/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include "microfacet.h"
#include "rtrans.h"
#include "ior.h"
MTS_NAMESPACE_BEGIN
/*!\plugin{roughplastic}{Rough plastic material}
* \order{8}
* \icon{bsdf_roughplastic}
* \parameters{
* \parameter{distribution}{\String}{
* Specifies the type of microfacet normal distribution
* used to model the surface roughness.
* \begin{enumerate}[(i)]
* \item \code{beckmann}: Physically-based distribution derived from
* Gaussian random surfaces. This is the default.
* \item \code{ggx}: New distribution proposed by
* Walter et al. \cite{Walter07Microfacet}, which is meant to better handle
* the long tails observed in measurements of ground surfaces.
* Renderings with this distribution may converge slowly.
* \item \code{phong}: Classical $\cos^p\theta$ distribution.
* Due to the underlying microfacet theory,
* the use of this distribution here leads to more realistic
* behavior than the separately available \pluginref{phong} plugin.
* \vspace{-3mm}
* \end{enumerate}
* }
* \parameter{alpha}{\Float\Or\Texture}{
* Specifies the roughness of the unresolved surface micro-geometry.
* When the Beckmann distribution is used, this parameter is equal to the
* \emph{root mean square} (RMS) slope of the microfacets.
* \default{0.1}.
* }
* \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified
* numerically or using a known material name. \default{\texttt{polypropylene} / 1.49}}
* \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
* \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
* factor that can be used to modulate the specular reflection component. Note
* that for physical realism, this parameter should never be touched. \default{1.0}}
* \parameter{diffuse\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
* factor used to modulate the diffuse reflection component\default{0.5}}
* \parameter{nonlinear}{\Boolean}{
* Account for nonlinear color shifts due to internal scattering? See the
* \pluginref{plastic} plugin for details.\default{Don't account for them and
* preserve the texture colors, i.e. \code{false}}
* }
* }
*
* \vspace{3mm}
* This plugin implements a realistic microfacet scattering model for rendering
* rough dielectric materials with internal scattering, such as plastic. It can
* be interpreted as a fancy version of the Cook-Torrance model and should be
* preferred over empirical models like \pluginref{phong} and \pluginref{ward}
* when possible.
*
* Microfacet theory describes rough surfaces as an arrangement of unresolved and
* ideally specular facets, whose normal directions are given by a specially
* chosen \emph{microfacet distribution}.
* By accounting for shadowing and masking effects between these facets, it is
* possible to reproduce the important off-specular reflections peaks observed
* in real-world measurements of such materials.
*
* \renderings{
* \rendering{Beckmann, $\alpha=0.1$}{bsdf_roughplastic_beckmann}
* \rendering{GGX, $\alpha=0.3$}{bsdf_roughplastic_ggx}
* }
*
* This plugin is essentially the ``roughened'' equivalent of the (smooth) plugin
* \pluginref{plastic}. For very low values of $\alpha$, the two will
* be identical, though scenes using this plugin will take longer to render
* due to the additional computational burden of tracking surface roughness.
*
* For convenience, this model allows to specify IOR values either numerically,
* or based on a list of known materials (see \tblref{dielectric-iors} on
* \tblpage{dielectric-iors} for an overview).
* When no parameters are given, the plugin activates the defaults,
* which describe a white polypropylene plastic material with a light amount
* of roughness modeled using the Beckmann distribution.
*
* Like the \pluginref{plastic} material, this model internally simulates the
* interaction of light with a diffuse base surface coated by a thin dielectric
* layer (where the coating layer is now \emph{rough}). This is a convenient
* abstraction rather than a restriction. In other words, there are many
* materials that can be rendered with this model, even if they might not not
* fit this description perfectly well.
*
* The simplicity of this setup makes it possible to account for interesting
* nonlinear effects due to internal scattering, which is controlled by
* the \texttt{nonlinear} parameter. For more details, please refer to the description
* of this parameter given in the the \pluginref{plastic} plugin section
* on \pluginpage{plastic}.
