/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2012 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #if defined(__OSX__) #include #elif defined(WIN32) #include #else #include #endif #if defined(WIN32) # include # include # include #else # include # include # include # include #endif // SSE is not enabled in general when using double precision, however it is // required in OS X for FP exception handling #if defined(__OSX__) && !defined(MTS_SSE) #include #undef enable_fpexcept_sse #undef query_fpexcept_sse #undef disable_fpexcept_sse namespace { inline void enable_fpexcept_sse() { _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~(_MM_MASK_INVALID | _MM_MASK_DIV_ZERO)); } inline unsigned int query_fpexcept_sse() { return (~_MM_GET_EXCEPTION_MASK() & (_MM_MASK_INVALID | _MM_MASK_DIV_ZERO)); } inline void disable_fpexcept_sse() { _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() | _MM_MASK_INVALID | _MM_MASK_DIV_ZERO); } } // namespace #endif MTS_NAMESPACE_BEGIN // ----------------------------------------------------------------------- // General utility functions // ----------------------------------------------------------------------- std::vector tokenize(const std::string &string, const std::string &delim) { std::string::size_type lastPos = string.find_first_not_of(delim, 0); std::string::size_type pos = string.find_first_of(delim, lastPos); std::vector tokens; while (std::string::npos != pos || std::string::npos != lastPos) { tokens.push_back(string.substr(lastPos, pos - lastPos)); lastPos = string.find_first_not_of(delim, pos); pos = string.find_first_of(delim, lastPos); } return tokens; } std::string trim(const std::string& str) { std::string::size_type start = str.find_first_not_of(" \t\r\n"), end = str.find_last_not_of(" \t\r\n"); return str.substr(start == std::string::npos ? 0 : start, end == std::string::npos ? str.length() - 1 : end - start + 1); } std::string indent(const std::string &string, int amount) { /* This could probably be done faster (is not really speed-critical though) */ std::istringstream iss(string); std::ostringstream oss; std::string str; bool firstLine = true; while (!iss.eof()) { std::getline(iss, str); if (!firstLine) { for (int i=0; i 1024.0f) { value /= 1024.0f; ++prefix; } return formatString(prefix == 0 ? "%.0f %s" : "%.2f %s", value, prefixes[prefix]); } void * __restrict allocAligned(size_t size) { #if defined(WIN32) return _aligned_malloc(size, L1_CACHE_LINE_SIZE); #elif defined(__OSX__) /* OSX malloc already returns 16-byte aligned data suitable for AltiVec and SSE computations */ return malloc(size); #else return memalign(L1_CACHE_LINE_SIZE, size); #endif } void freeAligned(void *ptr) { #if defined(WIN32) _aligned_free(ptr); #else free(ptr); #endif } int getCoreCount() { #if defined(WIN32) SYSTEM_INFO sys_info; GetSystemInfo(&sys_info); return sys_info.dwNumberOfProcessors; #elif defined(__OSX__) int nprocs; size_t nprocsSize = sizeof(int); if (sysctlbyname("hw.activecpu", &nprocs, &nprocsSize, NULL, 0)) SLog(EError, "Could not detect the number of processors!"); return (int) nprocs; #else return sysconf(_SC_NPROCESSORS_CONF); #endif } #if defined(WIN32) std::string lastErrorText() { DWORD errCode = GetLastError(); char *errorText = NULL; if (!FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, errCode, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR) &errorText, 0, NULL)) { return "Internal error while looking up an error code"; } std::string result(errorText); LocalFree(errorText); return result; } #endif bool enableFPExceptions() { bool exceptionsWereEnabled = false; #if defined(WIN32) _clearfp(); uint32_t cw = _controlfp(0, 