details.\default{Don't account for them and * preserve the texture colors, i.e. \code{false}} * } * } * * \vspace{3mm} * This plugin implements a realistic microfacet scattering model for rendering * rough dielectric materials with internal scattering, such as plastic. It can * be interpreted as a fancy version of the Cook-Torrance model and should be * preferred over empirical models like \pluginref{phong} and \pluginref{ward} * when possible. * * Microfacet theory describes rough surfaces as an arrangement of unresolved and * ideally specular facets, whose normal directions are given by a specially * chosen \emph{microfacet distribution}. * By accounting for shadowing and masking effects between these facets, it is * possible to reproduce the important off-specular reflections peaks observed * in real-world measurements of such materials. * * \renderings{ * \rendering{Beckmann, $\alpha=0.1$}{bsdf_roughplastic_beckmann} * \rendering{GGX, $\alpha=0.3$}{bsdf_roughplastic_ggx} * } * * This plugin is essentially the ``roughened'' equivalent of the (smooth) plugin * \pluginref{plastic}. For very low values of $\alpha$, the two will * be identical, though scenes using this plugin will take longer to render * due to the additional computational burden of tracking surface roughness. * * For convenience, this model allows to specify IOR values either numerically, * or based on a list of known materials (see \tblref{dielectric-iors} on * \tblpage{dielectric-iors} for an overview). * When no parameters are given, the plugin activates the defaults, * which describe a white polypropylene plastic material with a light amount * of roughness modeled using the Beckmann distribution. * * Like the \pluginref{plastic} material, this model internally simulates the * interaction of light with a diffuse base surface coated by a thin dielectric * layer (where the coating layer is now \emph{rough}). This is a convenient * abstraction rather than a restriction. In other words, there are many * materials that can be rendered with this model, even if they might not not * fit this description perfectly well. * * The simplicity of this setup makes it possible to account for interesting * nonlinear effects due to internal scattering, which is controlled by * the \texttt{nonlinear} parameter. For more details, please refer to the description * of this parameter given in the the \pluginref{plastic} plugin section * on \pluginpage{plastic}. * * * To get an intuition about the effect of the surface roughness * parameter $\alpha$, consider the following approximate differentiation: * a value of $\alpha=0.001-0.01$ corresponds to a material * with slight imperfections on an * otherwise smooth surface finish, $\alpha=0.1$ is relatively rough, * and $\alpha=0.3-0.7$ is \emph{extremely} rough (e.g. an etched or ground * finish). Values significantly above that are probably not too realistic. * * \renderings{ * \medrendering{Diffuse textured rendering}{bsdf_plastic_diffuse} * \medrendering{Textured rough plastic model and \code{nonlinear=false}}{bsdf_roughplastic_preserve} * \medrendering{Textured rough plastic model and \code{nonlinear=true}}{bsdf_roughplastic_nopreserve} * \caption{ * \label{fig:plastic-nonlinear} * When asked to do so, this model can account for subtle nonlinear color shifts due * to internal scattering processes. The above images show a textured * object first rendered using \pluginref{diffuse}, then * \pluginref{roughplastic} with the default parameters, and finally using * \pluginref{roughplastic} and support for nonlinear color shifts. * } * } * \newpage * \renderings{ * \rendering{Wood material with smooth horizontal stripes}{bsdf_roughplastic_roughtex1} * \rendering{A material with imperfections at a much smaller scale than what * is modeled e.g. using a bump map.}{bsdf_roughplastic_roughtex2}\vspace{-3mm} * \caption{ * The ability to texture the roughness parameter makes it possible * to render materials with a structured finish, as well as * ``smudgy'' objects. * } * } * \vspace{2mm} * \begin{xml}[caption={A material definition for black plastic material with * a spatially varying roughness.