*
*
* To get an intuition about the effect of the surface roughness
* parameter $\alpha$, consider the following approximate differentiation:
* a value of $\alpha=0.001-0.01$ corresponds to a material
* with slight imperfections on an
* otherwise smooth surface finish, $\alpha=0.1$ is relatively rough,
* and $\alpha=0.3-0.7$ is \emph{extremely} rough (e.g. an etched or ground
* finish). Values significantly above that are probably not too realistic.
*
* \renderings{
* \medrendering{Diffuse textured rendering}{bsdf_plastic_diffuse}
* \medrendering{Textured rough plastic model and \code{nonlinear=false}}{bsdf_roughplastic_preserve}
* \medrendering{Textured rough plastic model and \code{nonlinear=true}}{bsdf_roughplastic_nopreserve}
* \caption{
* \label{fig:plastic-nonlinear}
* When asked to do so, this model can account for subtle nonlinear color shifts due
* to internal scattering processes. The above images show a textured
* object first rendered using \pluginref{diffuse}, then
* \pluginref{roughplastic} with the default parameters, and finally using
* \pluginref{roughplastic} and support for nonlinear color shifts.
* }
* }
* \newpage
* \renderings{
* \rendering{Wood material with smooth horizontal stripes}{bsdf_roughplastic_roughtex1}
* \rendering{A material with imperfections at a much smaller scale than what
* is modeled e.g. using a bump map.}{bsdf_roughplastic_roughtex2}\vspace{-3mm}
* \caption{
* The ability to texture the roughness parameter makes it possible
* to render materials with a structured finish, as well as
* ``smudgy'' objects.
* }
* }
* \vspace{2mm}
* \begin{xml}[caption={A material definition for black plastic material with
* a spatially varying roughness.},
* label=lst:roughplastic-varyingalpha]
*
*
*
*
*
*
*
*
*
*
*
*
* \end{xml}
*
* \subsubsection*{Technical details}
* The implementation of this model is partly based on the paper ``Microfacet
* Models for Refraction through Rough Surfaces'' by Walter et al.
* \cite{Walter07Microfacet}. Several different types of microfacet
* distributions are supported. Note that the choices are slightly more
* restricted here---in comparison to other rough scattering models in
* Mitsuba, anisotropic distributions are not allowed.
*
* The implementation of this model makes heavy use of a \emph{rough
* Fresnel transmittance} function, which is a generalization of the
* usual Fresnel transmittion coefficient to microfacet surfaces. Unfortunately,
* this function is normally prohibitively expensive, since each
* evaluation involves a numerical integration over the sphere.
*
* To avoid this performance issue, Mitsuba ships with data files
* (contained in the \code{data/microfacet} directory) containing precomputed
* values of this function over a large range of parameter values. At runtime,
* the relevant parts are extracted using tricubic interpolation.
*
* When rendering with the Phong microfacet distributions, a conversion
* is used to turn the specified $\alpha$ roughness value into the Phong
* exponent. This is done in a way, such that the different distributions
* all produce a similar appearance for the same value of $\alpha$.