0); exceptionsWereEnabled = ~cw & (_EM_INVALID | _EM_ZERODIVIDE | _EM_OVERFLOW); cw &= ~(_EM_INVALID | _EM_ZERODIVIDE | _EM_OVERFLOW); _controlfp(cw, _MCW_EM); #elif defined(__OSX__) exceptionsWereEnabled = query_fpexcept_sse() != 0; #else exceptionsWereEnabled = fegetexcept() & (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW); feenableexcept(FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW); #endif enable_fpexcept_sse(); return exceptionsWereEnabled; } bool disableFPExceptions() { bool exceptionsWereEnabled = false; #if defined(WIN32) _clearfp(); uint32_t cw = _controlfp(0, 0); exceptionsWereEnabled = ~cw & (_EM_INVALID | _EM_ZERODIVIDE | _EM_OVERFLOW); cw |= _EM_INVALID | _EM_ZERODIVIDE | _EM_OVERFLOW; _controlfp(cw, _MCW_EM); #elif defined(__OSX__) exceptionsWereEnabled = query_fpexcept_sse() != 0; #else exceptionsWereEnabled = fegetexcept() & (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW); fedisableexcept(FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW); #endif disable_fpexcept_sse(); return exceptionsWereEnabled; } void restoreFPExceptions(bool oldState) { bool currentState; #if defined(WIN32) uint32_t cw = _controlfp(0, 0); currentState = ~cw & (_EM_INVALID | _EM_ZERODIVIDE | _EM_OVERFLOW); #elif defined(__OSX__) currentState = query_fpexcept_sse() != 0; #else currentState = fegetexcept() & (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW); #endif if (oldState != currentState) { if (oldState) enableFPExceptions(); else disableFPExceptions(); } } std::string getHostName() { char hostName[128]; if (gethostname(hostName, sizeof(hostName)) != 0) #if defined(WIN32) SLog(EError, "Could not retrieve the computer's host name: %s!", lastErrorText().c_str()); #else SLog(EError, "Could not retrieve the computer's host name : %s!", strerror(errno)); #endif return hostName; } std::string getFQDN() { struct addrinfo *addrInfo = NULL, hints; memset(&hints, 0, sizeof(addrinfo)); // Only look for IPv4 addresses -- perhaps revisit this later hints.ai_family = AF_INET; // AF_UNSPEC hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; int retVal = getaddrinfo(getHostName().c_str(), NULL, &hints, &addrInfo); if (addrInfo == NULL || retVal != 0) { SLog(EWarn, "Could not retrieve the computer's fully " "qualified domain name: could not resolve host address \"%s\"!", getHostName().c_str()); return getHostName(); } char fqdn[NI_MAXHOST]; retVal = getnameinfo(addrInfo->ai_addr, sizeof(struct sockaddr_in), fqdn, NI_MAXHOST, NULL, 0, 0); if (retVal != 0) { freeaddrinfo(addrInfo); #if defined(WIN32) SLog(EWarn, "Could not retrieve the computer's fully " "qualified domain name: error %i!", WSAGetLastError()); #else SLog(EWarn, "Could not retrieve the computer's fully " "qualified domain name: error %i!", gai_strerror(retVal)); #endif return getHostName(); } freeaddrinfo(addrInfo); return fqdn; } Float log2(Float value) { const Float invLn2 = (Float) 1.0f / math::fastlog((Float) 2.0f); return math::fastlog(value) * invLn2; } std::string formatString(const char *fmt, ...) { char tmp[512]; va_list iterator; #if defined(WIN32) va_start(iterator, fmt); size_t size = _vscprintf(fmt, iterator) + 1; if (size >= sizeof(tmp)) { char *dest = new char[size]; vsnprintf_s(dest, size, size-1, fmt, iterator); va_end(iterator); std::string result(dest); delete[] dest; return result; } vsnprintf_s(tmp, size, size-1, fmt, iterator); va_end(iterator); #else va_start(iterator, fmt); size_t size = vsnprintf(tmp, sizeof(tmp), fmt, iterator); va_end(iterator); if (size >= sizeof(tmp)) { /* Overflow! -- dynamically allocate memory */ char *dest = new char[size+1]; va_start(iterator, fmt); vsnprintf(dest, size+1, fmt, iterator); va_end(iterator); std::string