}, * label=lst:roughplastic-varyingalpha] * * * * * * * * * * * * * \end{xml} * * \subsubsection*{Technical details} * The implementation of this model is partly based on the paper ``Microfacet * Models for Refraction through Rough Surfaces'' by Walter et al. * \cite{Walter07Microfacet}. Several different types of microfacet * distributions are supported. Note that the choices are slightly more * restricted here---in comparison to other rough scattering models in * Mitsuba, anisotropic distributions are not allowed. * * The implementation of this model makes heavy use of a \emph{rough * Fresnel transmittance} function, which is a generalization of the * usual Fresnel transmittion coefficient to microfacet surfaces. Unfortunately, * this function is normally prohibitively expensive, since each * evaluation involves a numerical integration over the sphere. * * To avoid this performance issue, Mitsuba ships with data files * (contained in the \code{data/microfacet} directory) containing precomputed * values of this function over a large range of parameter values. At runtime, * the relevant parts are extracted using tricubic interpolation. * * When rendering with the Phong microfacet distributions, a conversion * is used to turn the specified $\alpha$ roughness value into the Phong * exponent. This is done in a way, such that the different distributions * all produce a similar appearance for the same value of $\alpha$. * */ class RoughPlastic : public BSDF { public: RoughPlastic(const Properties &props) : BSDF(props) { m_specularReflectance = new ConstantSpectrumTexture( props.getSpectrum("specularReflectance", Spectrum(1.0f))); m_diffuseReflectance = new ConstantSpectrumTexture( props.getSpectrum("diffuseReflectance", Spectrum(0.5f))); /* Specifies the internal index of refraction at the interface */ m_intIOR = lookupIOR(props, "intIOR", "polypropylene"); /* Specifies the external index of refraction at the interface */ m_extIOR = lookupIOR(props, "extIOR", "air"); if (m_intIOR < 0 || m_extIOR < 0 || m_intIOR == m_extIOR) Log(EError, "The interior and exterior indices of " "refraction must be positive and differ!"); m_distribution = MicrofacetDistribution( props.getString("distribution", "beckmann") ); if (m_distribution.isAnisotropic()) Log(EError, "The 'roughplastic' plugin currently does not support " "anisotropic microfacet distributions!"); m_nonlinear = props.getBoolean("nonlinear", true); m_alpha = new ConstantFloatTexture( props.getFloat("alpha", 0.1f)); m_specularSamplingWeight = 0.0f; } RoughPlastic(Stream *stream, InstanceManager *manager) : BSDF(stream, manager) { m_distribution = MicrofacetDistribution( (MicrofacetDistribution::EType) stream->readUInt() ); m_specularReflectance = static_cast(manager->getInstance(stream)); m_diffuseReflectance = static_cast(manager->getInstance(stream)); m_alpha = static_cast(manager->getInstance(stream)); m_intIOR = stream->readFloat(); m_extIOR = stream->readFloat(); m_nonlinear = stream->readBool(); configure(); } void configure() { m_components.clear(); bool constAlpha = m_alpha->isConstant(); m_components.push_back(EGlossyReflection | EFrontSide | ((constAlpha && m_specularReflectance->isConstant()) ? 0 : ESpatiallyVarying)); m_components.push_back(EDiffuseReflection | EFrontSide | ((constAlpha && m_diffuseReflectance->isConstant()) ? 0 : ESpatiallyVarying)); /* Verify the input parameters and fix them if necessary */ m_specularReflectance = ensureEnergyConservation( m_specularReflectance, "specularReflectance", 1.0f); m_diffuseReflectance = ensureEnergyConservation( m_diffuseReflectance, "diffuseReflectance", 1.0f); /* Compute weights that further steer samples towards the specular or diffuse components */ Float dAvg = m_diffuseReflectance->getAverage().getLuminance(), sAvg = m_specularReflectance->getAverage().getLuminance(); m_specularSamplingWeight = sAvg / (dAvg + sAvg); Float eta = m_intIOR / m_extIOR; m_invEta2 = 1.0f / (eta*eta); if (!m_externalRoughTransmittance.get()) { /* Load precomputed data used to compute the rough transmittance through the dielectric interface */ m_externalRoughTransmittance = new