/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2012 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <mitsuba/core/bitmap.h> #include <mitsuba/core/version.h> #include <mitsuba/core/plugin.h> #include <mitsuba/core/fstream.h> #include <boost/algorithm/string.hpp> #include <boost/scoped_array.hpp> #if defined(__WINDOWS__) #undef _CRT_SECURE_NO_WARNINGS #define _MATH_DEFINES_DEFINED #endif #if defined(MTS_HAS_OPENEXR) #if defined(_MSC_VER) #pragma warning(disable : 4231) // nonstandard extension used : 'extern' before template explicit instantiation #endif #include <ImfInputFile.h> #include <ImfStandardAttributes.h> #include <ImfRgbaYca.h> #include <ImfOutputFile.h> #include <ImfChannelList.h> #include <ImfStringAttribute.h> #include <ImfVersion.h> #include <ImfIO.h> #include <ImathBox.h> #endif #if defined(MTS_HAS_LIBPNG) #include <png.h> #endif #if defined(MTS_HAS_LIBJPEG) extern "C" { #include <jpeglib.h> #include <jerror.h> }; #endif MTS_NAMESPACE_BEGIN #if defined(MTS_HAS_OPENEXR) /* ========================== * * EXR helper classes * * ========================== */ class EXRIStream : public Imf::IStream { public: EXRIStream(Stream *stream) : IStream(stream->toString().c_str()), m_stream(stream) { m_offset = stream->getPos(); } bool read(char *c, int n) { m_stream->read(c, n); return m_stream->isEOF(); } Imf::Int64 tellg() { return m_stream->getPos()-m_offset; } void seekg(Imf::Int64 pos) { m_stream->seek((size_t) pos + m_offset); } void clear() { } private: ref<Stream> m_stream; size_t m_offset; }; class EXROStream : public Imf::OStream { public: EXROStream(Stream *stream) : OStream(stream->toString().c_str()), m_stream(stream) { } void write(const char *c, int n) { m_stream->write(c, n); } Imf::Int64 tellp() { return m_stream->getPos(); } void seekp(Imf::Int64 pos) { m_stream->seek((size_t) pos); } void clear() { } private: ref<Stream> m_stream; }; inline bool chromaticitiesMatch(const Imf::Chromaticities &a, const Imf::Chromaticities &b) { Float diff2 = (a.red-b.red).length2() + (a.green-b.green).length2() + (a.blue-b.blue).length2() + (a.white-b.white).length2(); return diff2 < 1e-8f; } #endif #if defined(MTS_HAS_LIBPNG) /* ========================== * * PNG helper functions * * ========================== */ static void png_flush_data(png_structp png_ptr) { png_voidp flush_io_ptr = png_get_io_ptr(png_ptr); ((Stream *) flush_io_ptr)->flush(); } static void png_read_data(png_structp png_ptr, png_bytep data, png_size_t length) { png_voidp read_io_ptr = png_get_io_ptr(png_ptr); ((Stream *) read_io_ptr)->read(data, length); } static void png_write_data(png_structp png_ptr, png_bytep data, png_size_t length) { png_voidp write_io_ptr = png_get_io_ptr(png_ptr); ((Stream *) write_io_ptr)->write(data, length); } static void png_error_func(png_structp png_ptr, png_const_charp msg) { SLog(EError, "Fatal libpng error: %s\n", msg); exit(-1); } #endif #if defined(MTS_HAS_LIBJPEG) /* ========================== * * JPEG helper functions * * ========================== */ extern "C" { static const size_t jpeg_bufferSize = 0x8000; typedef struct { struct jpeg_source_mgr mgr; JOCTET * buffer; mitsuba::Stream *stream; } jbuf_in_t; typedef struct { struct jpeg_destination_mgr mgr; JOCTET * buffer; mitsuba::Stream *stream; } jbuf_out_t; METHODDEF(void) jpeg_init_source(j_decompress_ptr cinfo) { jbuf_in_t *p = (jbuf_in_t *) cinfo->src; p->buffer = new JOCTET[jpeg_bufferSize]; } METHODDEF(boolean) jpeg_fill_input_buffer (j_decompress_ptr cinfo) { jbuf_in_t *p = (jbuf_in_t *) cinfo->src; size_t nBytes; try { p->stream->read(p->buffer, jpeg_bufferSize); nBytes = jpeg_bufferSize; } catch (const EOFException &e) { nBytes = e.getCompleted(); if (nBytes == 0) { /* Insert a fake EOI marker */ p->buffer[0] = (JOCTET) 0xFF; p->buffer[1] = (JOCTET) JPEG_EOI; nBytes = 2; } } cinfo->src->bytes_in_buffer = nBytes; cinfo->src->next_input_byte = p->buffer; return TRUE; } METHODDEF(void) jpeg_skip_input_data (j_decompress_ptr cinfo, long num_bytes) { if (num_bytes > 0) { while (num_bytes > (long) cinfo->src->bytes_in_buffer) { num_bytes -= (long) cinfo->src->bytes_in_buffer; jpeg_fill_input_buffer(cinfo); } cinfo->src->next_input_byte += (size_t) num_bytes; cinfo->src->bytes_in_buffer -= (size_t) num_bytes; } } METHODDEF(void) jpeg_term_source (j_decompress_ptr cinfo) { jbuf_in_t *p = (jbuf_in_t *) cinfo->src; delete[] p->buffer; } METHODDEF(void) jpeg_init_destination(j_compress_ptr cinfo) { jbuf_out_t *p = (jbuf_out_t *)cinfo->dest; p->buffer = new JOCTET[jpeg_bufferSize]; p->mgr.next_output_byte = p->buffer; p->mgr.free_in_buffer = jpeg_bufferSize; } METHODDEF(boolean) jpeg_empty_output_buffer(j_compress_ptr cinfo) { jbuf_out_t *p = (jbuf_out_t *)cinfo->dest; p->stream->write(p->buffer, jpeg_bufferSize); p->mgr.next_output_byte = p->buffer; p->mgr.free_in_buffer = jpeg_bufferSize; return 1; } METHODDEF(void) jpeg_term_destination(j_compress_ptr cinfo) { jbuf_out_t *p = (jbuf_out_t *)cinfo->dest; p->stream->write(p->buffer, jpeg_bufferSize-p->mgr.free_in_buffer); delete[] p->buffer; p->mgr.free_in_buffer = 0; } METHODDEF(void) jpeg_error_exit (j_common_ptr cinfo) { char msg[JMSG_LENGTH_MAX]; (*cinfo->err->format_message) (cinfo, msg); SLog(EError, "Critcal libjpeg error: %s", msg); } }; #endif /* ========================== * * Bitmap class * * ========================== */ Bitmap::Bitmap(EPixelFormat pFormat, EComponentFormat cFormat, const Vector2i &size, int channelCount) : m_pixelFormat(pFormat), m_componentFormat(cFormat), m_size(size), m_channelCount(channelCount) { AssertEx(size.x > 0 && size.y > 0, "Invalid bitmap size"); if (m_componentFormat == EUInt8) m_gamma = -1.0f; // sRGB by default else m_gamma = 1.0f; // Linear by default updateChannelCount(); m_data = static_cast<uint8_t *>(allocAligned(getBufferSize())); } Bitmap::Bitmap(EFileFormat format, Stream *stream, const std::string &prefix) : m_data(NULL) { if (format == EAuto) { /* Try to automatically detect the file format */ size_t pos = stream->getPos(); uint8_t start[8]; stream->read(start, 8); if (start[0] == 'B' && start[1] == 'M') { format = EBMP; } else if (start[0] == '#' && start[1] == '?') { format = ERGBE; } else if (start[0] == 'P' && (start[1] == 'F' || start[1] == 'f')) { format = EPFM; #if defined(MTS_HAS_LIBJPEG) } else if (start[0] == 0xFF && start[1] == 0xD8) { format = EJPEG; #endif #if defined(MTS_HAS_LIBPNG) } else if (png_sig_cmp(start, 0, 8) == 0) { format = EPNG; #endif #if defined(MTS_HAS_OPENEXR) } else if (Imf::isImfMagic((const char *) start)) { format = EOpenEXR; #endif } else { /* Check for a TGAv2 file */ char footer[18]; stream->seek(stream->getSize() - 18); stream->read(footer, 18); if (footer[17] == 0 && strncmp(footer, "TRUEVISION-XFILE.", 17) == 0) format = ETGA; } stream->seek(pos); } switch (format) { case EBMP: readBMP(stream); break; case EJPEG: readJPEG(stream); break; case EOpenEXR: readOpenEXR(stream, prefix); break; case ERGBE: readRGBE(stream); break; case EPFM: readPFM(stream); break; case ETGA: readTGA(stream); break; case EPNG: readPNG(stream); break; default: Log(EError, "Bitmap: Invalid file format!"); } } void Bitmap::write(EFileFormat format, Stream *stream, int compression, const std::vector<std::string> *channelNames) const { switch (format) { case EJPEG: if (compression == -1) compression = 100; writeJPEG(stream, compression); break; case EPNG: if (compression == -1) compression = 5; writePNG(stream, compression); break; case EOpenEXR: writeOpenEXR(stream, channelNames); break; case ERGBE: writeRGBE(stream); break; case EPFM: writePFM(stream); break; default: Log(EError, "Bitmap::write(): Invalid file format!"); } } size_t Bitmap::getBufferSize() const { size_t bitsPerRow = m_size.x * m_channelCount * getBitsPerComponent(); size_t bytesPerRow = (bitsPerRow + 7) / 8; // round up to full bytes return bytesPerRow * (size_t) m_size.y; } void Bitmap::updateChannelCount() { switch (m_pixelFormat) { case ELuminance: m_channelCount = 1; break; case ELuminanceAlpha: m_channelCount = 2; break; case ERGB: m_channelCount = 3; break; case ERGBA: m_channelCount = 4; break; case EXYZ: m_channelCount = 3; break; case EXYZA: m_channelCount = 4; break; case ESpectrum: m_channelCount = SPECTRUM_SAMPLES; break; case ESpectrumAlpha: m_channelCount = SPECTRUM_SAMPLES + 1; break; case ESpectrumAlphaWeight: m_channelCount = SPECTRUM_SAMPLES + 2; break; case EMultiChannel: break; default: Log(EError, "Unknown pixel format!"); } } int Bitmap::getBitsPerComponent() const { switch (m_componentFormat) { case EBitmask: return 1; break; case EUInt8: return 8; break; case EUInt16: return 16; break; case EUInt32: return 32; break; case EFloat16: return 16; break; case EFloat32: return 32; break; case EFloat64: return 64; break; default: Log(EError, "Unknown component format!"); return -1; } } int Bitmap::getBytesPerComponent() const { switch (m_componentFormat) { case EUInt8: return 1; break; case EUInt16: return 2; break; case EUInt32: return 4; break; case EFloat16: return 2; break; case EFloat32: return 4; break; case EFloat64: return 8; break; case EBitmask: Log(EError, "Bitmask images have less than 1 byte per component!"); return -1; default: Log(EError, "Unknown component format!"); return -1; } } void Bitmap::setString(const std::string &key, const std::string &value) { m_metadata[key] = value; } std::string