result(dest); delete[] dest; return result; } #endif return std::string(tmp); } int log2i(uint32_t value) { int r = 0; while ((value >> r) != 0) r++; return r-1; } int log2i(uint64_t value) { int r = 0; while ((value >> r) != 0) r++; return r-1; } /* Fast rounding & power-of-two test algorithms from PBRT */ uint32_t roundToPowerOfTwo(uint32_t i) { i--; i |= i >> 1; i |= i >> 2; i |= i >> 4; i |= i >> 8; i |= i >> 16; return i+1; } uint64_t roundToPowerOfTwo(uint64_t i) { i--; i |= i >> 1; i |= i >> 2; i |= i >> 4; i |= i >> 8; i |= i >> 16; i |= i >> 32; return i+1; } // ----------------------------------------------------------------------- // Numerical utility functions // ----------------------------------------------------------------------- bool solveQuadratic(Float a, Float b, Float c, Float &x0, Float &x1) { /* Linear case */ if (a == 0) { if (b != 0) { x0 = x1 = -c / b; return true; } return false; } Float discrim = b*b - 4.0f*a*c; /* Leave if there is no solution */ if (discrim < 0) return false; Float temp, sqrtDiscrim = std::sqrt(discrim); /* Numerically stable version of (-b (+/-) sqrtDiscrim) / (2 * a) * * Based on the observation that one solution is always * accurate while the other is not. Finds the solution of * greater magnitude which does not suffer from loss of * precision and then uses the identity x1 * x2 = c / a */ if (b < 0) temp = -0.5f * (b - sqrtDiscrim); else temp = -0.5f * (b + sqrtDiscrim); x0 = temp / a; x1 = c / temp; /* Return the results so that x0 < x1 */ if (x0 > x1) std::swap(x0, x1); return true; } bool solveQuadraticDouble(double a, double b, double c, double &x0, double &x1) { /* Linear case */ if (a == 0) { if (b != 0) { x0 = x1 = -c / b; return true; } return false; } double discrim = b*b - 4.0f*a*c; /* Leave if there is no solution */ if (discrim < 0) return false; double temp, sqrtDiscrim = std::sqrt(discrim); /* Numerically stable version of (-b (+/-) sqrtDiscrim) / (2 * a) * * Based on the observation that one solution is always * accurate while the other is not. Finds the solution of * greater magnitude which does not suffer from loss of * precision and then uses the identity x1 * x2 = c / a */ if (b < 0) temp = -0.5f * (b - sqrtDiscrim); else temp = -0.5f * (b + sqrtDiscrim); x0 = temp / a; x1 = c / temp; /* Return the results so that x0 < x1 */ if (x0 > x1) std::swap(x0, x1); return true; } bool solveLinearSystem2x2(const Float a[2][2], const Float b[2], Float x[2]) { Float det = a[0][0] * a[1][1] - a[0][1] * a[1][0]; if (det == 0) return false; Float inverse = (Float) 1.0f / det; x[0] = (a[1][1] * b[0] - a[0][1] * b[1]) * inverse; x[1] = (a[0][0] * b[1] - a[1][0] * b[0]) * inverse; return true; } void stratifiedSample1D(Random *random, Float *dest, int count, bool jitter) { Float invCount = 1.0f / count; for (int i=0; inextFloat() : 0.5f; *dest++ = (i + offset) * invCount; } } void stratifiedSample2D(Random *random, Point2 *dest, int countX, int countY, bool jitter) { Float invCountX = 1.0f / countX; Float invCountY = 1.0f / countY; for (int x=0; xnextFloat() : 0.5f; Float offsetY = jitter ? random->nextFloat() : 0.5f; *dest++ = Point2( (x + offsetX) * invCountX, (y + offsetY) * invCountY ); } } } void latinHypercube(Random *random, Float *dest, size_t nSamples, size_t nDim) { Float delta = 1 / (Float) nSamples; for (size_t i = 0; i < nSamples; ++i) for (size_t j = 0; j < nDim; ++j) dest[nDim * i + j] = (i + random->nextFloat()) * delta; for (size_t i = 0; i < nDim; ++i) { for (size_t j = 0; j < nSamples; ++j) { size_t other = random->nextSize(nSamples); std::swap(dest[nDim * j + i], dest[nDim * other + i]); } } } Vector