RoughTransmittance( m_distribution.getType()); m_externalRoughTransmittance->checkEta(eta); m_externalRoughTransmittance->checkAlpha(m_alpha->getMinimum().average()); m_externalRoughTransmittance->checkAlpha(m_alpha->getMaximum().average()); /* Reduce the rough transmittance data to a 2D slice */ m_internalRoughTransmittance = m_externalRoughTransmittance->clone(); m_externalRoughTransmittance->setEta(eta); m_internalRoughTransmittance->setEta(1/eta); /* If possible, even reduce it to a 1D slice */ if (constAlpha) m_externalRoughTransmittance->setAlpha( m_alpha->getValue(Intersection()).average()); } m_usesRayDifferentials = m_specularReflectance->usesRayDifferentials() || m_diffuseReflectance->usesRayDifferentials(); BSDF::configure(); } Spectrum getDiffuseReflectance(const Intersection &its) const { /* Evaluate the roughness texture */ Float alpha = m_alpha->getValue(its).average(); Float Ftr = m_externalRoughTransmittance->evalDiffuse(alpha); return m_diffuseReflectance->getValue(its) * Ftr; } /// Helper function: reflect \c wi with respect to a given surface normal inline Vector reflect(const Vector &wi, const Normal &m) const { return 2 * dot(wi, m) * Vector(m) - wi; } Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const { bool hasSpecular = (bRec.typeMask & EGlossyReflection) && (bRec.component == -1 || bRec.component == 0); bool hasDiffuse = (bRec.typeMask & EDiffuseReflection) && (bRec.component == -1 || bRec.component == 1); if (measure != ESolidAngle || Frame::cosTheta(bRec.wi) <= 0 || Frame::cosTheta(bRec.wo) <= 0 || (!hasSpecular && !hasDiffuse)) return Spectrum(0.0f); /* Evaluate the roughness texture */ Float alpha = m_alpha->getValue(bRec.its).average(); Float alphaT = m_distribution.transformRoughness(alpha); Spectrum result(0.0f); if (hasSpecular) { /* Calculate the reflection half-vector */ const Vector H = normalize(bRec.wo+bRec.wi); /* Evaluate the microsurface normal distribution */ const Float D = m_distribution.eval(H, alphaT); /* Fresnel term */ const Float F = fresnel(dot(bRec.wi, H), m_extIOR, m_intIOR); /* Smith's shadow-masking function */ const Float G = m_distribution.G(bRec.wi, bRec.wo, H, alphaT); /* Calculate the specular reflection component */ Float value = F * D * G / (4.0f * Frame::cosTheta(bRec.wi)); result += m_specularReflectance->getValue(bRec.its) * value; } if (hasDiffuse) { Spectrum diff = m_diffuseReflectance->getValue(bRec.its); Float T12 = m_externalRoughTransmittance->eval(Frame::cosTheta(bRec.wi), alpha); Float T21 = m_externalRoughTransmittance->eval(Frame::cosTheta(bRec.wo), alpha); Float Fdr = 1-m_internalRoughTransmittance->evalDiffuse(alpha); if (m_nonlinear) diff /= Spectrum(1.0f) - diff * Fdr; else diff /= 1-Fdr; result += diff * (INV_PI * Frame::cosTheta(bRec.wo) * T12 * T21 * m_invEta2); } return result; } Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const { bool hasSpecular = (bRec.typeMask & EGlossyReflection) && (bRec.component == -1 || bRec.component == 0); bool hasDiffuse = (bRec.typeMask & EDiffuseReflection) && (bRec.component == -1 || bRec.component == 1); if (measure != ESolidAngle || Frame::cosTheta(bRec.wi) <= 0 || Frame::cosTheta(bRec.wo) <= 0 || (!hasSpecular && !hasDiffuse)) return 0.0f; /* Evaluate the roughness texture */ Float alpha = m_alpha->getValue(bRec.its).average(); Float alphaT = m_distribution.transformRoughness(alpha); /* Calculate the reflection half-vector */ const Vector H = normalize(bRec.wo+bRec.wi); Float probDiffuse, probSpecular; if (hasSpecular && hasDiffuse) { /* Find the probability of sampling the specular component */ probSpecular = 1-m_externalRoughTransmittance->eval(Frame::cosTheta(bRec.wi), alpha); /* Reallocate samples */ probSpecular = (probSpecular*m_specularSamplingWeight) / (probSpecular*m_specularSamplingWeight + (1-probSpecular) * (1-m_specularSamplingWeight)); probDiffuse = 1 - probSpecular; } else { probDiffuse = probSpecular = 1.0f; } Float result = 0.0f; if (hasSpecular) { /* Jacobian of the half-direction transform */ const Float dwh_dwo = 1.0f / (4.0f * dot(bRec.wo, H)); /* Evaluate the microsurface normal distribution */ const Float prob = m_distribution.pdf(H, alphaT); result = prob * dwh_dwo * probSpecular; } if (hasDiffuse) result += Frame::cosTheta(bRec.wo) * INV_PI * probDiffuse; return result; } inline Spectrum sample(BSDFQueryRecord &bRec, Float &_pdf, const Point2 &_sample) const { bool hasSpecular = (bRec.typeMask & EGlossyReflection) && (bRec.component == -1 || bRec.component == 0); bool hasDiffuse = (bRec.typeMask & EDiffuseReflection) && (bRec.component == -1 || bRec.component == 1); if (Frame::cosTheta(bRec.wi) <= 0 || (!hasSpecular && !hasDiffuse)) return Spectrum(0.0f); bool choseSpecular = hasSpecular; Point2 sample(_sample); /* Evaluate the roughness texture */ Float alpha = m_alpha->getValue(bRec.its).average(); Float alphaT = m_distribution.transformRoughness(alpha); Float probSpecular; if (hasSpecular && hasDiffuse) { /* Find the probability of sampling the specular component */ probSpecular = 1 - m_externalRoughTransmittance->eval(Frame::cosTheta(bRec.wi), alpha); /* Reallocate samples */ probSpecular = (probSpecular*m_specularSamplingWeight) / (probSpecular*m_specularSamplingWeight + (1-probSpecular) * (1-m_specularSamplingWeight)); if (sample.x <= probSpecular) { sample.x /= probSpecular; } else { sample.x = (sample.x - probSpecular) / (1 - probSpecular); choseSpecular = false; } } if (choseSpecular) { /* Perfect specular reflection based on the microsurface normal */ Normal m = m_distribution.sample(sample, alphaT); bRec.wo = reflect(bRec.wi, m); bRec.sampledComponent = 0; bRec.sampledType = EGlossyReflection; /* Side check */ if (Frame::cosTheta(bRec.wo) <= 0) return Spectrum(0.0f); } else { bRec.sampledComponent = 1; bRec.sampledType = EDiffuseReflection; bRec.wo = squareToHemispherePSA(sample); } /* Guard against numerical imprecisions */ _pdf = pdf(bRec, ESolidAngle); if (_pdf == 0) return Spectrum(0.0f); else return eval(bRec, ESolidAngle) / _pdf; } Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const { Float pdf; return RoughPlastic::sample(bRec, pdf, sample); } void serialize(Stream *stream, InstanceManager *manager) const { BSDF::serialize(stream, manager); stream->writeUInt((uint32_t) m_distribution.getType()); manager->serialize(stream, m_specularReflectance.get()); manager->serialize(stream, m_diffuseReflectance.get()); manager->serialize(stream, m_alpha.get()); stream->writeFloat(m_intIOR); stream->writeFloat(m_extIOR); stream->writeBool(m_nonlinear); } void addChild(const std::string &name, ConfigurableObject *child) { if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) { if (name == "alpha") m_alpha = static_cast(child); else if (name == "specularReflectance") m_specularReflectance = static_cast(child); else if (name == "diffuseReflectance") m_diffuseReflectance = static_cast(child); else BSDF::addChild(name, child); } else { BSDF::addChild(name, child); } } std::string toString() const { std::ostringstream oss; oss << "RoughPlastic[" << endl << " name = \"" << getName() << "\"," << endl << " distribution = " << m_distribution.toString() << "," << endl << " alpha = " << indent(m_alpha->toString()) << "," << endl << " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl << " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl << " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl << " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl << " nonlinear = " << m_nonlinear << "," << endl << " intIOR = " << m_intIOR << "," << endl << " extIOR = " << m_extIOR << endl << "]"; return oss.str(); } Shader *createShader(Renderer *renderer) const; MTS_DECLARE_CLASS() private: MicrofacetDistribution m_distribution; ref m_externalRoughTransmittance; ref m_internalRoughTransmittance; ref m_diffuseReflectance; ref m_specularReflectance; ref m_alpha; Float m_intIOR, m_extIOR, m_invEta2; Float m_specularSamplingWeight; bool m_nonlinear; }; /** * GLSL port of the rough plastic shader. This version is much more * approximate -- it only supports the Beckmann distribution, * does everything in RGB, uses a cheaper shadowing-masking term, and * it also makes use of the Schlick approximation to the Fresnel * reflectance of dielectrics. When the roughness is lower than * \alpha < 0.2, the shader clamps it to 0.2 so that it will still perform * reasonably well in a VPL-based preview. There is no support for * non-linear effects due to internal scattering. */ class RoughPlasticShader : public Shader { public: RoughPlasticShader(Renderer *renderer, const Texture *specularReflectance, const Texture *diffuseReflectance, const Texture *alpha, Float extIOR, Float intIOR) : Shader(renderer, EBSDFShader), m_specularReflectance(specularReflectance), m_diffuseReflectance(diffuseReflectance), m_alpha(alpha), m_extIOR(extIOR), m_intIOR(intIOR) { m_specularReflectanceShader = renderer->registerShaderForResource(m_specularReflectance.get()); m_diffuseReflectanceShader = renderer->registerShaderForResource(m_diffuseReflectance.get()); m_alphaShader = renderer->registerShaderForResource(m_alpha.get()); m_R0 = fresnel(1.0f, m_extIOR, m_intIOR); } bool isComplete() const { return m_specularReflectanceShader.get() != NULL && m_diffuseReflectanceShader.get() != NULL && m_alphaShader.get() != NULL; } void putDependencies(std::vector &deps) { deps.push_back(m_specularReflectanceShader.get()); deps.push_back(m_diffuseReflectanceShader.get()); deps.push_back(m_alphaShader.get()); } void cleanup(Renderer *renderer) { renderer->unregisterShaderForResource(m_specularReflectance.get()); renderer->unregisterShaderForResource(m_diffuseReflectance.get()); renderer->unregisterShaderForResource(m_alpha.get()); } void resolve(const GPUProgram *program, const std::string &evalName, std::vector ¶meterIDs) const { parameterIDs.push_back(program->getParameterID(evalName + "_R0", false)); } void bind(GPUProgram *program, const std::vector ¶meterIDs, int &textureUnitOffset) const { program->setParameter(parameterIDs[0], m_R0); } void generateCode(std::ostringstream &oss, const std::string &evalName, const std::vector &depNames) const { oss << "uniform float " << evalName << "_R0;" << endl << endl << "float " << evalName << "_D(vec3 m, float alpha) {" << endl << " float ct = cosTheta(m);" << endl << " if (cosTheta(m) <= 0.0)" << endl << " return 0.0;" << endl << " float ex = tanTheta(m) / alpha;" << endl << " return exp(-(ex*ex)) / (pi * alpha * alpha *" << endl << " pow(cosTheta(m), 4.0));" << endl << "}" << endl << endl << "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl << " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl << " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl << " return 0.0;" << endl << " float nDotM = cosTheta(m);" << endl << " return min(1.0, min(" << endl << " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl << " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl << "}" << endl << endl << endl << "float " << evalName << "_schlick(float ct) {" << endl << " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl << " return " << evalName << "_R0 + (1.0 - " << evalName << "_R0) * ct5;" << endl << "}" << endl << endl << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl << " if (cosTheta(wi) <= 0 || cosTheta(wo) <= 0)" << endl << " return vec3(0.0);" << endl << " vec3 H = normalize(wi + wo);" << endl << " vec3 specRef = " << depNames[0] << "(uv);" << endl << " vec3 diffuseRef = " << depNames[1] << "(uv);" << endl << " float alpha = max(0.2, " << depNames[2] << "(uv)[0]);" << endl << " float D = " << evalName << "_D(H, alpha)" << ";" << endl << " float G = " << evalName << "_G(H, wi, wo);" << endl << " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl << " return specRef * (F * D * G / (4*cosTheta(wi))) + " << endl << " diffuseRef * ((1-F) * cosTheta(wo) * inv_pi);" << endl << "}" << endl << endl << "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl << " vec3 diffuseRef = " << depNames[1] << "(uv);" << endl << " return diffuseRef * inv_pi * cosTheta(wo);"<< endl << "}" << endl; } MTS_DECLARE_CLASS() private: ref m_specularReflectance; ref m_diffuseReflectance; ref m_alpha; ref m_specularReflectanceShader; ref m_diffuseReflectanceShader; ref m_alphaShader; Float m_extIOR, m_intIOR, m_R0; }; Shader *RoughPlastic::createShader(Renderer *renderer) const { return new RoughPlasticShader(renderer, m_specularReflectance.get(), m_diffuseReflectance.get(), m_alpha.get(), m_extIOR, m_intIOR); } MTS_IMPLEMENT_CLASS(RoughPlasticShader, false, Shader) MTS_IMPLEMENT_CLASS_S(RoughPlastic, false, BSDF) MTS_EXPORT_PLUGIN(RoughPlastic, "Rough plastic BRDF"); MTS_NAMESPACE_END