*
*/
class RoughPlastic : public BSDF {
public:
RoughPlastic(const Properties &props) : BSDF(props) {
m_specularReflectance = new ConstantSpectrumTexture(
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
m_diffuseReflectance = new ConstantSpectrumTexture(
props.getSpectrum("diffuseReflectance", Spectrum(0.5f)));
/* Specifies the internal index of refraction at the interface */
m_intIOR = lookupIOR(props, "intIOR", "polypropylene");
/* Specifies the external index of refraction at the interface */
m_extIOR = lookupIOR(props, "extIOR", "air");
if (m_intIOR < 0 || m_extIOR < 0 || m_intIOR == m_extIOR)
Log(EError, "The interior and exterior indices of "
"refraction must be positive and differ!");
m_distribution = MicrofacetDistribution(
props.getString("distribution", "beckmann")
);
if (m_distribution.isAnisotropic())
Log(EError, "The 'roughplastic' plugin currently does not support "
"anisotropic microfacet distributions!");
m_nonlinear = props.getBoolean("nonlinear", true);
m_alpha = new ConstantFloatTexture(
props.getFloat("alpha", 0.1f));
m_specularSamplingWeight = 0.0f;
}
RoughPlastic(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_distribution = MicrofacetDistribution(
(MicrofacetDistribution::EType) stream->readUInt()
);
m_specularReflectance = static_cast(manager->getInstance(stream));
m_diffuseReflectance = static_cast(manager->getInstance(stream));
m_alpha = static_cast(manager->getInstance(stream));
m_intIOR = stream->readFloat();
m_extIOR = stream->readFloat();
m_nonlinear = stream->readBool();
configure();
}
void configure() {
m_components.clear();
bool constAlpha = m_alpha->isConstant();
m_components.push_back(EGlossyReflection | EFrontSide
| ((constAlpha && m_specularReflectance->isConstant())
? 0 : ESpatiallyVarying));
m_components.push_back(EDiffuseReflection | EFrontSide
| ((constAlpha && m_diffuseReflectance->isConstant())
? 0 : ESpatiallyVarying));
/* Verify the input parameters and fix them if necessary */
m_specularReflectance = ensureEnergyConservation(
m_specularReflectance, "specularReflectance", 1.0f);
m_diffuseReflectance = ensureEnergyConservation(
m_diffuseReflectance, "diffuseReflectance", 1.0f);
/* Compute weights that further steer samples towards
the specular or diffuse components */
Float dAvg = m_diffuseReflectance->getAverage().getLuminance(),
sAvg = m_specularReflectance->getAverage().getLuminance();
m_specularSamplingWeight = sAvg / (dAvg + sAvg);
Float eta = m_intIOR / m_extIOR;
m_invEta2 = 1.0f / (eta*eta);
if (!m_externalRoughTransmittance.get()) {
/* Load precomputed data used to compute the rough
transmittance through the dielectric interface */
m_externalRoughTransmittance = new RoughTransmittance(
m_distribution.getType());
m_externalRoughTransmittance->checkEta(eta);
m_externalRoughTransmittance->checkAlpha(m_alpha->getMinimum().average());
m_externalRoughTransmittance->checkAlpha(m_alpha->getMaximum().average());
/* Reduce the rough transmittance data to a 2D slice */
m_internalRoughTransmittance = m_externalRoughTransmittance->clone();
m_externalRoughTransmittance->setEta(eta);
m_internalRoughTransmittance->setEta(1/eta);
/* If possible, even reduce it to a 1D slice */
if (constAlpha)
m_externalRoughTransmittance->setAlpha(
m_alpha->getValue(Intersection()).average());
}
m_usesRayDifferentials =
m_specularReflectance->usesRayDifferentials() ||
m_diffuseReflectance->usesRayDifferentials();
BSDF::configure();
}
Spectrum getDiffuseReflectance(const Intersection &its) const {
/* Evaluate the roughness texture */
Float alpha = m_alpha->getValue(its).average();
Float Ftr = m_externalRoughTransmittance->evalDiffuse(alpha);