Bitmap::getString(const std::string &key) const { std::map<std::string, std::string>::const_iterator it = m_metadata.find(key); if (it != m_metadata.end()) return it->second; else return ""; } Bitmap::~Bitmap() { if (m_data) freeAligned(m_data); } void Bitmap::clear() { memset(m_data, 0, getBufferSize()); } ref<Bitmap> Bitmap::clone() const { ref<Bitmap> bitmap = new Bitmap(m_pixelFormat, m_componentFormat, m_size); memcpy(bitmap->m_data, m_data, getBufferSize()); bitmap->m_metadata = m_metadata; bitmap->m_gamma = m_gamma; return bitmap; } void Bitmap::flipVertically() { if (m_componentFormat == EBitmask) Log(EError, "Transformations involving bitmasks are currently not supported!"); size_t rowSize = getBufferSize() / m_size.y; int halfHeight = m_size.y / 2; uint8_t *temp = (uint8_t *) alloca(rowSize); for (int i=0, j=m_size.y-1; i<halfHeight; ++i) { memcpy(temp, m_data + i * rowSize, rowSize); memcpy(m_data + i * rowSize, m_data + j * rowSize, rowSize); memcpy(m_data + j * rowSize, temp, rowSize); j--; } } void Bitmap::accumulate(const Bitmap *bitmap, Point2i sourceOffset, Point2i targetOffset, Vector2i size) { Assert(getPixelFormat() == bitmap->getPixelFormat() && getComponentFormat() == bitmap->getComponentFormat() && getChannelCount() == bitmap->getChannelCount()); Vector2i offsetIncrease( std::max(0, std::max(-sourceOffset.x, -targetOffset.x)), std::max(0, std::max(-sourceOffset.y, -targetOffset.y)) ); sourceOffset += offsetIncrease; targetOffset += offsetIncrease; size -= offsetIncrease; Vector2i sizeDecrease( std::max(0, std::max(sourceOffset.x + size.x - bitmap->getWidth(), targetOffset.x + size.x - getWidth())), std::max(0, std::max(sourceOffset.y + size.y - bitmap->getHeight(), targetOffset.y + size.y - getHeight()))); size -= sizeDecrease; if (size.x <= 0 || size.y <= 0) return; const size_t columns = size.x * m_channelCount, pixelStride = getBytesPerPixel(), sourceStride = bitmap->getWidth() * pixelStride, targetStride = getWidth() * pixelStride; const uint8_t *source = bitmap->getUInt8Data() + (sourceOffset.x + sourceOffset.y * (size_t) bitmap->getWidth()) * pixelStride; uint8_t *target = m_data + (targetOffset.x + targetOffset.y * (size_t) m_size.x) * pixelStride; for (int y = 0; y < size.y; ++y) { switch (m_componentFormat) { case EUInt8: for (size_t i = 0; i < columns; ++i) ((uint8_t *) target)[i] = (uint8_t) std::min(0xFF, ((uint8_t *) source)[i] + ((uint8_t *) target)[i]); break; case EUInt16: for (size_t i = 0; i < columns; ++i) ((uint16_t *) target)[i] = (uint16_t) std::min(0xFFFF, ((uint16_t *) source)[i] + ((uint16_t *) target)[i]); break; case EUInt32: for (size_t i = 0; i < columns; ++i) ((uint32_t *) target)[i] = std::min((uint32_t) 0xFFFFFFFFUL, ((uint32_t *) source)[i] + ((uint32_t *) target)[i]); break; case EFloat16: for (size_t i = 0; i < columns; ++i) ((half *) target)[i] += ((half *) source)[i]; break; case EFloat32: for (size_t i = 0; i < columns; ++i) ((float *) target)[i] += ((float *) source)[i]; break; case EFloat64: for (size_t i = 0; i < columns; ++i) ((double *) target)[i] += ((double *) source)[i]; break; default: Log(EError, "Unknown component format!"); } source += sourceStride; target += targetStride; } } void Bitmap::colorBalance(Float r, Float g, Float b) { if (m_pixelFormat != ERGB && m_pixelFormat != ERGBA) Log(EError, "colorBalance(): expected a RGB or RGBA image!"); int stride = m_pixelFormat == ERGB ? 3 : 4; size_t pixelCount = (size_t) m_size.x * (size_t) m_size.y; switch (m_componentFormat) { case EFloat16: { half *ptr = getFloat16Data(); for (size_t i=0; i<pixelCount; ++i) { ptr[0] = half((float) ptr[0] * (float) r); ptr[1] = half((float) ptr[1] * (float) g); ptr[2] = half((float) ptr[2] * (float) b); ptr += stride; } } break; case EFloat32: { float *ptr = getFloat32Data(); for (size_t i=0; i<pixelCount; ++i) { ptr[0] = (float) (ptr[0] * r); ptr[1] = (float) (ptr[1] * g); ptr[2] = (float) (ptr[2] * b); ptr += stride; } } break; case EFloat64: { double *ptr = getFloat64Data(); for (size_t i=0; i<pixelCount; ++i) { ptr[0] *= (double) r; ptr[1] *= (double) g; ptr[2] *= (double) b; ptr += stride; } } break; default: Log(EError, "Bitmap::colorBalance(): unexpected data format!"); } } void Bitmap::setPixel(const Point2i &pos, const Spectrum &value) { AssertEx(pos.x >= 0 && pos.x < m_size.x && pos.y >= 0 && pos.y < m_size.y, "Bitmap::setPixel(): out of bounds!"); size_t offset = ((size_t) pos.x + m_size.x * (size_t) pos.y) * getBytesPerPixel(); const FormatConverter *cvt = FormatConverter::getInstance( std::make_pair(EFloat, m_componentFormat) ); cvt->convert(ESpectrum, 1.0f, &value, m_pixelFormat, m_gamma, m_data + offset, 1); } void Bitmap::drawHLine(int y, int x1, int x2, const Spectrum &value) { if (y < 0 || y >= m_size.y) return; x1 = std::max(x1, 0); x2 = std::min(x2, m_size.x-1); const FormatConverter *cvt = FormatConverter::getInstance( std::make_pair(EFloat, m_componentFormat) ); size_t pixelStride = getBytesPerPixel(); uint8_t *source = (uint8_t *) alloca(pixelStride); cvt->convert(ESpectrum, 1.0f, &value, m_pixelFormat, m_gamma, source, 1); uint8_t *target = m_data + (x1 + y*m_size.x) * pixelStride; for (int x=x1; x<=x2; ++x) { memcpy(target, source, pixelStride); target += pixelStride; } } void Bitmap::drawVLine(int x, int y1, int y2, const Spectrum &value) { if (x < 0 || x >= m_size.x) return; y1 = std::max(y1, 0); y2 = std::min(y2, m_size.y-1); const FormatConverter *cvt = FormatConverter::getInstance( std::make_pair(EFloat, m_componentFormat) ); size_t pixelStride = getBytesPerPixel(), rowStride = pixelStride * m_size.x; uint8_t *source = (uint8_t *) alloca(pixelStride); cvt->convert(ESpectrum, 1.0f, &value, m_pixelFormat, m_gamma, source, 1); uint8_t *target = m_data + (x + y1*m_size.x) * pixelStride; for (int y=y1; y<=y2; ++y) { memcpy(target, source, pixelStride); target += rowStride; } } void Bitmap::drawRect(const Point2i &offset, const Vector2i &size, const Spectrum &value) { drawHLine(offset.y, offset.x, offset.x + size.x - 1, value); drawHLine(offset.y + size.y - 1, offset.x, offset.x + size.x - 1, value); drawVLine(offset.x, offset.y, offset.y + size.y - 1, value); drawVLine(offset.x + size.x - 1, offset.y, offset.y + size.y - 1, value); } void Bitmap::fillRect(Point2i offset, Vector2i size, const Spectrum &value) { int sx = std::max(0, -offset.x), sy = std::max(0, -offset.y); size.x -= sx; size.y -= sy; offset.x += sx; offset.y += sy; size.x -= std::max(0, offset.x + size.x - m_size.x); size.y -= std::max(0, offset.y + size.y - m_size.y); const FormatConverter *cvt = FormatConverter::getInstance( std::make_pair(EFloat, m_componentFormat) ); size_t pixelStride = getBytesPerPixel(), rowStride = pixelStride * m_size.x; uint8_t *source = (uint8_t *) alloca(pixelStride); cvt->convert(ESpectrum, 1.0f, &value, m_pixelFormat, m_gamma, source, 1); uint8_t *target = m_data + (offset.x + offset.y*m_size.x) * pixelStride; for (int y=0; y<size.y; ++y) { uint8_t *ptr = target; for (int x=0; x<size.x; ++x) { memcpy(ptr, source, pixelStride); ptr += pixelStride; } target += rowStride; } } Spectrum Bitmap::getPixel(const Point2i &pos) const { AssertEx(pos.x >= 0 && pos.x < m_size.x && pos.y >= 0 && pos.y < m_size.y, "Bitmap::getPixel(): out of bounds!"); size_t offset = ((size_t) pos.x + m_size.x * (size_t) pos.y) * getBytesPerPixel(); const FormatConverter *cvt = FormatConverter::getInstance( std::make_pair(m_componentFormat, EFloat) ); Spectrum result; cvt->convert(m_pixelFormat, m_gamma, m_data + offset, ESpectrum, 1.0f, &result, 1); return result; } void Bitmap::convert(Bitmap *target, Float multiplier, Spectrum::EConversionIntent intent) const { if (m_componentFormat == EBitmask || target->getComponentFormat() == EBitmask) Log(EError, "Conversions involving bitmasks are currently not supported!"); if (m_size != target->getSize()) Log(EError, "Bitmap::convert(): size mismatch!"); if (m_pixelFormat == target->getPixelFormat() && m_componentFormat == target->getComponentFormat() && m_gamma == target->getGamma() && multiplier == 1.0f) { /* No conversion is necessary -- just run memcpy */ memcpy(target->getData(), getData(), getBufferSize()); return; } const FormatConverter *cvt = FormatConverter::getInstance( std::make_pair(m_componentFormat, target->getComponentFormat()) ); Assert(cvt != NULL); cvt->convert(m_pixelFormat, m_gamma, m_data, target->getPixelFormat(), target->getGamma(), target->getData(), (size_t) m_size.x * (size_t) m_size.y, multiplier, intent); } ref<Bitmap> Bitmap::convert(EPixelFormat pixelFormat, EComponentFormat componentFormat, Float gamma, Float multiplier, Spectrum::EConversionIntent intent) { if (m_componentFormat == EBitmask || componentFormat == EBitmask) Log(EError, "Conversions involving bitmasks are currently not supported!"); if (m_pixelFormat == pixelFormat && m_componentFormat == componentFormat && m_gamma == gamma && multiplier == 1.0f) { /* There is nothing to do -- return the current instance */ return this; } const FormatConverter *cvt = FormatConverter::getInstance( std::make_pair(m_componentFormat, componentFormat) ); Assert(cvt != NULL); ref<Bitmap> target = new Bitmap(pixelFormat, componentFormat, m_size); target->setMetadata(m_metadata); target->setGamma(gamma); cvt->convert(m_pixelFormat, m_gamma, m_data, pixelFormat, gamma, target->getData(), (size_t) m_size.x * (size_t) m_size.y, multiplier, intent); return target; } void Bitmap::convert(void *target, EPixelFormat pixelFormat, EComponentFormat componentFormat, Float gamma, Float multiplier, Spectrum::EConversionIntent intent) const { if (m_componentFormat == EBitmask || componentFormat == EBitmask) Log(EError, "Conversions involving bitmasks are currently not supported!"); if (m_pixelFormat == pixelFormat && m_componentFormat == componentFormat && m_gamma == gamma && multiplier == 1.0f) { /* No conversion is necessary -- just run memcpy */ memcpy(target, getData(), getBufferSize()); return; } const FormatConverter *cvt = FormatConverter::getInstance( std::make_pair(m_componentFormat, componentFormat) ); Assert(cvt != NULL); cvt->convert(m_pixelFormat, m_gamma, m_data, pixelFormat, gamma, target, (size_t) m_size.x * (size_t) m_size.y, multiplier, intent); } template <typename T> void tonemapReinhard(T *data, size_t pixels, Bitmap::EPixelFormat fmt, Float &logAvgLuminance, Float &maxLuminance, Float key, Float burn) { int channels = 0; switch (fmt) { case Bitmap::ERGB: case Bitmap::EXYZ: channels = 3; break; case Bitmap::ERGBA: case Bitmap::EXYZA: channels = 4; break; case Bitmap::ELuminanceAlpha: channels = 2; break; case Bitmap::ELuminance: channels = 1; break; default: SLog(EError, "Unsupported pixel format!"); } if (logAvgLuminance <= 0 || maxLuminance <= 0) { /* Compute the log-average luminance if it has not already been provided */ T *ptr = data; maxLuminance = 0; logAvgLuminance = 0; if (fmt == Bitmap::ERGB || fmt == Bitmap::ERGBA) { /* RGB[A] version */ for (size_t i=0; i < pixels; ++i) { Float luminance = (Float) (ptr[0] * (Float) 0.212671 + ptr[1] * (Float) 0.715160 + ptr[2] * (Float) 0.072169); if (luminance == 1024) // ignore the "rendered by mitsuba banner.." maxLuminance = 0.0f; maxLuminance = std::max(maxLuminance, luminance); logAvgLuminance += math::fastlog(1e-3f + luminance); ptr += channels; } } else if (fmt == Bitmap::EXYZ || fmt == Bitmap::EXYZA) { for (size_t i=0; i < pixels; ++i) { Float luminance = (Float) ptr[1]; if (luminance == 1024) // ignore the "rendered by mitsuba banner.." maxLuminance = 0.0f; maxLuminance = std::max(maxLuminance, luminance); logAvgLuminance += math::fastlog(1e-3f + luminance); ptr += channels; } } else { /* Monochrome version */ for (size_t i=0; i < pixels; ++i) { Float luminance = (Float) *ptr; if (luminance == 1024) // ignore the "rendered by mitsuba banner.." maxLuminance = 0.0f; maxLuminance = std::max(maxLuminance, luminance); logAvgLuminance += math::fastlog(1e-3f + luminance); ptr += channels; } } logAvgLuminance = math::fastexp(logAvgLuminance / pixels); } if (maxLuminance == 0) /* This is a black image -- stop now */ return; burn = std::min((Float) 1, std::max((Float) 1e-8f, 1-burn)); Float scale = key / logAvgLuminance, Lwhite = maxLuminance * scale; /* Having the 'burn' parameter scale as 1/b^4 provides a nicely behaved knob */ Float invWp2 = 1 / (Lwhite * Lwhite * std::pow(burn, (Float) 4)); if (fmt == Bitmap::ERGB || fmt == Bitmap::ERGBA) { /* RGB[A] version */ for (size_t i=0; i < pixels; ++i) { /* Convert ITU-R Rec. BT.709 linear RGB to XYZ tristimulus values */ Float X = static_cast<Float>(data[0] * 0.412453f + data[1] * 0.357580f + data[2] * 0.180423f); Float Y = static_cast<Float>(data[0] * 0.212671f + data[1] * 0.715160f + data[2] * 0.072169f); Float Z = static_cast<Float>(data[0] * 0.019334f + data[1] * 0.119193f + data[2] * 0.950227f); /* Convert to xyY */ Float normalization = 1 / (X + Y + Z), x = X * normalization, y = Y * normalization, Lp = Y * scale; /* Apply the tonemapping transformation */ Y = Lp * (1.0f + Lp*invWp2) / (1.0f + Lp); /* Convert back to XYZ */ Float ratio = Y/y; X = ratio * x; Z = ratio * ((Float) 1.0f - x - y); /* Convert from XYZ tristimulus values to ITU-R Rec. BT.709 linear RGB */ data[0] = (T)( 3.240479f * X + -1.537150f * Y + -0.498535f * Z); data[1] = (T)( -0.969256f * X + 1.875991f * Y + 0.041556f * Z); data[2] = (T)( 0.055648f * X + -0.204043f * Y + 1.057311f * Z); data += channels; } } else if (fmt == Bitmap::EXYZ || fmt == Bitmap::EXYZA) { /* XYZ[A] version */ for (size_t i=0; i < pixels; ++i) { Float X = static_cast<Float>(data[0]), Y = static_cast<Float>(data[1]), Z = static_cast<Float>(data[2]); /* Convert to xyY */ Float normalization = 1 / (X + Y + Z), x = X * normalization, y = Y * normalization, Lp = Y * scale; /* Apply the tonemapping transformation */ Y = Lp * (1.0f + Lp*invWp2) / (1.0f + Lp); /* Convert back to XYZ */ Float ratio = Y/y; X = ratio * x; Z = ratio * ((Float) 1.0f - x - y); data[0] = (T) X; data[1] = (T) Y; data[2] = (T) Z; data += channels; } } else { /* Monochrome version */ for (size_t i=0; i < pixels; ++i) { Float Lp = (Float) *data * scale; /* Apply the tonemapping transformation */ *data = (T) (Lp * (1.0f + Lp*invWp2) / (1.0f + Lp)); data += channels; } } } void Bitmap::tonemapReinhard(Float &logAvgLuminance, Float &maxLuminance, Float key, Float burn) { Assert(m_pixelFormat == ERGB || m_pixelFormat == ERGBA || m_pixelFormat == ELuminance || m_pixelFormat == ELuminanceAlpha); Assert(m_gamma == 1); size_t pixels = (size_t) m_size.x * (size_t) m_size.y; switch (m_componentFormat) { case EFloat16: mitsuba::tonemapReinhard(getFloat16Data(), pixels, m_pixelFormat, logAvgLuminance, maxLuminance, key, burn); break; case EFloat32: mitsuba::tonemapReinhard(getFloat32Data(), pixels, m_pixelFormat, logAvgLuminance, maxLuminance, key, burn); break; case EFloat64: mitsuba::tonemapReinhard(getFloat64Data(), pixels, m_pixelFormat, logAvgLuminance, maxLuminance, key, burn); break; default: Log(EError, "Bitmap::tonemapReinhard(): Unsupported component format!"); } } ref<Bitmap> Bitmap::separateChannel(int channelIndex) { int channelCount = getChannelCount(); if (channelIndex == 0 && channelCount == 1) return this; Assert(channelIndex > 0 && channelIndex < channelCount); ref<Bitmap> result = new Bitmap(ELuminance, m_componentFormat, m_size); result->setMetadata(m_metadata); result->setGamma(m_gamma); size_t componentSize = getBytesPerComponent(); size_t offset = channelIndex * componentSize; size_t stride = channelCount * componentSize; size_t pixelCount = (size_t) m_size.x * (size_t) m_size.y; const uint8_t *source = getUInt8Data() + offset; uint8_t *target = result->getUInt8Data(); for (size_t px = 0; px<pixelCount; ++px) { for (size_t c = 0; c<componentSize; ++c) *target++ = *source; source += stride; } return result; } ref<Bitmap> Bitmap::join(EPixelFormat fmt, const std::vector<Bitmap *> &sourceBitmaps) { const Bitmap *ch0 = sourceBitmaps.at(0); if (ch0->getComponentFormat() == EBitmask) Log(EError, "Conversions involving bitmasks are currently not supported!"); ref<Bitmap> result = new Bitmap(fmt, ch0->getComponentFormat(), ch0->getSize()); size_t channelCount = (size_t) result->getChannelCount(); result->setMetadata(ch0->getMetadata()); result->setGamma(ch0->getGamma()); if (channelCount == sourceBitmaps.size()) Log(EError, "Bitmap::join(): Error -- supplied the wrong number " "of channels (%i instead of %i)", (int) sourceBitmaps.size(), result->getChannelCount()); for (size_t i=0; i<channelCount; ++i) { if (sourceBitmaps[i]->getSize() != ch0->getSize()) Log(EError, "Bitmap::join(): Detected a size mismatch!"); if (sourceBitmaps[i]->getComponentFormat() != ch0->getComponentFormat()) Log(EError, "Bitmap::join(): Detected a component format mismatch!"); if (sourceBitmaps[i]->getPixelFormat() != ELuminance) Log(EError, "Bitmap::join(): Detected a pixel format mismatch (expected ELuminance)!"); } size_t pixelCount = (size_t) ch0->getSize().x * (size_t) ch0->getSize().y; size_t componentSize = ch0->getBytesPerComponent(); uint8_t **pointers = (uint8_t **) alloca(channelCount * sizeof(uint8_t *)); for (size_t i = 0; i<channelCount; ++i) pointers[i] = sourceBitmaps[i]->getUInt8Data(); uint8_t *dest = result->getUInt8Data(); for (size_t i = 0; i<pixelCount; ++i) for (size_t j = 0; j<channelCount; ++j) for (size_t k= 0; k < componentSize; ++k) *dest++ = *pointers[j]++; return result; } ref<Bitmap> Bitmap::crop(const Point2i &offset, const Vector2i &size) const { Assert(offset.x >= 0 && offset.y >= 0 && offset.x + size.x <= m_size.x && offset.y + size.y <= m_size.y); size_t pixelStride = getBytesPerPixel(); size_t sourceStride = pixelStride * m_size.x; size_t targetStride = pixelStride * size.x; ref<Bitmap> result = new Bitmap(m_pixelFormat, m_componentFormat, size, m_channelCount); result->setGamma(m_gamma); result->setMetadata(m_metadata); uint8_t *source = m_data + (offset.x + offset.y * m_size.x) * pixelStride; uint8_t *target = result->getUInt8Data(); for (int y=0; y<size.y; ++y) { memcpy(target, source, targetStride); source += sourceStride; target += targetStride; } return result; } void Bitmap::applyMatrix(Float matrix_[3][3]) { int stride = 0; if (m_pixelFormat == ERGB || m_pixelFormat == EXYZ) stride = 3; else if (m_pixelFormat == ERGBA || m_pixelFormat == EXYZA) stride = 4; else Log(EError, "Bitmap::applyMatrix(): unsupported pixel format!"); size_t pixels = (size_t) m_size.x * (size_t) m_size.y; switch (m_componentFormat) { case EFloat16: { float matrix[3][3]; half *data = getFloat16Data(); for (int i=0; i<3; ++i) for (int j=0; j<3; ++j) matrix[i][j] = (float) matrix_[i][j]; for (size_t i=0; i<pixels; ++i) { float result[3] = { 0.0f, 0.0f, 0.0f }; for (int i=0; i<3; ++i) for (int j=0; j<3; ++j) result[i] += matrix[i][j] * (float) data[j]; for (int i=0; i<3; ++i) data[i] = (half) result[i]; data += stride; } } break; case EFloat32: { float matrix[3][3], *data = getFloat32Data(); for (int i=0; i<3; ++i) for (int j=0; j<3; ++j) matrix[i][j] = (float) matrix_[i][j]; for (size_t i=0; i<pixels; ++i) { float result[3] = { 0.0f, 0.0f, 0.0f }; for (int i=0; i<3; ++i) for (int j=0; j<3; ++j) result[i] += matrix[i][j] * data[j]; for (int i=0; i<3; ++i) data[i] = result[i]; data += stride; } } break; case EFloat64: { double matrix[3][3], *data = getFloat64Data(); for (int i=0; i<3; ++i) for (int j=0; j<3; ++j) matrix[i][j] = (double) matrix_[i][j]; for (size_t i=0; i<pixels; ++i) { double result[3] = { 0.0, 0.0, 0.0 }; for (int i=0; i<3; ++i) for (int j=0; j<3; ++j) result[i] += matrix[i][j] * data[j]; for (int i=0; i<3; ++i) data[i] = result[i]; data += stride; } } break; default: Log(EError, "Bitmap::applyMatrix(): unsupported component format!"); } } /// Bitmap resampling utility function template <typename Scalar> static void resample(const ReconstructionFilter *rfilter, ReconstructionFilter::EBoundaryCondition bch, ReconstructionFilter::EBoundaryCondition bcv, const Bitmap *source, Bitmap *target, Float minValue, Float maxValue) { ref<Bitmap> temp; // Pointer to a temporary bitmap int channels = source->getChannelCount(); if (source->getWidth() != target->getWidth()) { /* Re-sample along the X direction */ Resampler<Scalar> r(rfilter, bch, source->getWidth(), target->getWidth()); /* Create a bitmap for intermediate storage */ if (source->getHeight() == target->getHeight()) temp = target; // write directly to the output bitmap else // otherwise: write to a temporary bitmap temp = new Bitmap(source->getPixelFormat(), source->getComponentFormat(), Vector2i(target->getWidth(), source->getHeight()), channels); #if defined(MTS_OPENMP) #pragma omp parallel for #endif for (int y=0; y<source->getHeight(); ++y) { const Scalar *srcPtr = (Scalar *) source->getUInt8Data() + y * source->getWidth() * channels; Scalar *trgPtr = (Scalar *) temp->getUInt8Data() + y * target->getWidth() * channels; r.resampleAndClamp(srcPtr, 1, trgPtr, 1, channels, (Scalar) minValue, (Scalar) maxValue); } /* Now, read from the temporary bitmap */ source = temp; } if (source->getHeight() != target->getHeight()) { /* Re-sample along the Y direction */ Resampler<Scalar> r(rfilter, bcv, source->getHeight(), target->getHeight()); #if defined(MTS_OPENMP) #pragma omp parallel for #endif for (int x=0; x<source->getWidth(); ++x) { const Scalar *srcPtr = (Scalar *) source->getUInt8Data() + x * channels; Scalar *trgPtr = (Scalar *) target->getUInt8Data() + x * channels; r.resampleAndClamp(srcPtr, source->getWidth(), trgPtr, target->getWidth(), channels, (Scalar) minValue, (Scalar) maxValue); } } } void Bitmap::resample(const ReconstructionFilter *rfilter, ReconstructionFilter::EBoundaryCondition bch, ReconstructionFilter::EBoundaryCondition bcv, Bitmap *target, Float minValue, Float maxValue) const { Assert(getPixelFormat() == target->getPixelFormat() && getComponentFormat() == target->getComponentFormat() && getChannelCount() == target->getChannelCount()); switch (m_componentFormat) { case EFloat16: mitsuba::resample<half>(rfilter, bch, bcv, this, target, minValue, maxValue); break; case EFloat32: mitsuba::resample<float>(rfilter, bch, bcv, this, target, minValue, maxValue); break; case EFloat64: mitsuba::resample<double>(rfilter, bch, bcv, this, target, minValue, maxValue); break; default: Log(EError, "resample(): Unsupported component type! (must be float16/32/64)"); } } ref<Bitmap> Bitmap::resample(const ReconstructionFilter *rfilter, ReconstructionFilter::EBoundaryCondition bch, ReconstructionFilter::EBoundaryCondition bcv, const Vector2i &size, Float minValue, Float maxValue) const { ref<Bitmap> result = new Bitmap(m_pixelFormat, m_componentFormat, size); result->m_metadata = m_metadata; result->m_gamma = m_gamma; resample(rfilter, bch, bcv, result, minValue, maxValue); return result; } bool Bitmap::operator==(const Bitmap &bitmap) const { return m_pixelFormat == bitmap.m_pixelFormat && m_componentFormat == bitmap.m_componentFormat && m_size == bitmap.m_size && m_metadata == bitmap.m_metadata && m_gamma == bitmap.m_gamma && memcmp(bitmap.m_data, m_data, getBufferSize()) == 0; } std::string Bitmap::toString() const { std::ostringstream oss; oss << "Bitmap[" << endl << " type = " << m_pixelFormat << endl << " componentFormat = " << m_componentFormat << endl << " size = " << m_size.toString() << endl; if (!m_metadata.empty()) { oss << " metadata = {" << endl; for (std::map<std::string, std::string>::const_iterator it = m_metadata.begin(); it != m_metadata.end();) { oss << " \"" << it->first << "\" => \"" << it->second << "\""; if (++it != m_metadata.end()) oss << ","; oss << endl; } oss << " }" << endl; } oss << " gamma = " << m_gamma << "," << endl << " data = [ " << memString(getBufferSize()) << " of image data ]" << endl << "]"; return oss.str(); } #if defined(MTS_HAS_LIBPNG) void Bitmap::readPNG(Stream *stream) { png_structp png_ptr; png_infop info_ptr; volatile png_bytepp rows = NULL; /* Create buffers */ png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, &png_error_func, NULL); if (png_ptr == NULL) { Log(EError, "readPNG(): Unable to create PNG data structure"); } info_ptr = png_create_info_struct(png_ptr); if (info_ptr == NULL) { png_destroy_read_struct(&png_ptr, (png_infopp) NULL, (png_infopp) NULL); Log(EError, "readPNG(): Unable to create PNG information structure"); } /* Error handling */ if (setjmp(png_jmpbuf(png_ptr))) { png_destroy_read_struct(&png_ptr, &info_ptr, (png_infopp) NULL); if (rows) delete[] rows; Log(EError, "readPNG(): Error reading the PNG file!"); } /* Set read helper function */ png_set_read_fn(png_ptr, stream, (png_rw_ptr) png_read_data); int bitDepth, colorType, interlacetype, compressiontype, filtertype; png_read_info(png_ptr, info_ptr); png_uint_32 width = 0, height = 0; png_get_IHDR(png_ptr, info_ptr, &width, &height, &bitDepth, &colorType, &interlacetype, &compressiontype, &filtertype); /* Request various transformations from libpng as necessary */ if (colorType == PNG_COLOR_TYPE_PALETTE) png_set_palette_to_rgb(png_ptr); // Always expand indexed files else if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth > 1 && bitDepth < 8) png_set_expand_gray_1_2_4_to_8(png_ptr); // Expand 2- and 4-bit grayscale else if (bitDepth == 16 && Stream::getHostByteOrder() == Stream::ELittleEndian) png_set_swap(png_ptr); // Swap the byte order on little endian machines // Expand transparency if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)) png_set_tRNS_to_alpha(png_ptr); /* Update the information based on the transformations */ png_read_update_info(png_ptr, info_ptr); png_get_IHDR(png_ptr, info_ptr, &width, &height, &bitDepth, &colorType, &interlacetype, &compressiontype, &filtertype); m_size = Vector2i(width, height); switch (colorType) { case PNG_COLOR_TYPE_GRAY: m_pixelFormat = ELuminance; break; case PNG_COLOR_TYPE_GRAY_ALPHA: m_pixelFormat = ELuminanceAlpha; break; case PNG_COLOR_TYPE_RGB: m_pixelFormat = ERGB; break; case PNG_COLOR_TYPE_RGB_ALPHA: m_pixelFormat = ERGBA; break; default: Log(EError, "readPNG(): Unknown color type %i", colorType); break; } updateChannelCount(); switch (bitDepth) { case 1: m_componentFormat = EBitmask; break; case 8: m_componentFormat = EUInt8; break; case 16: m_componentFormat = EUInt16; break; default: Log(EError, "readPNG(): Unsupported bit depth: %i", bitDepth); } /* Load any string-valued metadata */ int textIdx = 0; png_textp text_ptr; png_get_text(png_ptr, info_ptr, &text_ptr, &textIdx); for (int i=0; i<textIdx; ++i, text_ptr++) m_metadata[text_ptr->key] = text_ptr->text; int intent; double gamma; if (png_get_sRGB(png_ptr, info_ptr, &intent)) { m_gamma = -1; } else if (png_get_gAMA(png_ptr, info_ptr, &gamma)) { m_gamma = (Float) 1 / (Float) gamma; } else { m_gamma = -1; // assume sRGB by default } Log(ETrace, "Loading a %ix%i PNG file", width, height); size_t bufferSize = getBufferSize(); m_data = static_cast<uint8_t *>(allocAligned(bufferSize)); rows = new png_bytep[m_size.y]; size_t rowBytes = png_get_rowbytes(png_ptr, info_ptr); Assert(rowBytes == getBufferSize() / m_size.y); for (int i=0; i<m_size.y; i++) rows[i] = m_data + i * rowBytes; png_read_image(png_ptr, rows); png_destroy_read_struct(&png_ptr, &info_ptr, (png_infopp) NULL); delete[] rows; } void Bitmap::writePNG(Stream *stream, int compression) const { png_structp png_ptr; png_infop info_ptr; volatile png_bytepp rows = NULL; Log(EDebug, "Writing a %ix%i PNG file", m_size.x, m_size.y); int colorType, bitDepth; switch (m_pixelFormat) { case ELuminance: colorType = PNG_COLOR_TYPE_GRAY; break; case ELuminanceAlpha: colorType = PNG_COLOR_TYPE_GRAY_ALPHA; break; case ERGB: colorType = PNG_COLOR_TYPE_RGB; break; case ERGBA: colorType = PNG_COLOR_TYPE_RGBA; break; default: Log(EError, "writePNG(): Unsupported bitmap type!"); return; } switch (m_componentFormat) { case EBitmask: bitDepth = 1; break; case EUInt8: bitDepth = 8; break; case EUInt16: bitDepth = 16; break; default: Log(EError, "writePNG(): Unsupported component type!"); return; } png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, &png_error_func, NULL); if (png_ptr == NULL) Log(EError, "Error while