sphericalDirection(Float theta, Float phi) { Float sinTheta, cosTheta, sinPhi, cosPhi; math::sincos(theta, &sinTheta, &cosTheta); math::sincos(phi, &sinPhi, &cosPhi); return Vector( sinTheta * cosPhi, sinTheta * sinPhi, cosTheta ); } void coordinateSystem(const Vector &a, Vector &b, Vector &c) { if (std::abs(a.x) > std::abs(a.y)) { Float invLen = 1.0f / std::sqrt(a.x * a.x + a.z * a.z); c = Vector(a.z * invLen, 0.0f, -a.x * invLen); } else { Float invLen = 1.0f / std::sqrt(a.y * a.y + a.z * a.z); c = Vector(0.0f, a.z * invLen, -a.y * invLen); } b = cross(c, a); } Point2 toSphericalCoordinates(const Vector &v) { Point2 result( std::acos(v.z), std::atan2(v.y, v.x) ); if (result.y < 0) result.y += 2*M_PI; return result; } Float fresnelDielectric(Float cosThetaI, Float cosThetaT, Float eta) { if (EXPECT_NOT_TAKEN(eta == 1)) return 0.0f; Float Rs = (cosThetaI - eta * cosThetaT) / (cosThetaI + eta * cosThetaT); Float Rp = (eta * cosThetaI - cosThetaT) / (eta * cosThetaI + cosThetaT); /* No polarization -- return the unpolarized reflectance */ return 0.5f * (Rs * Rs + Rp * Rp); } Float fresnelDielectricExt(Float cosThetaI_, Float &cosThetaT_, Float eta) { if (EXPECT_NOT_TAKEN(eta == 1)) { cosThetaT_ = -cosThetaI_; return 0.0f; } /* Using Snell's law, calculate the squared sine of the angle between the normal and the transmitted ray */ Float scale = (cosThetaI_ > 0) ? 1/eta : eta, cosThetaTSqr = 1 - (1-cosThetaI_*cosThetaI_) * (scale*scale); /* Check for total internal reflection */ if (cosThetaTSqr <= 0.0f) { cosThetaT_ = 0.0f; return 1.0f; } /* Find the absolute cosines of the incident/transmitted rays */ Float cosThetaI = std::abs(cosThetaI_); Float cosThetaT = std::sqrt(cosThetaTSqr); Float Rs = (cosThetaI - eta * cosThetaT) / (cosThetaI + eta * cosThetaT); Float Rp = (eta * cosThetaI - cosThetaT) / (eta * cosThetaI + cosThetaT); cosThetaT_ = (cosThetaI_ > 0) ? -cosThetaT : cosThetaT; /* No polarization -- return the unpolarized reflectance */ return 0.5f * (Rs * Rs + Rp * Rp); } Float fresnelConductorApprox(Float cosThetaI, Float eta, Float k) { Float cosThetaI2 = cosThetaI*cosThetaI; Float tmp = (eta*eta + k*k) * cosThetaI2; Float Rp2 = (tmp - (eta * (2 * cosThetaI)) + 1) / (tmp + (eta * (2 * cosThetaI)) + 1); Float tmpF = eta*eta + k*k; Float Rs2 = (tmpF - (eta * (2 * cosThetaI)) + cosThetaI2) / (tmpF + (eta * (2 * cosThetaI)) + cosThetaI2); return 0.5f * (Rp2 + Rs2); } Spectrum fresnelConductorApprox(Float cosThetaI, const Spectrum &eta, const Spectrum &k) { Float cosThetaI2 = cosThetaI*cosThetaI; Spectrum tmp = (eta*eta + k*k) * cosThetaI2; Spectrum Rp2 = (tmp - (eta * (2 * cosThetaI)) + Spectrum(1.0f)) / (tmp + (eta * (2 * cosThetaI)) + Spectrum(1.0f)); Spectrum tmpF = eta*eta + k*k; Spectrum Rs2 = (tmpF - (eta * (2 * cosThetaI)) + Spectrum(cosThetaI2)) / (tmpF + (eta * (2 * cosThetaI)) + Spectrum(cosThetaI2)); return 0.5f * (Rp2 + Rs2); } Float fresnelConductorExact(Float cosThetaI, Float eta, Float k) { /* Modified from "Optics" by K.D. Moeller, University Science Books, 1988 */ Float cosThetaI2 = cosThetaI*cosThetaI, sinThetaI2 = 1-cosThetaI2, sinThetaI4 = sinThetaI2*sinThetaI2; Float temp1 = eta*eta - k*k - sinThetaI2, a2pb2 = math::safe_sqrt(temp1*temp1 + 4*k*k*eta*eta), a = math::safe_sqrt(0.5f * (a2pb2 + temp1)); Float term1 = a2pb2 + cosThetaI2, term2 = 2*a*cosThetaI; Float Rs2 = (term1 - term2) / (term1 + term2); Float term3 = a2pb2*cosThetaI2 + sinThetaI4, term4 = term2*sinThetaI2; Float Rp2 = Rs2 * (term3 - term4) / (term3 + term4); return 0.5f * (Rp2 + Rs2); } Spectrum fresnelConductorExact(Float cosThetaI, const Spectrum &eta, const Spectrum &k) { /* Modified from "Optics" by