return m_diffuseReflectance->getValue(its) * Ftr;
}
/// Helper function: reflect \c wi with respect to a given surface normal
inline Vector reflect(const Vector &wi, const Normal &m) const {
return 2 * dot(wi, m) * Vector(m) - wi;
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
bool hasSpecular = (bRec.typeMask & EGlossyReflection) &&
(bRec.component == -1 || bRec.component == 0);
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection) &&
(bRec.component == -1 || bRec.component == 1);
if (measure != ESolidAngle ||
Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0 ||
(!hasSpecular && !hasDiffuse))
return Spectrum(0.0f);
/* Evaluate the roughness texture */
Float alpha = m_alpha->getValue(bRec.its).average();
Float alphaT = m_distribution.transformRoughness(alpha);
Spectrum result(0.0f);
if (hasSpecular) {
/* Calculate the reflection half-vector */
const Vector H = normalize(bRec.wo+bRec.wi);
/* Evaluate the microsurface normal distribution */
const Float D = m_distribution.eval(H, alphaT);
/* Fresnel term */
const Float F = fresnel(dot(bRec.wi, H), m_extIOR, m_intIOR);
/* Smith's shadow-masking function */
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, alphaT);
/* Calculate the specular reflection component */
Float value = F * D * G /
(4.0f * Frame::cosTheta(bRec.wi));
result += m_specularReflectance->getValue(bRec.its) * value;
}
if (hasDiffuse) {
Spectrum diff = m_diffuseReflectance->getValue(bRec.its);
Float T12 = m_externalRoughTransmittance->eval(Frame::cosTheta(bRec.wi), alpha);
Float T21 = m_externalRoughTransmittance->eval(Frame::cosTheta(bRec.wo), alpha);
Float Fdr = 1-m_internalRoughTransmittance->evalDiffuse(alpha);
if (m_nonlinear)
diff /= Spectrum(1.0f) - diff * Fdr;
else
diff /= 1-Fdr;
result += diff * (INV_PI * Frame::cosTheta(bRec.wo) * T12 * T21 * m_invEta2);
}
return result;
}
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
bool hasSpecular = (bRec.typeMask & EGlossyReflection) &&
(bRec.component == -1 || bRec.component == 0);
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection) &&
(bRec.component == -1 || bRec.component == 1);
if (measure != ESolidAngle ||
Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0 ||
(!hasSpecular && !hasDiffuse))
return 0.0f;
/* Evaluate the roughness texture */
Float alpha = m_alpha->getValue(bRec.its).average();
Float alphaT = m_distribution.transformRoughness(alpha);
/* Calculate the reflection half-vector */
const Vector H = normalize(bRec.wo+bRec.wi);
Float probDiffuse, probSpecular;
if (hasSpecular && hasDiffuse) {
/* Find the probability of sampling the specular component */
probSpecular = 1-m_externalRoughTransmittance->eval(Frame::cosTheta(bRec.wi), alpha);
/* Reallocate samples */
probSpecular = (probSpecular*m_specularSamplingWeight) /
(probSpecular*m_specularSamplingWeight +
(1-probSpecular) * (1-m_specularSamplingWeight));
probDiffuse = 1 - probSpecular;
} else {
probDiffuse = probSpecular = 1.0f;
}
Float result = 0.0f;
if (hasSpecular) {
/* Jacobian of the half-direction transform */
const Float dwh_dwo = 1.0f / (4.0f * dot(bRec.wo, H));
/* Evaluate the microsurface normal distribution */
const Float prob = m_distribution.pdf(H, alphaT);
result = prob * dwh_dwo * probSpecular;
}
if (hasDiffuse)
result += Frame::cosTheta(bRec.wo) * INV_PI * probDiffuse;
return result;
}
inline Spectrum sample(BSDFQueryRecord &bRec, Float &_pdf, const Point2 &_sample) const {
bool hasSpecular = (bRec.typeMask & EGlossyReflection) &&
(bRec.component == -1 || bRec.component == 0);
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection) &&
(bRec.component == -1 || bRec.component == 1);