creating PNG data structure"); info_ptr = png_create_info_struct(png_ptr); if (info_ptr == NULL) { png_destroy_write_struct(&png_ptr, (png_infopp) NULL); Log(EError, "Error while creating PNG information structure"); } /* Error handling */ if (setjmp(png_jmpbuf(png_ptr))) { png_destroy_write_struct(&png_ptr, &info_ptr); Log(EError, "Error writing the PNG file"); } png_set_write_fn(png_ptr, stream, (png_rw_ptr) png_write_data, (png_flush_ptr) png_flush_data); png_set_compression_level(png_ptr, compression); png_text *text = NULL; std::map<std::string, std::string> metadata = m_metadata; metadata["generated-by"] = "Mitsuba version " MTS_VERSION; text = new png_text[metadata.size()]; memset(text, 0, sizeof(png_text) * metadata.size()); int textIndex = 0; for (std::map<std::string, std::string>::iterator it = metadata.begin(); it != metadata.end(); ++it) { text[textIndex].key = const_cast<char *>(it->first.c_str()); text[textIndex].text = const_cast<char *>(it->second.c_str()); text[textIndex++].compression = PNG_TEXT_COMPRESSION_NONE; } png_set_text(png_ptr, info_ptr, text, textIndex); if (m_gamma == -1) png_set_sRGB_gAMA_and_cHRM(png_ptr, info_ptr, PNG_sRGB_INTENT_ABSOLUTE); else png_set_gAMA(png_ptr, info_ptr, 1 / m_gamma); if (m_componentFormat == EUInt16 && Stream::getHostByteOrder() == Stream::ELittleEndian) png_set_swap(png_ptr); // Swap the byte order on little endian machines png_set_IHDR(png_ptr, info_ptr, m_size.x, m_size.y, bitDepth, colorType, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE); png_write_info(png_ptr, info_ptr); rows = new png_bytep[m_size.y]; size_t rowBytes = png_get_rowbytes(png_ptr, info_ptr); Assert(rowBytes == getBufferSize() / m_size.y); for (int i=0; i<m_size.y; i++) rows[i] = &m_data[rowBytes * i]; png_write_image(png_ptr, rows); png_write_end(png_ptr, info_ptr); png_destroy_write_struct(&png_ptr, &info_ptr); if (text) delete[] text; delete[] rows; } #else void Bitmap::readPNG(Stream *stream) { Log(EError, "Bitmap::readPNG(): libpng support was disabled at compile time!"); } void Bitmap::writePNG(Stream *stream, int compression) const { Log(EError, "Bitmap::writePNG(): libpng support was disabled at compile time!"); } #endif #if defined(MTS_HAS_LIBJPEG) void Bitmap::readJPEG(Stream *stream) { struct jpeg_decompress_struct cinfo; struct jpeg_error_mgr jerr; jbuf_in_t jbuf; memset(&jbuf, 0, sizeof(jbuf_in_t)); cinfo.err = jpeg_std_error(&jerr); jerr.error_exit = jpeg_error_exit; jpeg_create_decompress(&cinfo); cinfo.src = (struct jpeg_source_mgr *) &jbuf; jbuf.mgr.init_source = jpeg_init_source; jbuf.mgr.fill_input_buffer = jpeg_fill_input_buffer; jbuf.mgr.skip_input_data = jpeg_skip_input_data; jbuf.mgr.term_source = jpeg_term_source; jbuf.mgr.resync_to_restart = jpeg_resync_to_restart; jbuf.stream = stream; jpeg_read_header(&cinfo, TRUE); jpeg_start_decompress(&cinfo); m_size = Vector2i(cinfo.output_width, cinfo.output_height); m_componentFormat = EUInt8; m_gamma = -1; switch (cinfo.output_components) { case 1: m_pixelFormat = ELuminance; break; case 3: m_pixelFormat = ERGB; break; default: Log(EError, "readJPEG(): Unsupported number of components!"); } updateChannelCount(); Log(ETrace, "Loading a %ix%i JPG file", m_size.x, m_size.y); size_t row_stride = (size_t) cinfo.output_width * (size_t) cinfo.output_components; m_data = static_cast<uint8_t *>(allocAligned(getBufferSize())); boost::scoped_array<uint8_t*> scanlines(new uint8_t*[m_size.y]); for (int i=0; i<m_size.y; ++i) scanlines.get()[i] = m_data + row_stride*i; /* Process scanline by scanline */ int counter = 0; while (cinfo.output_scanline < cinfo.output_height) counter += jpeg_read_scanlines(&cinfo, scanlines.get() + counter, m_size.y - cinfo.output_scanline); /* Release the libjpeg data structures */ jpeg_finish_decompress(&cinfo); jpeg_destroy_decompress(&cinfo); } void Bitmap::writeJPEG(Stream *stream, int quality) const { struct jpeg_compress_struct cinfo; struct jpeg_error_mgr jerr; jbuf_out_t jbuf; int components = 0; if (m_pixelFormat == ELuminance) components = 1; else if (m_pixelFormat == ERGB) components = 3; else Log(EError, "writeJPEG(): Invalid pixel format!"); if (m_componentFormat != EUInt8) Log(EError, "writeJPEG(): Invalid component format!"); memset(&jbuf, 0, sizeof(jbuf_out_t)); cinfo.err = jpeg_std_error(&jerr); jerr.error_exit = jpeg_error_exit; jpeg_create_compress(&cinfo); cinfo.dest = (struct jpeg_destination_mgr *) &jbuf; jbuf.mgr.init_destination = jpeg_init_destination; jbuf.mgr.empty_output_buffer = jpeg_empty_output_buffer; jbuf.mgr.term_destination = jpeg_term_destination; jbuf.stream = stream; cinfo.image_width = m_size.x; cinfo.image_height = m_size.y; cinfo.input_components = components; cinfo.in_color_space = components == 1 ? JCS_GRAYSCALE : JCS_RGB; jpeg_set_defaults(&cinfo); jpeg_set_quality(&cinfo, quality, TRUE); jpeg_start_compress(&cinfo, TRUE); Log(ETrace, "Writing a %ix%i JPEG file", m_size.x, m_size.y); /* Write scanline by scanline */ for (int i=0; i<m_size.y; ++i) { uint8_t *source = m_data + i*m_size.x*cinfo.input_components; jpeg_write_scanlines(&cinfo, &source, 1); } /* Release the libjpeg data structures */ jpeg_finish_compress(&cinfo); jpeg_destroy_compress(&cinfo); } #else void Bitmap::readJPEG(Stream *stream) { Log(EError, "Bitmap::readJPEG(): libjpeg support was disabled at compile time!"); } void Bitmap::writeJPEG(Stream *stream, int quality) const { Log(EError, "Bitmap::writeJPEG(): libjpeg support was disabled at compile time!"); } #endif #if defined(MTS_HAS_OPENEXR) void Bitmap::readOpenEXR(Stream *stream, const std::string &_prefix) { EXRIStream istr(stream); Imf::InputFile file(istr); const Imf::Header &header = file.header(); const Imf::ChannelList &channels = header.channels(); Assert(channels.begin() != channels.end()); const char *ch_r = NULL, *ch_g = NULL, *ch_b = NULL, *ch_a = NULL, *ch_x = NULL, *ch_y = NULL, *ch_z = NULL, *ch_ry = NULL, *ch_by = NULL, *ch_spec[SPECTRUM_SAMPLES]; memset(ch_spec, 0, sizeof(const char *) * SPECTRUM_SAMPLES); std::string prefix = boost::to_lower_copy(_prefix); /* First of all, check which layers are there */ for (Imf::ChannelList::ConstIterator it = channels.begin(); it != channels.end(); ++it) { std::string name = boost::to_lower_copy(std::string(it.name())); /* Skip layers that have the wrong prefix */ if (!boost::starts_with(name, prefix)) continue; if (!ch_r && (name == "r" || name == "red" || boost::ends_with(name, ".r") || boost::ends_with(name, ".red"))) { ch_r = it.name(); } else if (!ch_g && (name == "g" || name == "green" || boost::ends_with(name, ".g") || boost::ends_with(name, ".green"))) { ch_g = it.name(); } else if (!ch_b && (name == "b" || name == "blue" || boost::ends_with(name, ".b") || boost::ends_with(name, ".blue"))) { ch_b = it.name(); } else if (!ch_a && (name == "a" || name == "alpha" || boost::ends_with(name, ".a") || boost::ends_with(name, ".alpha"))) { ch_a = it.name(); } else if (!ch_y && (name == "y" || name == "luminance" || boost::ends_with(name, ".y") || boost::ends_with(name, ".luminance"))) { ch_y = it.name(); } else if (!ch_x && (name == "x" || boost::ends_with(name, ".x"))) { ch_x = it.name(); } else if (!ch_z && (name == "z" || boost::ends_with(name, ".z"))) { ch_z = it.name(); } else if (!ch_ry && (name == "ry" || boost::ends_with(name, ".ry"))) { ch_ry = it.name(); } else if (!ch_by && (name == "by" || boost::ends_with(name, ".by"))) { ch_by = it.name(); } else { bool isSpectralChannel = false; #if SPECTRAL_SAMPLES != 3 for (int i=0; i<SPECTRUM_SAMPLES; ++i) { std::pair<Float, Float> coverage = Spectrum::getBinCoverage(i); if (!ch_spec[i] && boost::ends_with(name, formatString("%.2f-%.2fnm", coverage.first, coverage.second))) { isSpectralChannel = true; ch_spec[i] = it.name(); break; } } #endif if (!isSpectralChannel) Log(EWarn, "readOpenEXR(): Don't know how to handle the channel named '%s'", it.name()); } } bool spectral = true, specialColorProcessing = false, luminanceChromaFormat = false; for (int i=0; i<SPECTRUM_SAMPLES; ++i) { if (!ch_spec[i]) spectral = false; } std::string formatString; std::vector<const char *> sourceChannels; /* Now, try to categorize this image into some sort of generic class that we know how to deal with */ if (spectral) { m_pixelFormat = ESpectrum; formatString = "Spectrum"; sourceChannels.insert(sourceChannels.begin(), ch_spec, ch_spec + SPECTRUM_SAMPLES); } else if (ch_r && ch_g && ch_b) { m_pixelFormat = ERGB; formatString = "RGB"; sourceChannels.push_back(ch_r); sourceChannels.push_back(ch_g); sourceChannels.push_back(ch_b); } else if (ch_y && ch_by && ch_ry) { /* OpenEXR-specific luminance/chroma format */ m_pixelFormat = ERGB; formatString = "YC"; sourceChannels.push_back(ch_ry); sourceChannels.push_back(ch_y); sourceChannels.push_back(ch_by); luminanceChromaFormat = true; } else if (ch_x && ch_y && ch_z) { m_pixelFormat = EXYZ; formatString = "XYZ"; sourceChannels.push_back(ch_x); sourceChannels.push_back(ch_y); sourceChannels.push_back(ch_z); } else if (ch_y) { m_pixelFormat = ELuminance; formatString = "Luminance"; sourceChannels.push_back(ch_y); } else { Log(EError, "readOpenEXR(): Don't know how to deal with this file! There was " "no known pattern of color/luminance/chroma channels."); } /* Check if there is a chromaticity header entry */ Imf::Chromaticities fileChroma; if (Imf::hasChromaticities(file.header()) && (m_pixelFormat == ERGB || m_pixelFormat == ERGBA)) { fileChroma = Imf::chromaticities(file.header()); Imf::Chromaticities ITURecBT709; Imf::Chromaticities XYZ( Imath::V2f(1.0f, 0.0f), Imath::V2f(0.0f, 1.0f), Imath::V2f(0.0f, 0.0f), Imath::V2f(1.0f/3.0f, 1.0f/3.0f)); if (chromaticitiesMatch(fileChroma, ITURecBT709)) { /* Already in the right space -- do nothing. */ } else if (chromaticitiesMatch(fileChroma, XYZ)) { /* This is an XYZ image */ formatString = "XYZ"; m_pixelFormat = EXYZ; } else { /* Non-standard chromaticities. Special processing is required.. */ specialColorProcessing = true; } } if (ch_a) { m_pixelFormat = (EPixelFormat) (m_pixelFormat | 0x01); sourceChannels.push_back(ch_a); formatString += "/Alpha"; } /* Load metadata if present */ for (Imf::Header::ConstIterator it = header.begin(); it != header.end(); ++it) { std::string name = it.name(), typeName = it.attribute().typeName(); const Imf::StringAttribute *sattr = NULL; if (typeName == "string" && (sattr = header.findTypedAttribute<Imf::StringAttribute>(name.c_str()))) m_metadata[name] = sattr->value(); } updateChannelCount(); m_gamma = 1.0f; Assert(m_channelCount == (int) sourceChannels.size()); Imf::PixelType pxType = channels[sourceChannels[0]].type; size_t compSize; std::string encodingString; if (pxType == Imf::HALF) { m_componentFormat = EFloat16; compSize = sizeof(half); encodingString = "float16"; } else if (pxType == Imf::FLOAT) { m_componentFormat = EFloat32; compSize = sizeof(float); encodingString = "float32"; } else if (pxType == Imf::UINT) { m_componentFormat = EUInt32; compSize = sizeof(uint32_t); encodingString = "uint32"; } else { Log(EError, "readOpenEXR(): Invalid component type (must be " "float16, float32, or uint32)"); return; } /* Just how big is this image? */ Imath::Box2i dataWindow = file.header().dataWindow(); m_size = Vector2i(dataWindow.max.x - dataWindow.min.x + 1, dataWindow.max.y - dataWindow.min.y + 1); /* Compute pixel / row strides */ size_t pixelStride = compSize * m_channelCount, rowStride = pixelStride * m_size.x; /* Finally, allocate memory for it */ m_data = static_cast<uint8_t *>(allocAligned(getBufferSize())); char *ptr = (char *) m_data; ptr -= (dataWindow.min.x + dataWindow.min.y * m_size.x) * pixelStride; ref_vector<Bitmap> resampleBuffers(m_channelCount); ref<ReconstructionFilter> rfilter; /* Tell OpenEXR where the image data should be put */ Imf::FrameBuffer frameBuffer; for (size_t i=0; i<sourceChannels.size(); ++i) { const char *channelName = sourceChannels[i]; const Imf::Channel &channel = channels[channelName]; Vector2i sampling(channel.xSampling, channel.ySampling); if (channel.type != pxType) Log(EError, "readOpenEXR(): file has multiple channel formats, this is unsupported!"); if (sampling == Vector2i(1)) { /* This is a full resolution channel. Load the ordinary way */ frameBuffer.insert(channelName, Imf::Slice(pxType, ptr, pixelStride, rowStride)); ptr += compSize; } else { /* Uh oh, this is a sub-sampled channel. We will need to scale it up */ Vector2i channelSize(m_size.x / sampling.x, m_size.y / sampling.y); resampleBuffers[i] = new Bitmap(Bitmap::ELuminance, m_componentFormat, channelSize); uint8_t *resamplePtr = resampleBuffers[i]->getUInt8Data(); resamplePtr -= (dataWindow.min.x/sampling.x + dataWindow.min.y/sampling.x * channelSize.x) * compSize; frameBuffer.insert(channelName, Imf::Slice(pxType, (char *) resamplePtr, compSize, compSize*channelSize.x, sampling.x, sampling.y)); ptr += compSize; } } Log(EDebug, "Loading a %ix%i OpenEXR file (%s format, %s encoding)", m_size.x, m_size.y, formatString.c_str(), encodingString.c_str()); file.setFrameBuffer(frameBuffer); file.readPixels(dataWindow.min.y, dataWindow.max.y); for (size_t i=0; i<sourceChannels.size(); ++i) { if (!resampleBuffers[i]) continue; if (!rfilter) { /* Upsample using a 2-lobed Lanczos reconstruction filter */ Properties rfilterProps("lanczos"); rfilterProps.setInteger("lobes", 2); rfilter = static_cast<ReconstructionFilter *> ( PluginManager::getInstance()->createObject( MTS_CLASS(ReconstructionFilter), rfilterProps)); rfilter->configure(); } Log(EDebug, "Upsampling layer \"%s\" from %ix%i to %ix%i pixels", sourceChannels[i], resampleBuffers[i]->getWidth(), resampleBuffers[i]->getHeight(), m_size.x, m_size.y); resampleBuffers[i] = resampleBuffers[i]->resample(rfilter, ReconstructionFilter::EClamp, ReconstructionFilter::EClamp, m_size, -std::numeric_limits<Float>::max(), std::numeric_limits<Float>::max()); size_t pixelCount = (size_t) m_size.x * (size_t) m_size.y; uint8_t *dst = m_data + compSize * i; uint8_t *src = resampleBuffers[i]->getUInt8Data(); for (size_t j=0; j<pixelCount; ++j) { memcpy(dst, src, compSize); src += compSize; dst += pixelStride; } resampleBuffers[i] = NULL; } if (luminanceChromaFormat) { Imath::V3f yw = Imf::RgbaYca::computeYw(fileChroma); size_t pixelCount = (size_t) m_size.x * (size_t) m_size.y; switch (m_componentFormat) { case EFloat16: { half *data = (half *) m_data; for (size_t j=0; j<pixelCount; ++j) { float ry = data[0], Y = data[1], by = data[2], r = (ry + 1) * Y, b = (by + 1) * Y; data[0] = (half) r; data[2] = (half) b; data[1] = (half) ((Y - r * yw.x - b * yw.z) / yw.y); data += m_channelCount; } } break; case EFloat32: { float *data = (float *) m_data; for (size_t j=0; j<pixelCount; ++j) { float ry = data[0], Y = data[1], by = data[2], r = (ry + 1) * Y, b = (by + 1) * Y; data[0] = (float) r; data[2] = (float) b; data[1] = (float) ((Y - r * yw.x - b * yw.z) / yw.y); data += m_channelCount; } } break; case EUInt32: { uint32_t *data = (uint32_t *) m_data; double scale1 = std::numeric_limits<uint32_t>::max(), scale2 = 1.0/scale1; for (size_t j=0; j<pixelCount; ++j) { double ry = data[0] * scale2, Y = data[1] * scale2, by = data[2] * scale2, r = (ry + 1.0) * Y, b = (by + 1.0) * Y; data[0] = (uint32_t) (r * scale1 + 0.5); data[2] = (uint32_t) (b * scale1 + 0.5); data[1] = (uint32_t) ((Y - r * yw.x - b * yw.z) / yw.y * scale1 + 0.5); data += m_channelCount; } } break; default: Log(EError, "Invalid component format!"); } } if (specialColorProcessing) { /* Convert ITU-R Rec. BT.709 linear RGB */ Imath::M44f M = Imf::RGBtoXYZ(fileChroma, 1) * Imf::XYZtoRGB(Imf::Chromaticities(), 1); size_t pixelCount = (size_t) m_size.x * (size_t) m_size.y; switch (m_componentFormat) { case EFloat16: { half *data = (half *) m_data; for (size_t j=0; j<pixelCount; ++j) { Imath::V3f rgb = Imath::V3f(data[0], data[1], data[2]) * M; data[0] = (half) rgb.x; data[1] = (half) rgb.y; data[2] = (half) rgb.z; data += m_channelCount; } } break; case EFloat32: { float *data = (float *) m_data; for (size_t j=0; j<pixelCount; ++j) { Imath::V3f rgb = Imath::V3f(data[0], data[1], data[2]) * M; data[0] = rgb.x; data[1] = rgb.y; data[2] = rgb.z; data += m_channelCount; } } break; case EUInt32: { uint32_t *data = (uint32_t *) m_data; double scale1 = std::numeric_limits<uint32_t>::max(), scale2 = 1.0/scale1; for (size_t j=0; j<pixelCount; ++j) { Imath::V3d rgb = (Imath::V3d(data[0], data[1], data[2]) * scale2) * M; data[0] = (uint32_t) (rgb.x * scale1 + 0.5); data[1] = (uint32_t) (rgb.y * scale1 + 0.5); data[2] = (uint32_t) (rgb.z * scale1 + 0.5); data += m_channelCount; } } break; default: Log(EError, "Invalid component format!"); } } } void Bitmap::writeOpenEXR(Stream *stream, const std::vector<std::string> *channelNames) const { Log(EDebug, "Writing a %ix%i OpenEXR file", m_size.x, m_size.y); EPixelFormat pixelFormat = m_pixelFormat; #if SPECTRUM_SAMPLES == 3 if (pixelFormat == ESpectrum) pixelFormat = ERGB; if (pixelFormat == ESpectrumAlpha) pixelFormat = ERGBA; #endif std::map<std::string, std::string> metadata = m_metadata; metadata["generated-by"] = "Mitsuba version " MTS_VERSION; Imf::Header header(m_size.x, m_size.y); for (std::map<std::string, std::string>::const_iterator it = metadata.begin(); it != metadata.end(); ++it) header.insert(it->first.c_str(), Imf::StringAttribute(it->second.c_str())); if (pixelFormat == EXYZ || pixelFormat == EXYZA) { Imf::addChromaticities(header, Imf::Chromaticities( Imath::V2f(1.0f, 0.0f), Imath::V2f(0.0f, 1.0f), Imath::V2f(0.0f, 0.0f), Imath::V2f(1.0f/3.0f, 1.0f/3.0f))); } else if (pixelFormat == ERGB || pixelFormat == ERGBA) { Imf::addChromaticities(header, Imf::Chromaticities()); } Imf::PixelType compType; size_t compStride; if (m_componentFormat == EFloat16) { compType = Imf::HALF; compStride = 2; } else if (m_componentFormat == EFloat32) { compType = Imf::FLOAT; compStride = 4; } else if (m_componentFormat == EUInt32) { compType = Imf::UINT; compStride = 4; } else { Log(EError, "writeOpenEXR(): Invalid component type (must be " "float16, float32, or uint32)"); return; } Imf::ChannelList &channels = header.channels(); if (channelNames) { if (channelNames->size() != (size_t) m_channelCount) Log(EError, "writeOpenEXR(): 'channelNames' has the wrong number of entries!"); for (size_t i=0; i<channelNames->size(); ++i) channels.insert((*channelNames)[i].c_str(), Imf::Channel(compType)); } else if (pixelFormat == ELuminance || pixelFormat == ELuminanceAlpha) { channels.insert("Y", Imf::Channel(compType)); } else if (pixelFormat == ERGB || pixelFormat == ERGBA || pixelFormat == EXYZ || pixelFormat == EXYZA) { channels.insert("R", Imf::Channel(compType)); channels.insert("G", Imf::Channel(compType)); channels.insert("B", Imf::Channel(compType)); } else if (pixelFormat == ESpectrum || pixelFormat == ESpectrumAlpha) { for (int i=0; i<SPECTRUM_SAMPLES; ++i) { std::pair<Float, Float> coverage = Spectrum::getBinCoverage(i); std::string name = formatString("%.2f-%.2fnm", coverage.first, coverage.second); channels.insert(name.c_str(), Imf::Channel(compType)); } } else if (pixelFormat == EMultiChannel) { for (int i=0; i<getChannelCount(); ++i) channels.insert(formatString("%i", i).c_str(), Imf::Channel(compType)); } else { Log(EError, "writeOpenEXR(): Invalid pixel format!"); return; } if (pixelFormat == ELuminanceAlpha || pixelFormat == ERGBA || pixelFormat == EXYZA || pixelFormat == ESpectrumAlpha) channels.insert("A", Imf::Channel(compType)); size_t pixelStride = m_channelCount * compStride, rowStride = pixelStride * m_size.x; char *ptr = (char *) m_data; Imf::FrameBuffer frameBuffer; if (channelNames) { for (size_t i=0; i<channelNames->size(); ++i) { frameBuffer.insert((*channelNames)[i].c_str(), Imf::Slice(compType, ptr, pixelStride, rowStride)); ptr += compStride; } } else if (pixelFormat == ELuminance || pixelFormat == ELuminanceAlpha) { frameBuffer.insert("Y", Imf::Slice(compType, ptr, pixelStride, rowStride)); ptr += compStride; } else if (pixelFormat == ERGB || pixelFormat == ERGBA || pixelFormat == EXYZ || pixelFormat == EXYZA) { frameBuffer.insert("R", Imf::Slice(compType, ptr, pixelStride, rowStride)); ptr += compStride; frameBuffer.insert("G", Imf::Slice(compType, ptr, pixelStride, rowStride)); ptr += compStride; frameBuffer.insert("B", Imf::Slice(compType, ptr, pixelStride, rowStride)); ptr += compStride; } else if (pixelFormat == ESpectrum || pixelFormat == ESpectrumAlpha) { for (int i=0; i<SPECTRUM_SAMPLES; ++i) { std::pair<Float, Float> coverage = Spectrum::getBinCoverage(i); std::string name = formatString("%.2f-%.2fnm", coverage.first, coverage.second); frameBuffer.insert(name.c_str(), Imf::Slice(compType, ptr, pixelStride, rowStride)); ptr += compStride; } } else if (pixelFormat == EMultiChannel) { for (int i=0; i<getChannelCount(); ++i) { frameBuffer.insert(formatString("%i", i).c_str(), Imf::Slice(compType, ptr, pixelStride, rowStride)); ptr += compStride; } } if (pixelFormat == ELuminanceAlpha || pixelFormat == ERGBA || pixelFormat == EXYZA || pixelFormat == ESpectrumAlpha) frameBuffer.insert("A", Imf::Slice(compType, ptr, pixelStride, rowStride)); EXROStream ostr(stream); Imf::OutputFile file(ostr, header); file.setFrameBuffer(frameBuffer); file.writePixels(m_size.y); } #else void Bitmap::readOpenEXR(Stream *stream) { Log(EError, "Bitmap::readOpenEXR(): OpenEXR support was disabled at compile time!"); } void Bitmap::writeOpenEXR(Stream *stream) const { Log(EError, "Bitmap::writeOpenEXR(): OpenEXR support was disabled at compile time!"); } #endif void Bitmap::readTGA(Stream *stream) { Stream::EByteOrder byteOrder = stream->getByteOrder(); stream->setByteOrder(Stream::ELittleEndian); int headerSize = stream->readUChar(); if (stream->readUChar() != 0) Log(EError, "readTGA(): indexed files are not supported!"); int colorType = stream->readUChar(); if (colorType != 2 && colorType != 3 && colorType != 10 && colorType != 11) Log(EError, "readTGA(): only grayscale & RGB[A] files are supported!"); stream->skip(9); int width = stream->readShort(); int height = stream->readShort(); uint8_t bpp = stream->readUChar(); uint8_t descriptor = stream->readUChar(); stream->skip(headerSize); m_size = Vector2i(width, height); m_gamma = -1; m_componentFormat = EUInt8; Log(ETrace, "Loading a %ix%i TGA file", m_size.x, m_size.y); bool vflip = !(descriptor & (1 << 5)); bool greyscale = colorType == 3 || colorType == 11; bool rle = colorType & 8; if ((bpp == 8 && !greyscale) || (bpp != 8 && greyscale)) Log(EError, "readTGA(): Invalid bit depth!"); switch (bpp) { case 8: m_pixelFormat = ELuminance; break; case 24: m_pixelFormat = ERGB; break; case 32: m_pixelFormat = ERGBA; break; default: Log(EError, "readTGA(): Invalid bit depth!"); } updateChannelCount(); size_t bufferSize = getBufferSize(), rowSize = bufferSize / height; m_data = static_cast<uint8_t *>(allocAligned(bufferSize)); int channels = bpp/8; if (!rle) { for (int y=0; y<height; ++y) { size_t targetY = vflip ? (height - y - 1) : y; stream->read(m_data + targetY * rowSize, rowSize); } } else { /* Decode an RLE-encoded image */ uint8_t temp[4], *ptr = m_data, *end = m_data + bufferSize; while (ptr != end) { uint8_t value = stream->readUChar(); if (value & 0x80) { /* Run length packet */ uint8_t count = (value & 0x7F) + 1; stream->read(temp, channels); for (uint32_t i=0; i<count; ++i) for (int j=0; j<channels; ++j) *ptr++ = temp[j]; } else { /* Raw packet */ uint32_t count = channels * (value + 1); for (uint32_t i=0; i<count; ++i) *ptr++ = stream->readUChar(); } } if (vflip) flipVertically(); } if (!greyscale) { /* Convert BGR to RGB */ for (size_t i=0; i<bufferSize; i += channels) std::swap(m_data[i], m_data[i+2]); } stream->setByteOrder(byteOrder); } void Bitmap::readBMP(Stream *stream) { Stream::EByteOrder byteOrder = stream->getByteOrder(); stream->setByteOrder(Stream::ELittleEndian); uint8_t magic1 = stream->readUChar(); uint8_t magic2 = stream->readUChar(); if (magic1 != 'B' || magic2 != 'M') Log(EError, "readBMP(): Invalid header identifier!"); stream->skip(8); uint32_t bmpOffset = stream->readUInt(); uint32_t headerSize = stream->readUInt(); int32_t width = stream->readInt(); int32_t height = stream->readInt(); uint16_t nplanes = stream->readUShort(); uint16_t bpp = stream->readUShort(); uint32_t compressionType = stream->readUInt(); stream->skip(bmpOffset-34); if (headerSize != 40 || nplanes != 1 || width <= 0) Log(EError, "readBMP(): Unsupported BMP format encountered!"); if (compressionType != 0) Log(EError, "readBMP(): Compressed files are currently not supported!"); m_size = Vector2i(width, std::abs(height)); m_componentFormat = EUInt8; m_gamma = -1.0f; switch (bpp) { case 1: m_pixelFormat = ELuminance; m_componentFormat = EBitmask; break; case 8: m_pixelFormat = ELuminance; break; case 16: m_pixelFormat = ELuminanceAlpha; break; case 24: m_pixelFormat = ERGB; break; case 32: m_pixelFormat = ERGBA; break; default: Log(EError, "readBMP(): Invalid bit depth (%i)!", bpp); } updateChannelCount(); size_t bufferSize = getBufferSize(); m_data = static_cast<uint8_t *>(allocAligned(bufferSize)); Log(ETrace, "Loading a %ix%i BMP file", m_size.x, m_size.y); int rowSize = (int) bufferSize / m_size.y; int padding = -rowSize & 3; bool vflip = height > 0; for (int y=0; y<m_size.y; ++y) { int targetY = vflip ? (m_size.y - y - 1) : y; stream->read(m_data + rowSize * targetY, rowSize); stream->skip(padding); } if (m_pixelFormat == ERGB || m_pixelFormat == ERGBA) { int channels = getChannelCount(); for (size_t i=0; i<bufferSize; i += channels) std::swap(m_data[i], m_data[i+2]); } stream->setByteOrder(byteOrder); } /* The following is based on code by Bruce Walter */ namespace detail { static inline void RGBE_FromFloat(float *data, uint8_t rgbe[4]) { /* Find the largest contribution */ Float max = std::max(std::max(data[0], data[1]), data[2]); if (max < 1e-32) { rgbe[0] = rgbe[1] = rgbe[2] = rgbe[3] = 0; } else { int e; /* Extract exponent and convert the fractional part into the [0..255] range. Afterwards, divide by max so that any color component multiplied by the result will be in [0,255] */ max = std::frexp(max, &e) * (Float) 256 / max; rgbe[0] = (uint8_t) (data[0] * max); rgbe[1] = (uint8_t) (data[1] * max); rgbe[2] = (uint8_t) (data[2] * max); rgbe[3] = e+128; /* Exponent value in bias format */ } } static inline void RGBE_ToFloat(uint8_t rgbe[4], float *data) { if (rgbe[3]) { /* nonzero pixel */ float f = std::ldexp(1.0f, (int) rgbe[3] - (128+8)); for (int i=0; i<3; ++i) data[i] = rgbe[i] * f; } else { memset(data, 0, sizeof(float)*3); } } /* The code below is only needed for the run-length encoded files. Run length encoding adds considerable complexity but does save some space. For each scanline, each channel (r,g,b,e) is encoded separately for better compression. */ static inline void RGBE_WriteBytes_RLE(Stream *stream, uint8_t *data, int numbytes) { int cur = 0; uint8_t buf[2]; while (cur < numbytes) { int beg_run = cur; /* find next run of length at least 4 if one exists */ int run_count = 0, old_run_count = 0; while (run_count < 4 && beg_run < numbytes) { beg_run += run_count; old_run_count = run_count; run_count = 1; while( (beg_run + run_count < numbytes) && (run_count < 127) && (data[beg_run] == data[beg_run + run_count])) run_count++; } /* if data before next big run is a short run then write it as such */ if (old_run_count > 1 && old_run_count == beg_run - cur) { buf[0] = 128 + old_run_count; /*write short run*/ buf[1] = data[cur]; stream->write(buf, 2); cur = beg_run; } /* write out bytes until we reach the start of the next run */ while (cur < beg_run) { int nonrun_count = beg_run - cur; if (nonrun_count > 128) nonrun_count = 128; buf[0] = nonrun_count; stream->write(buf, 1); stream->write(&data[cur], nonrun_count); cur += nonrun_count; } /* write out next run if one was found */ if (run_count >= 4) { buf[0] = 128 + run_count; buf[1] = data[beg_run]; stream->write(buf, 2); cur += run_count; } } } /* simple read routine. will not correctly handle run length encoding */ inline static void RGBE_ReadPixels(Stream *stream, float *data, size_t numpixels) { while (numpixels-- > 