/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2011 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "ior.h" MTS_NAMESPACE_BEGIN /*! \plugin{coating}{Smooth dielectric coating} * \order{9} * * \parameters{ * \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified * numerically or using a known material name. \default{\texttt{bk7} / 1.5046}} * \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified * numerically or using a known material name. \default{\texttt{air} / 1.000277}} * } * * This class implements a smooth dielectric coating in the style of * Weidlich and Wilkie \cite{Weidlich2007Arbitrarily}. */ class SmoothCoating : public BSDF { public: SmoothCoating(const Properties &props) : BSDF(props) { /* Specifies the internal index of refraction at the interface */ m_intIOR = lookupIOR(props, "intIOR", "bk7"); /* Specifies the external index of refraction at the interface */ m_extIOR = lookupIOR(props, "extIOR", "air"); /* Specifies the layer's thickness using the inverse units of sigmaT */ m_thickness = props.getFloat("thickness", 1); /* Specifies the attenuation within the varnish layer */ m_sigmaT = new ConstantSpectrumTexture( props.getSpectrum("sigmaT", Spectrum(0.0f))); } SmoothCoating(Stream *stream, InstanceManager *manager) : BSDF(stream, manager) { m_intIOR = stream->readFloat(); m_extIOR = stream->readFloat(); m_thickness = stream->readFloat(); m_nested = static_cast(manager->getInstance(stream)); m_sigmaT = static_cast(manager->getInstance(stream)); configure(); } void configure() { if (!m_nested) Log(EError, "A child BSDF instance is required"); if (m_nested->getType() & BSDF::ETransmission) Log(EError, "Tried to put a smooth coating layer on top of a BSDF " "with a transmission component -- this is currently not allowed!"); m_components.clear(); for (int i=0; igetComponentCount(); ++i) m_components.push_back(m_nested->getType(i)); m_components.push_back(EDeltaReflection | EFrontSide); m_usesRayDifferentials = m_nested->usesRayDifferentials() || m_sigmaT->usesRayDifferentials(); BSDF::configure(); } void serialize(Stream *stream, InstanceManager *manager) const { BSDF::serialize(stream, manager); stream->writeFloat(m_intIOR); stream->writeFloat(m_extIOR); stream->writeFloat(m_thickness); manager->serialize(stream, m_nested.get()); manager->serialize(stream, m_sigmaT.get()); } void addChild(const std::string &name, ConfigurableObject *child) { if (child->getClass()->derivesFrom(MTS_CLASS(BSDF))) { if (m_nested != NULL) Log(EError, "Only a single nested BRDF can be added!"); m_nested = static_cast(child); } else { BSDF::addChild(name, child); } } /// Reflection in local coordinates inline Vector reflect(const Vector &wi) const { return Vector(-wi.x, -wi.y, wi.z); } /** * \brief Refraction in local coordinates * * To be used when some of the data is already available */ inline Vector refract(const Vector &wi, Float eta, Float cosThetaT) const { return Vector(-eta*wi.x, -eta*wi.y, cosThetaT); } /// Refraction in local coordinates (full version) inline Vector refract(const Vector &wi, Float &F) const { Float cosThetaI = Frame::cosTheta(wi), etaI = m_extIOR, etaT = m_intIOR; bool entering = cosThetaI > 0.0f; /* Determine the respective indices of refraction */ if (!entering) std::swap(etaI, etaT); /* Using Snell's law, calculate the squared sine of the angle between the normal and the transmitted ray */ Float eta = etaI / etaT, sinThetaTSqr = eta*eta * Frame::sinTheta2(wi); Float cosThetaT = 0; if (sinThetaTSqr >= 1.0f) { /* Total internal reflection */ F = 1.0f; return Vector(0.0f); } else { cosThetaT = std::sqrt(1.0f - sinThetaTSqr); /* Compute the Fresnel transmittance */ F = fresnelDielectric(std::abs(Frame::cosTheta(wi)), cosThetaT, m_extIOR, m_intIOR); return Vector(-eta*wi.x, -eta*wi.y, entering ? -cosThetaT : cosThetaT); } } Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const { if (Frame::cosTheta(bRec.wi) <= 0 || Frame::cosTheta(bRec.wo) <= 0) return Spectrum(0.0f); bool sampleSpecular = (bRec.typeMask & EDeltaReflection) && (bRec.component == -1 || bRec.component == (int) m_components.size()-1); bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); if (measure == EDiscrete && sampleSpecular && std::abs(1-dot(reflect(bRec.wi), bRec.wo)) < Epsilon) { return Spectrum(fresnel( Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR)); } else if (sampleNested) { Float