if (Frame::cosTheta(bRec.wi) <= 0 || (!hasSpecular && !hasDiffuse))
return Spectrum(0.0f);
bool choseSpecular = hasSpecular;
Point2 sample(_sample);
/* Evaluate the roughness texture */
Float alpha = m_alpha->getValue(bRec.its).average();
Float alphaT = m_distribution.transformRoughness(alpha);
Float probSpecular;
if (hasSpecular && hasDiffuse) {
/* Find the probability of sampling the specular component */
probSpecular = 1 - m_externalRoughTransmittance->eval(Frame::cosTheta(bRec.wi), alpha);
/* Reallocate samples */
probSpecular = (probSpecular*m_specularSamplingWeight) /
(probSpecular*m_specularSamplingWeight +
(1-probSpecular) * (1-m_specularSamplingWeight));
if (sample.x <= probSpecular) {
sample.x /= probSpecular;
} else {
sample.x = (sample.x - probSpecular) / (1 - probSpecular);
choseSpecular = false;
}
}
if (choseSpecular) {
/* Perfect specular reflection based on the microsurface normal */
Normal m = m_distribution.sample(sample, alphaT);
bRec.wo = reflect(bRec.wi, m);
bRec.sampledComponent = 0;
bRec.sampledType = EGlossyReflection;
/* Side check */
if (Frame::cosTheta(bRec.wo) <= 0)
return Spectrum(0.0f);
} else {
bRec.sampledComponent = 1;
bRec.sampledType = EDiffuseReflection;
bRec.wo = squareToHemispherePSA(sample);
}
/* Guard against numerical imprecisions */
_pdf = pdf(bRec, ESolidAngle);
if (_pdf == 0)
return Spectrum(0.0f);
else
return eval(bRec, ESolidAngle) / _pdf;
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
Float pdf;
return RoughPlastic::sample(bRec, pdf, sample);
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
stream->writeUInt((uint32_t) m_distribution.getType());
manager->serialize(stream, m_specularReflectance.get());
manager->serialize(stream, m_diffuseReflectance.get());
manager->serialize(stream, m_alpha.get());
stream->writeFloat(m_intIOR);
stream->writeFloat(m_extIOR);
stream->writeBool(m_nonlinear);
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
if (name == "alpha")
m_alpha = static_cast(child);
else if (name == "specularReflectance")
m_specularReflectance = static_cast(child);
else if (name == "diffuseReflectance")
m_diffuseReflectance = static_cast(child);
else
BSDF::addChild(name, child);
} else {
BSDF::addChild(name, child);
}
}
std::string toString() const {
std::ostringstream oss;
oss << "RoughPlastic[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " distribution = " << m_distribution.toString() << "," << endl
<< " alpha = " << indent(m_alpha->toString()) << "," << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
<< " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
<< " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl
<< " nonlinear = " << m_nonlinear << "," << endl
<< " intIOR = " << m_intIOR << "," << endl
<< " extIOR = " << m_extIOR << endl
<< "]";
return oss.str();
}
Shader *createShader(Renderer *renderer) const;
MTS_DECLARE_CLASS()
private:
MicrofacetDistribution m_distribution;
ref m_externalRoughTransmittance;
ref m_internalRoughTransmittance;
ref m_diffuseReflectance;
ref m_specularReflectance;
ref m_alpha;
Float m_intIOR, m_extIOR, m_invEta2;
Float m_specularSamplingWeight;
bool m_nonlinear;
};
/**
* GLSL port of the rough plastic shader. This version is much more
* approximate -- it only supports the Beckmann distribution,
* does everything in RGB, uses a cheaper shadowing-masking term, and
* it also makes use of the Schlick approximation to the Fresnel
* reflectance of dielectrics. When the roughness is lower than
* \alpha < 0.2, the shader clamps it to 0.2 so that it will still perform
* reasonably well in a VPL-based preview. There is no support for
* non-linear effects due to internal scattering.