K.D. Moeller, University Science Books, 1988 */ Float cosThetaI2 = cosThetaI*cosThetaI, sinThetaI2 = 1-cosThetaI2, sinThetaI4 = sinThetaI2*sinThetaI2; Spectrum temp1 = eta*eta - k*k - Spectrum(sinThetaI2), a2pb2 = (temp1*temp1 + k*k*eta*eta*4).safe_sqrt(), a = ((a2pb2 + temp1) * 0.5f).safe_sqrt(); Spectrum term1 = a2pb2 + Spectrum(cosThetaI2), term2 = a*(2*cosThetaI); Spectrum Rs2 = (term1 - term2) / (term1 + term2); Spectrum term3 = a2pb2*cosThetaI2 + Spectrum(sinThetaI4), term4 = term2*sinThetaI2; Spectrum Rp2 = Rs2 * (term3 - term4) / (term3 + term4); return 0.5f * (Rp2 + Rs2); } Vector reflect(const Vector &wi, const Normal &n) { return 2 * dot(wi, n) * Vector(n) - wi; } Vector refract(const Vector &wi, const Normal &n, Float eta, Float cosThetaT) { if (cosThetaT < 0) eta = 1 / eta; return n * (dot(wi, n) * eta + cosThetaT) - wi * eta; } Vector refract(const Vector &wi, const Normal &n, Float eta) { if (EXPECT_NOT_TAKEN(eta == 1)) return -wi; Float cosThetaI = dot(wi, n); if (cosThetaI > 0) eta = 1 / eta; /* Using Snell's law, calculate the squared sine of the angle between the normal and the transmitted ray */ Float cosThetaTSqr = 1 - (1-cosThetaI*cosThetaI) * (eta*eta); /* Check for total internal reflection */ if (cosThetaTSqr <= 0.0f) return Vector(0.0f); return n * (cosThetaI * eta - math::signum(cosThetaI) * std::sqrt(cosThetaTSqr)) - wi * eta; } Vector refract(const Vector &wi, const Normal &n, Float eta, Float &cosThetaT, Float &F) { Float cosThetaI = dot(wi, n); F = fresnelDielectricExt(cosThetaI, cosThetaT, eta); if (F == 1.0f) /* Total internal reflection */ return Vector(0.0f); if (cosThetaT < 0) eta = 1 / eta; return n * (eta * cosThetaI + cosThetaT) - wi * eta; } namespace { /// Integrand used by fresnelDiffuseReflectance inline Float fresnelDiffuseIntegrand(Float eta, Float xi) { return fresnelDielectricExt(std::sqrt(xi), eta); } }; Float fresnelDiffuseReflectance(Float eta, bool fast) { if (fast) { /* Fast mode: the following code approximates the * diffuse Frensel reflectance for the eta<1 and * eta>1 cases. An evalution of the accuracy led * to the following scheme, which cherry-picks * fits from two papers where they are best. */ if (eta < 1) { /* Fit by Egan and Hilgeman (1973). Works reasonably well for "normal" IOR values (<2). Max rel. error in 1.0 - 1.5 : 0.1% Max rel. error in 1.5 - 2 : 0.6% Max rel. error in 2.0 - 5 : 9.5% */ return -1.4399f * (eta * eta) + 0.7099f * eta + 0.6681f + 0.0636f / eta; } else { /* Fit by d'Eon and Irving (2011) * * Maintains a good accuracy even for * unrealistic IOR values. * * Max rel. error in 1.0 - 2.0 : 0.1% * Max rel. error in 2.0 - 10.0 : 0.2% */ Float invEta = 1.0f / eta, invEta2 = invEta*invEta, invEta3 = invEta2*invEta, invEta4 = invEta3*invEta, invEta5 = invEta4*invEta; return 0.919317f - 3.4793f * invEta + 6.75335f * invEta2 - 7.80989f * invEta3 + 4.98554f * invEta4 - 1.36881f * invEta5; } } else { GaussLobattoIntegrator quad(1024, 0, 1e-5f); return quad.integrate( boost::bind(&fresnelDiffuseIntegrand, eta, _1), 0, 1); } return 0.0f; } std::string timeString(Float time, bool precise) { std::ostringstream os; if (std::isnan(time) || std::isinf(time)) return "inf"; char suffix = 's'; if (time > 60) { time /= 60; suffix = 'm'; if (time > 60) { time /= 60; suffix = 'h'; if (time > 12) { time /= 12; suffix = 'd'; } } } os << std::setprecision(precise ? 4 : 1) << std::fixed << time << suffix; return os.str(); } Float hypot2(Float a, Float b) { Float r; if (std::abs(a) > std::abs(b)) { r = b / a; r = std::abs(a) * std::sqrt(1 + r*r); } else if (b != 0) { r = a / b; r = std::abs(b) * std::sqrt(1 + r*r); } else { r = 0; } return r; } MTS_NAMESPACE_END