R12, R21; BSDFQueryRecord bRec2(bRec); bRec2.wi = -refract(bRec.wi, R12); bRec2.wo = -refract(bRec.wo, R21); Assert(bRec2.wi.z >= 0); Assert(bRec2.wo.z >= 0); if (R12 == 1 || R21 == 1) /* Total internal reflection */ return Spectrum(0.0f); Spectrum result = m_nested->eval(bRec2, measure) * ((1-R12) * (1-R21)); Spectrum sigmaT = m_sigmaT->getValue(bRec.its) * m_thickness; if (!sigmaT.isZero()) result *= (-sigmaT * (1/std::abs(Frame::cosTheta(bRec2.wi)) + 1/std::abs(Frame::cosTheta(bRec2.wo)))).exp(); if (measure == ESolidAngle) result *= Frame::cosTheta(bRec2.wo); return result; } return Spectrum(0.0f); } Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const { if (Frame::cosTheta(bRec.wi) <= 0 || Frame::cosTheta(bRec.wo) <= 0) return 0.0f; bool sampleSpecular = (bRec.typeMask & EDeltaReflection) && (bRec.component == -1 || bRec.component == (int) m_components.size()-1); bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); if (measure == EDiscrete && sampleSpecular && std::abs(1-dot(reflect(bRec.wi), bRec.wo)) < Epsilon) { return sampleNested ? fresnel( Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR) : 1.0f; } else if (sampleNested) { Float R12, R21; BSDFQueryRecord bRec2(bRec); bRec2.wi = -refract(bRec.wi, R12); bRec2.wo = -refract(bRec.wo, R21); if (R12 == 1 || R21 == 1) /* Total internal reflection */ return 0.0f; Float pdf = m_nested->pdf(bRec2, measure); if (measure == ESolidAngle) { Float eta = m_extIOR / m_intIOR; pdf /= eta * eta; } return sampleSpecular ? (pdf * (1-R12)) : pdf; } else { return 0.0f; } } Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &_sample) const { bool sampleSpecular = (bRec.typeMask & EDeltaReflection) && (bRec.component == -1 || bRec.component == (int) m_components.size()-1); bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); if ((!sampleNested && !sampleNested) || Frame::cosTheta(bRec.wi) < 0) return Spectrum(0.0f); /* Refract the incident direction and compute the Fresnel reflectance */ Float eta = m_extIOR / m_intIOR, sinThetaTSqr = eta*eta * Frame::sinTheta2(bRec.wi), R12, cosThetaT = 0; if (sinThetaTSqr >= 1.0f) { R12 = 1.0f; /* Total internal reflection */ } else { cosThetaT = -std::sqrt(1.0f - sinThetaTSqr); R12 = fresnelDielectric(Frame::cosTheta(bRec.wi), -cosThetaT, m_extIOR, m_intIOR); } Point2 sample(_sample); if (sampleNested && sampleNested) { if (sample.x <= R12) { bRec.sampledComponent = m_components.size()-1; bRec.sampledType = EDeltaReflection; bRec.wo = reflect(bRec.wi); pdf = R12; return Spectrum(R12); } else { Vector wiBackup = bRec.wi; // bRec.wi = -refract(bRec.wi, eta, cosThetaT); bRec.wi = -refract(bRec.wi, R12); sample.x = (sample.x - R12) / (1 - R12); Spectrum result = m_nested->sample(bRec, pdf, sample); if (result.isZero()) return Spectrum(0.0f); Spectrum sigmaT = m_sigmaT->getValue(bRec.its) * m_thickness; if (!sigmaT.isZero()) result *= (-sigmaT * (1/std::abs(Frame::cosTheta(bRec.wi)) + 1/std::abs(Frame::cosTheta(bRec.wo)))).exp(); Float R21, cosThetaWoPrime = Frame::cosTheta(bRec.wo); bRec.wi = wiBackup; bRec.wo = refract(-bRec.wo, R21); if (R21 == 1.0f) /* Total internal reflection */ return Spectrum(0.0f); pdf *= 1 - R12; if (BSDF::getMeasure(bRec.sampledType) == ESolidAngle) pdf /= eta * eta; result *= (1 - R12) * (1 - R21) * cosThetaWoPrime; return result; } } else if (sampleSpecular) { bRec.sampledComponent = 0; bRec.sampledType = EDeltaReflection; bRec.wo = reflect(bRec.wi); pdf = 1.0f; return Spectrum(R12); } else { // XXX not implemented return Spectrum(0.0f); } } Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const { Float pdf; Spectrum result = SmoothCoating::sample(bRec, pdf, sample); if (result.isZero()) return Spectrum(0.0f); else return result / pdf; } std::string toString() const { std::ostringstream oss; oss << "SmoothCoating[" << endl << " name = \"" << getName() << "\"," << endl << " intIOR = " << m_intIOR << "," << endl << " extIOR = " << m_extIOR << "," << endl << " sigmaT = " << indent(m_sigmaT->toString()) << "," << endl << " thickness = " << m_thickness << "," << endl << " nested = " << indent(m_nested->toString()) << endl << "]"; return oss.str(); } MTS_DECLARE_CLASS() private: Float m_intIOR, m_extIOR; ref m_sigmaT; ref m_nested; Float m_thickness; }; MTS_IMPLEMENT_CLASS_S(SmoothCoating, false, BSDF) MTS_EXPORT_PLUGIN(SmoothCoating, "Smooth varnish layer"); MTS_NAMESPACE_END