*/
class RoughPlasticShader : public Shader {
public:
RoughPlasticShader(Renderer *renderer, const Texture *specularReflectance,
const Texture *diffuseReflectance, const Texture *alpha, Float extIOR,
Float intIOR) : Shader(renderer, EBSDFShader),
m_specularReflectance(specularReflectance),
m_diffuseReflectance(diffuseReflectance),
m_alpha(alpha), m_extIOR(extIOR), m_intIOR(intIOR) {
m_specularReflectanceShader = renderer->registerShaderForResource(m_specularReflectance.get());
m_diffuseReflectanceShader = renderer->registerShaderForResource(m_diffuseReflectance.get());
m_alphaShader = renderer->registerShaderForResource(m_alpha.get());
m_R0 = fresnel(1.0f, m_extIOR, m_intIOR);
}
bool isComplete() const {
return m_specularReflectanceShader.get() != NULL &&
m_diffuseReflectanceShader.get() != NULL &&
m_alphaShader.get() != NULL;
}
void putDependencies(std::vector &deps) {
deps.push_back(m_specularReflectanceShader.get());
deps.push_back(m_diffuseReflectanceShader.get());
deps.push_back(m_alphaShader.get());
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_specularReflectance.get());
renderer->unregisterShaderForResource(m_diffuseReflectance.get());
renderer->unregisterShaderForResource(m_alpha.get());
}
void resolve(const GPUProgram *program, const std::string &evalName, std::vector ¶meterIDs) const {
parameterIDs.push_back(program->getParameterID(evalName + "_R0", false));
}
void bind(GPUProgram *program, const std::vector ¶meterIDs, int &textureUnitOffset) const {
program->setParameter(parameterIDs[0], m_R0);
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector &depNames) const {
oss << "uniform float " << evalName << "_R0;" << endl
<< endl
<< "float " << evalName << "_D(vec3 m, float alpha) {" << endl
<< " float ct = cosTheta(m);" << endl
<< " if (cosTheta(m) <= 0.0)" << endl
<< " return 0.0;" << endl
<< " float ex = tanTheta(m) / alpha;" << endl
<< " return exp(-(ex*ex)) / (pi * alpha * alpha *" << endl
<< " pow(cosTheta(m), 4.0));" << endl
<< "}" << endl
<< endl
<< "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl
<< " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl
<< " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl
<< " return 0.0;" << endl
<< " float nDotM = cosTheta(m);" << endl
<< " return min(1.0, min(" << endl
<< " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl
<< " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl
<< "}" << endl
<< endl
<< endl
<< "float " << evalName << "_schlick(float ct) {" << endl
<< " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl
<< " return " << evalName << "_R0 + (1.0 - " << evalName << "_R0) * ct5;" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " if (cosTheta(wi) <= 0 || cosTheta(wo) <= 0)" << endl
<< " return vec3(0.0);" << endl
<< " vec3 H = normalize(wi + wo);" << endl
<< " vec3 specRef = " << depNames[0] << "(uv);" << endl
<< " vec3 diffuseRef = " << depNames[1] << "(uv);" << endl
<< " float alpha = max(0.2, " << depNames[2] << "(uv)[0]);" << endl
<< " float D = " << evalName << "_D(H, alpha)" << ";" << endl
<< " float G = " << evalName << "_G(H, wi, wo);" << endl
<< " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl
<< " return specRef * (F * D * G / (4*cosTheta(wi))) + " << endl
<< " diffuseRef * ((1-F) * cosTheta(wo) * inv_pi);" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " vec3 diffuseRef = " << depNames[1] << "(uv);" << endl
<< " return diffuseRef * inv_pi * cosTheta(wo);"<< endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
private:
ref m_specularReflectance;
ref m_diffuseReflectance;
ref m_alpha;
ref m_specularReflectanceShader;
ref m_diffuseReflectanceShader;
ref m_alphaShader;
Float m_extIOR, m_intIOR, m_R0;
};
Shader *RoughPlastic::createShader(Renderer *renderer) const {
return new RoughPlasticShader(renderer,
m_specularReflectance.get(), m_diffuseReflectance.get(),
m_alpha.get(), m_extIOR, m_intIOR);
}
MTS_IMPLEMENT_CLASS(RoughPlasticShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(RoughPlastic, false, BSDF)
MTS_EXPORT_PLUGIN(RoughPlastic, "Rough plastic BRDF");
MTS_NAMESPACE_END