0) { uint8_t rgbe[4]; stream->read(rgbe, 4); RGBE_ToFloat(rgbe, data); data += 3; } } } void Bitmap::readRGBE(Stream *stream) { std::string line = stream->readLine(); if (line.length() < 2 || line[0] != '#' || line[1] != '?') Log(EError, "readRGBE(): Invalid header!"); bool format_recognized = false; while (true) { line = stream->readLine(); if (boost::starts_with(line, "FORMAT=32-bit_rle_rgbe")) format_recognized = true; if (boost::starts_with(line, "-Y ")) { if (sscanf(line.c_str(), "-Y %i +X %i", &m_size.y, &m_size.x) < 2) Log(EError, "readRGBE(): parser error!"); break; } } if (!format_recognized) Log(EError, "readRGBE(): invalid format!"); m_pixelFormat = ERGB; m_componentFormat = EFloat32; m_channelCount = 3; m_gamma = 1.0f; m_data = static_cast<uint8_t *>(allocAligned(getBufferSize())); float *data = (float *) m_data; if (m_size.x < 8 || m_size.x > 0x7fff) { /* run length encoding is not allowed so read flat*/ detail::RGBE_ReadPixels(stream, data, (size_t) m_size.x * (size_t) m_size.y); return; } uint8_t *buffer = new uint8_t[4*m_size.x]; try { /* Read in each successive scanline */ for (int y=0; y<m_size.y; ++y) { uint8_t rgbe[4]; stream->read(rgbe, 4); if (rgbe[0] != 2 || rgbe[1] != 2 || rgbe[2] & 0x80) { /* this file is not run length encoded */ detail::RGBE_ToFloat(rgbe, data); detail::RGBE_ReadPixels(stream, data + 3, (size_t) m_size.x * (size_t) m_size.y - 1); return; } if ((((int) rgbe[2]) << 8 | rgbe[3]) != m_size.x) Log(EError, "readRGBE(): wrong scanline width!"); uint8_t *ptr = buffer; /* read each of the four channels for the scanline into the buffer */ for (int i=0;i<4;i++) { uint8_t *ptr_end = buffer + (i+1) * m_size.x; while (ptr < ptr_end) { uint8_t buf[2]; stream->read(buf, 2); if (buf[0] > 128) { /* a run of the same value */ int count = buf[0] - 128; if (count == 0 || count > ptr_end - ptr) Log(EError, "readRGBE(): bad scanline data!"); while (count-- > 0) *ptr++ = buf[1]; } else { /* a non-run */ int count = buf[0]; if (count == 0 || count > ptr_end - ptr) Log(EError, "readRGBE(): bad scanline data!"); *ptr++ = buf[1]; if (--count > 0) stream->read(ptr, count); ptr += count; } } } /* now convert data from buffer into floats */ for (int i=0; i<m_size.x; i++) { rgbe[0] = buffer[i]; rgbe[1] = buffer[m_size.x+i]; rgbe[2] = buffer[2*m_size.x+i]; rgbe[3] = buffer[3*m_size.x+i]; detail::RGBE_ToFloat(rgbe, data); data += 3; } } } catch (...) { delete[] buffer; throw; } delete[] buffer; } void Bitmap::writeRGBE(Stream *stream) const { if (m_componentFormat != EFloat32) Log(EError, "writeRGBE(): component format must be EFloat32!"); if (m_pixelFormat != ERGB && m_pixelFormat != ERGBA) Log(EError, "writeRGBE(): pixel format must be ERGB or ERGBA!"); stream->writeLine("#?RGBE"); for (std::map<std::string, std::string>::const_iterator it = m_metadata.begin(); it != m_metadata.end(); ++it) { stream->writeLine(formatString("# Metadata [%s]:", it->first.c_str())); std::istringstream iss(it->second); std::string buf; while (std::getline(iss, buf)) stream->writeLine(formatString("# %s", buf.c_str())); } stream->writeLine("FORMAT=32-bit_rle_rgbe\n"); stream->writeLine(formatString("-Y %i +X %i", m_size.y, m_size.x)); float *data = (float *) m_data; if (m_size.x < 8 || m_size.x > 0x7fff) { /* Run length encoding is not allowed so write flat*/ uint8_t rgbe[4]; for (size_t i=0; i<(size_t) m_size.x * (size_t) m_size.y; ++i) { detail::RGBE_FromFloat(data, rgbe); data += (m_pixelFormat == ERGB) ? 3 : 4; stream->write(rgbe, 4); } return; } uint8_t *buffer = new uint8_t[4*m_size.x]; for (int y=0; y<m_size.y; ++y) { uint8_t rgbe[4] = { 2, 2, (uint8_t) (m_size.x >> 8), (uint8_t) (m_size.x & 0xFF) }; stream->write(rgbe, 4); for (int x=0; x<m_size.x; x++) { detail::RGBE_FromFloat(data, rgbe); buffer[x] = rgbe[0]; buffer[m_size.x+x] = rgbe[1]; buffer[2*m_size.x+x] = rgbe[2]; buffer[3*m_size.x+x] = rgbe[3]; data += (m_pixelFormat == ERGB) ? 3 : 4; } /* Write out each of the four channels separately run length encoded. First red, then green, then blue, then exponent */ for (int i=0;i<4;i++) detail::RGBE_WriteBytes_RLE(stream, &buffer[i*m_size.x], m_size.x); } delete[] buffer; } /// Simple helper function for reading strings in PFM files static std::string pfmReadString(Stream *stream) { std::string result; while (true) { char data = stream->readChar(); if (::isspace(data)) break; result += data; } return result; } void Bitmap::readPFM(Stream *stream) { char header[3]; stream->read(header, 3); if (header[0] != 'P' || !(header[1] == 'F' || header[1] == 'f')) Log(EError, "readPFM(): Invalid header!"); bool color = (header[1] == 'F'); m_pixelFormat = color ? ERGB : ELuminance; m_componentFormat = EFloat32; m_channelCount = color ? 3 : 1; m_gamma = 1.0f; char *end_ptr = NULL; std::string widthString = pfmReadString(stream); m_size.x = (int) strtol(widthString.c_str(), &end_ptr, 10); if (*end_ptr != '\0') SLog(EError, "Could not parse image dimensions!"); std::string heightString = pfmReadString(stream); m_size.y = (int) strtol(heightString.c_str(), &end_ptr, 10); if (*end_ptr != '\0') SLog(EError, "Could not parse image dimensions!"); std::string scaleAndOrderString = pfmReadString(stream); float scaleAndOrder = (float) strtod(scaleAndOrderString.c_str(), &end_ptr); if (*end_ptr != '\0') SLog(EError, "Could not parse scale/order information!"); m_data = static_cast<uint8_t *>(allocAligned(getBufferSize())); float *data = (float *) m_data; Stream::EByteOrder backup = stream->getByteOrder(); size_t size = getPixelCount() * m_channelCount; stream->setByteOrder(scaleAndOrder <= 0.0f ? Stream::ELittleEndian : Stream::EBigEndian); try { stream->readSingleArray(data, size); } catch (...) { stream->setByteOrder(backup); throw; } stream->setByteOrder(backup); Float scale = std::abs(scaleAndOrder); if (scale != 1) { for (size_t i=0; i<size; ++i) data[i] *= scale; } flipVertically(); } void Bitmap::writePFM(Stream *stream) const { if (m_componentFormat != EFloat32) Log(EError, "writePFM(): component format must be EFloat32!"); if (m_pixelFormat != ERGB && m_pixelFormat != ERGBA && m_pixelFormat != ELuminance) Log(EError, "writePFM(): pixel format must be ERGB, ERGBA, ELuminance, or ELuminanceAlpha!"); /* Write the header */ std::ostringstream oss; oss << 'P' << ((m_pixelFormat == ERGB || m_pixelFormat == ERGBA) ? 'F' : 'f') << '\n'; oss << m_size.x << ' ' << m_size.y << '\n'; oss << (Stream::getHostByteOrder() == Stream::ELittleEndian ? "-1" : "1") << '\n'; std::string header = oss.str(); stream->write(header.c_str(), header.length()); float *data = (float *) m_data; if (m_pixelFormat == ERGB || m_pixelFormat == ELuminance) { size_t scanline = (size_t) m_size.x * m_channelCount; for (int y=0; y<m_size.y; ++y) stream->write(data + scanline*(m_size.y - 1 - y), scanline * sizeof(float)); } else { /* For convenience: also handle images with an alpha channel, but strip it out while saving the data */ size_t scanline = (size_t) m_size.x * m_channelCount; float *temp = (float *) alloca(scanline * sizeof(float)); for (int y=0; y<m_size.y; ++y) { const float *source = data + scanline*(m_size.y - 1 - y); float *dest = temp; for (int x=0; x<m_size.x; ++x) { for (int j=0; j<m_channelCount-1; ++j) *dest++ = *source++; source++; } stream->write(temp, sizeof(float) * m_size.x * (m_channelCount-1)); } } } void Bitmap::staticInitialization() { #if defined(MTS_HAS_OPENEXR) /* Prevent races during the OpenEXR initialization */ Imf::staticInitialize(); /* Use multiple threads to read/write OpenEXR files */ Imf::setGlobalThreadCount(getCoreCount()); #endif /* Initialize the Bitmap format conversion */ FormatConverter::staticInitialization(); } void Bitmap::staticShutdown() { FormatConverter::staticShutdown(); } ref<Bitmap> Bitmap::expand() { if (m_componentFormat != EBitmask) return this; ref<Bitmap> output= new Bitmap(m_pixelFormat, EUInt8, m_size); uint8_t *outputBuffer = output->getUInt8Data(); size_t bytesPerRow = (m_size.x * m_channelCount + 7) / 8; // round up to full bytes for (int y=0; y<m_size.y; ++y) { uint8_t *inputBuffer = m_data + (bytesPerRow * y); for (int x=0; x<m_size.x; ++x) { int entry = x / 8, bit = x % 8; *outputBuffer++ = (inputBuffer[entry] & (1 << bit)) ? 255 : 0; } } return output; } std::ostream &operator<<(std::ostream &os, const Bitmap::EPixelFormat &value) { switch (value) { case Bitmap::ELuminance: os << "luminance"; break; case Bitmap::ELuminanceAlpha: os << "luminance-alpha"; break; case Bitmap::ERGB: os << "rgb"; break; case Bitmap::ERGBA: os << "rgba"; break; case Bitmap::EXYZ: os << "xyz"; break; case Bitmap::EXYZA: os << "xyza"; break; case Bitmap::ESpectrum: os << "spectrum"; break; case Bitmap::ESpectrumAlpha: os << "spectrum-alpha"; break; case Bitmap::ESpectrumAlphaWeight: os << "spectrum-alpha-weight"; break; default: os << "invalid"; break; } return os; } std::ostream &operator<<(std::ostream &os, const Bitmap::EComponentFormat &value) { switch (value) { case Bitmap::EBitmask: os << "bitmask"; break; case Bitmap::EUInt8: os << "uint8"; break; case Bitmap::EUInt16: os << "uint16"; break; case Bitmap::EUInt32: os << "uint32"; break; case Bitmap::EFloat16: os << "float16"; break; case Bitmap::EFloat32: os << "float32"; break; case Bitmap::EFloat64: os << "float64"; break; default: os << "invalid"; break; } return os; } MTS_IMPLEMENT_CLASS(Bitmap, false, Object) MTS_NAMESPACE_END