/* This file is part of Mitsuba, a physically based rendering system. Copyright (c) 2007-2011 by Wenzel Jakob and others. Mitsuba is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Mitsuba is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "microfacet.h" #include "ior.h" MTS_NAMESPACE_BEGIN #define TRANSMITTANCE_PRECOMP_NODES 200 /*!\plugin{roughcoating}{Rough coating material} * \order{10} * \icon{bsdf_roughcoating} * \parameters{ * \parameter{distribution}{\String}{ * Specifies the type of microfacet normal distribution * used to model the surface roughness. * \begin{enumerate}[(i)] * \item \code{beckmann}: Physically-based distribution derived from * Gaussian random surfaces. This is the default. * \item \code{ggx}: New distribution proposed by * Walter et al. \cite{Walter07Microfacet}, which is meant to better handle * the long tails observed in measurements of ground surfaces. * Renderings with this distribution may converge slowly. * \item \code{phong}: Classical $\cos^p\theta$ distribution. * Due to the underlying microfacet theory, * the use of this distribution here leads to more realistic * behavior than the separately available \pluginref{phong} plugin. * \vspace{-4mm} * \end{enumerate} * } * \parameter{alpha}{\Float}{ * Specifies the roughness of the unresolved surface micro-geometry. * When the Beckmann distribution is used, this parameter is equal to the * \emph{root mean square} (RMS) slope of the microfacets. * \default{0.1}. * } * \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified * numerically or using a known material name. \default{\texttt{bk7} / 1.5046}} * \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified * numerically or using a known material name. \default{\texttt{air} / 1.000277}} * \parameter{sigmaA}{\Spectrum\Or\Texture}{The absorption coefficient of the * coating layer. \default{0, i.e. there is no absorption}} * \parameter{\Unnamed}{\BSDF}{A nested BSDF model that should be coated.} * } * */ class RoughCoating : public BSDF { public: /// \sa refractTo() enum EDestination { EInterior = 0, EExterior = 1 }; RoughCoating(const Properties &props) : BSDF(props) { /* Specifies the internal index of refraction at the interface */ m_intIOR = lookupIOR(props, "intIOR", "bk7"); /* Specifies the external index of refraction at the interface */ m_extIOR = lookupIOR(props, "extIOR", "air"); /* Specifies the absorption within the layer */ m_sigmaA = new ConstantSpectrumTexture( props.getSpectrum("sigmaA", Spectrum(0.0f))); if (m_intIOR < 0 || m_extIOR < 0 || m_intIOR == m_extIOR) Log(EError, "The interior and exterior indices of " "refraction must be positive and differ!"); m_distribution = MicrofacetDistribution( props.getString("distribution", "beckmann") ); if (m_distribution.isAnisotropic()) Log(EError, "The 'roughplastic' plugin currently does not support " "anisotropic microfacet distributions!"); m_alpha = m_distribution.transformRoughness( props.getFloat("alpha", 0.1f)); m_specularSamplingWeight = 0.0f; } RoughCoating(Stream *stream, InstanceManager *manager) : BSDF(stream, manager) { m_distribution = MicrofacetDistribution( (MicrofacetDistribution::EType) stream->readUInt() ); m_nested = static_cast(manager->getInstance(stream)); m_sigmaA = static_cast(manager->getInstance(stream)); m_roughTransmittance = static_cast(manager->getInstance(stream)); m_alpha = stream->readFloat(); m_intIOR = stream->readFloat(); m_extIOR = stream->readFloat(); m_thickness = stream->readFloat(); configure(); } void configure() { unsigned int extraFlags = 0; if (!m_sigmaA->isConstant()) extraFlags |= ESpatiallyVarying; m_components.clear(); for (int i=0; igetComponentCount(); ++i) m_components.push_back(m_nested->getType(i) | extraFlags); m_components.push_back(EGlossyReflection | EFrontSide | EBackSide); m_usesRayDifferentials = m_nested->usesRayDifferentials() || m_sigmaA->usesRayDifferentials(); /* Compute weights that further steer samples towards the specular or nested components */ Float avgAbsorption = (m_sigmaA->getAverage() *(-2*m_thickness)).exp().average(); m_specularSamplingWeight = 1.0f / (avgAbsorption + 1.0f); /* Precompute the rough transmittance through the interface */ m_roughTransmittance = m_distribution.computeRoughTransmittance( m_extIOR, m_intIOR, m_alpha, TRANSMITTANCE_PRECOMP_NODES); BSDF::configure(); } /// Helper function: reflect \c wi with respect to a given surface normal inline Vector reflect(const Vector &wi, const Normal &m) const { return 2 * dot(wi, m) * Vector(m) - wi; } inline Float signum(Float value) const { return (value < 0) ? -1.0f : 1.0f; } /// Refraction in local coordinates Vector refractTo(EDestination dest, const Vector &wi) const { Float etaI, etaT; if (dest == EInterior) { etaI = m_extIOR; etaT = m_intIOR; } else { etaI = m_intIOR; etaT = m_extIOR; } Float cosThetaI = Frame::cosTheta(wi); bool entering = cosThetaI > 0.0f; /* Using Snell's law, calculate the squared sine of the angle between the normal and the transmitted ray */ Float eta = etaI / etaT, sinThetaTSqr = eta*eta * Frame::sinTheta2(wi); if (sinThetaTSqr >= 1.0f) { /* Total internal reflection */ return Vector(0.0f); } else { Float cosThetaT = std::sqrt(1.0f - sinThetaTSqr); /* Retain the directionality of the vector */ return Vector(eta*wi.x, eta*wi.y, entering ? cosThetaT : -cosThetaT); } } Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const { bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); bool hasSpecular = (bRec.typeMask & EGlossyReflection) && (bRec.component == -1 || bRec.component == (int) m_components.size()-1) && measure == ESolidAngle; Spectrum result(0.0f); if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) { /* Calculate the reflection half-vector */ const Vector H = normalize(bRec.wo+bRec.wi) * signum(Frame::cosTheta(bRec.wo)); /* Evaluate the microsurface normal distribution */ const Float D = m_distribution.eval(H, m_alpha); /* Fresnel term */ const Float F = fresnel(absDot(bRec.wi, H), m_extIOR, m_intIOR); /* Smith's shadow-masking function */ const Float G = m_distribution.G(bRec.wi, bRec.wo, H, m_alpha); /* Calculate the specular reflection component */ Float value = F * D * G / (4.0f * std::abs(Frame::cosTheta(bRec.wi))); result += Spectrum(value); } if (hasNested) { BSDFQueryRecord bRecInt(bRec); bRecInt.wi = refractTo(EInterior, bRec.wi); bRecInt.wo = refractTo(EInterior, bRec.wo); Spectrum nestedResult = m_nested->eval(bRecInt, measure) * m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi))) * m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wo))); Spectrum sigmaA = m_sigmaA->getValue(bRec.its) * m_thickness; if (!sigmaA.isZero()) nestedResult *= (-sigmaA * (1/std::abs(Frame::cosTheta(bRecInt.wi)) + 1/std::abs(Frame::cosTheta(bRecInt.wo)))).exp(); if (measure == ESolidAngle) { Float eta = m_extIOR / m_intIOR; /* Solid angle compression & irradiance conversion factors */ nestedResult *= eta * eta * Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo) / (Frame::cosTheta(bRecInt.wi) * Frame::cosTheta(bRecInt.wo)); } result += nestedResult; } return result; } Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const { bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); bool hasSpecular = (bRec.typeMask & EGlossyReflection) && (bRec.component == -1 || bRec.component == (int) m_components.size()-1) && measure == ESolidAngle; /* Calculate the reflection half-vector */ const Vector H = normalize(bRec.wo+bRec.wi) * signum(Frame::cosTheta(bRec.wo)); Float probNested, probSpecular; if (hasSpecular && hasNested) { /* Find the probability of sampling the specular component */ probSpecular = 1-m_roughTransmittance->eval( std::abs(Frame::cosTheta(bRec.wi))); /* Reallocate samples */ probSpecular = (probSpecular*m_specularSamplingWeight) / (probSpecular*m_specularSamplingWeight + (1-probSpecular) * (1-m_specularSamplingWeight)); probNested = 1 - probSpecular; } else { probNested = probSpecular = 1.0f; } Float result = 0.0f; if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) { /* Jacobian of the half-direction transform */ const Float dwh_dwo = 1.0f / (4.0f * absDot(bRec.wo, H)); /* Evaluate the microsurface normal distribution */ const Float prob = m_distribution.pdf(H, m_alpha); result = prob * dwh_dwo * probSpecular; } if (hasNested) { BSDFQueryRecord bRecInt(bRec); bRecInt.wi = refractTo(EInterior, bRec.wi); bRecInt.wo = refractTo(EInterior, bRec.wo); Float prob = m_nested->pdf(bRecInt, measure); if (measure == ESolidAngle) { Float eta = m_extIOR / m_intIOR; prob *= eta * eta * Frame::cosTheta(bRec.wo) / Frame::cosTheta(bRecInt.wo); } result += prob * probNested; } return result; } inline Spectrum sample(BSDFQueryRecord &bRec, Float &_pdf, const Point2 &_sample) const { bool hasNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll) && (bRec.component == -1 || bRec.component < (int) m_components.size()-1); bool hasSpecular = (bRec.typeMask & EGlossyReflection) && (bRec.component == -1 || bRec.component == (int) m_components.size()-1); bool choseSpecular = hasSpecular; Point2 sample(_sample); Float probSpecular; if (hasSpecular && hasNested) { /* Find the probability of sampling the diffuse component */ probSpecular = 1 - m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi))); /* Reallocate samples */ probSpecular = (probSpecular*m_specularSamplingWeight) / (probSpecular*m_specularSamplingWeight + (1-probSpecular) * (1-m_specularSamplingWeight)); if (sample.x <= probSpecular) { sample.x /= probSpecular; } else { sample.x = (sample.x - probSpecular) / (1 - probSpecular); choseSpecular = false; } } if (choseSpecular) { /* Perfect specular reflection based on the microsurface normal */ Normal m = m_distribution.sample(sample, m_alpha); bRec.wo = reflect(bRec.wi, m); bRec.sampledComponent = m_components.size()-1; bRec.sampledType = EGlossyReflection; /* Side check */ if (Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) <= 0) return Spectrum(0.0f); } else { Vector wiBackup = bRec.wi; bRec.wi = refractTo(EInterior, bRec.wi); Spectrum result = m_nested->sample(bRec, _pdf, sample); bRec.wi = wiBackup; if (result.isZero()) return Spectrum(0.0f); bRec.wo = refractTo(EExterior, bRec.wo); if (bRec.wo.isZero()) return Spectrum(0.0f); } /* Guard against numerical imprecisions */ EMeasure measure = getMeasure(bRec.sampledType); _pdf = pdf(bRec, measure); if (_pdf == 0) return Spectrum(0.0f); else return eval(bRec, measure) / _pdf; } Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const { Float pdf; return RoughCoating::sample(bRec, pdf, sample); } void serialize(Stream *stream, InstanceManager *manager) const { BSDF::serialize(stream, manager); stream->writeUInt((uint32_t) m_distribution.getType()); manager->serialize(stream, m_nested.get()); manager->serialize(stream, m_sigmaA.get()); manager->serialize(stream, m_roughTransmittance.get()); stream->writeFloat(m_alpha); stream->writeFloat(m_intIOR); stream->writeFloat(m_extIOR); stream->writeFloat(m_thickness); } void addChild(const std::string &name, ConfigurableObject *child) { if (child->getClass()->derivesFrom(MTS_CLASS(BSDF))) { if (m_nested != NULL) Log(EError, "Only a single nested BRDF can be added!"); m_nested = static_cast(child); } else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "sigmaA") { m_sigmaA = static_cast(m_sigmaA); } else { BSDF::addChild(name, child); } } std::string toString() const { std::ostringstream oss; oss << "RoughCoating[" << endl << " name = \"" << getName() << "\"," << endl << " distribution = " << m_distribution.toString() << "," << endl << " alpha = " << m_alpha << "," << endl << " sigmaA = " << m_sigmaA->toString() << "," << endl << " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl << " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl << " intIOR = " << m_intIOR << "," << endl << " extIOR = " << m_extIOR << "," << endl << " nested = " << indent(m_nested.toString()) << endl << "]"; return oss.str(); } Shader *createShader(Renderer *renderer) const; MTS_DECLARE_CLASS() private: MicrofacetDistribution m_distribution; ref m_roughTransmittance; ref m_sigmaA; ref m_nested; Float m_alpha, m_intIOR, m_extIOR; Float m_specularSamplingWeight; Float m_thickness; }; /** * GLSL port of the rough coating shader. This version is much more * approximate -- it only supports the Beckmann distribution, * does everything in RGB, uses a cheaper shadowing-masking term, and * it also makes use of the Schlick approximation to the Fresnel * reflectance of dielectrics. When the roughness is lower than * \alpha < 0.2, the shader clamps it to 0.2 so that it will still perform * reasonably well in a VPL-based preview. */ class RoughCoatingShader : public Shader { public: RoughCoatingShader(Renderer *renderer, const BSDF *nested, const Texture *sigmaA, Float alpha, Float extIOR, Float intIOR) : Shader(renderer, EBSDFShader), m_nested(nested), m_sigmaA(sigmaA), m_alpha(alpha), m_extIOR(extIOR), m_intIOR(intIOR) { m_nestedShader = renderer->registerShaderForResource(m_nested.get()); m_sigmaAShader = renderer->registerShaderForResource(m_sigmaA.get()); m_alpha = std::max(m_alpha, (Float) 0.2f); m_R0 = fresnel(1.0f, m_extIOR, m_intIOR); m_eta = extIOR / intIOR; } bool isComplete() const { return m_nestedShader.get() != NULL && m_sigmaAShader.get() != NULL; } void putDependencies(std::vector &deps) { deps.push_back(m_nestedShader.get()); deps.push_back(m_sigmaAShader.get()); } void cleanup(Renderer *renderer) { renderer->unregisterShaderForResource(m_nested.get()); renderer->unregisterShaderForResource(m_sigmaA.get()); } void resolve(const GPUProgram *program, const std::string &evalName, std::vector ¶meterIDs) const { parameterIDs.push_back(program->getParameterID(evalName + "_R0", false)); parameterIDs.push_back(program->getParameterID(evalName + "_eta", false)); parameterIDs.push_back(program->getParameterID(evalName + "_alpha", false)); } void bind(GPUProgram *program, const std::vector ¶meterIDs, int &textureUnitOffset) const { program->setParameter(parameterIDs[0], m_R0); program->setParameter(parameterIDs[1], m_eta); program->setParameter(parameterIDs[2], m_alpha); } void generateCode(std::ostringstream &oss, const std::string &evalName, const std::vector &depNames) const { oss << "uniform float " << evalName << "_R0;" << endl << "uniform float " << evalName << "_eta;" << endl << "uniform float " << evalName << "_alpha;" << endl << endl << "float " << evalName << "_schlick(float ct) {" << endl << " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl << " return " << evalName << "_R0 + (1.0 - " << evalName << "_R0) * ct5;" << endl << "}" << endl << endl << "vec3 " << evalName << "_refract(vec3 wi, out float T) {" << endl << " float cosThetaI = cosTheta(wi);" << endl << " bool entering = cosThetaI > 0.0;" << endl << " float eta = " << evalName << "_eta;" << endl << " float sinThetaTSqr = eta * eta * sinTheta2(wi);" << endl << " if (sinThetaTSqr >= 1.0) {" << endl << " T = 0.0; /* Total internal reflection */" << endl << " return vec3(0.0);" << endl << " } else {" << endl << " float cosThetaT = sqrt(1.0 - sinThetaTSqr);" << endl << " T = 1.0 - " << evalName << "_schlick(1.0 - abs(cosThetaI));" << endl << " return vec3(eta*wi.x, eta*wi.y, entering ? cosThetaT : -cosThetaT);" << endl << " }" << endl << "}" << endl << endl << "float " << evalName << "_D(vec3 m) {" << endl << " float ct = cosTheta(m);" << endl << " if (cosTheta(m) <= 0.0)" << endl << " return 0.0;" << endl << " float ex = tanTheta(m) / " << evalName << "_alpha;" << endl << " return exp(-(ex*ex)) / (pi * " << evalName << "_alpha" << endl << " * " << evalName << "_alpha * pow(cosTheta(m), 4.0));" << endl << "}" << endl << endl << "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl << " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl << " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl << " return 0.0;" << endl << " float nDotM = cosTheta(m);" << endl << " return min(1.0, min(" << endl << " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl << " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl << "}" << endl << endl << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl << " float T12, T21;" << endl << " vec3 wiPrime = " << evalName << "_refract(wi, T12);" << endl << " vec3 woPrime = " << evalName << "_refract(wo, T21);" << endl << " vec3 nested = " << depNames[0] << "(uv, wiPrime, woPrime);" << endl << " vec3 sigmaA = " << depNames[1] << "(uv);" << endl << " vec3 result = nested * " << evalName << "_eta * " << evalName << "_eta" << endl << " * T12 * T21 * (cosTheta(wi)*cosTheta(wo)) /" << endl << " (cosTheta(wiPrime)*cosTheta(woPrime));" << endl << " if (sigmaA != vec3(0.0))" << endl << " result *= exp(-sigmaA * (1/abs(cosTheta(wiPrime)) + " << endl << " 1/abs(cosTheta(woPrime))));" << endl << " if (cosTheta(wi)*cosTheta(wo) > 0) {" << endl << " vec3 H = normalize(wi + wo);" << endl << " float D = " << evalName << "_D(H)" << ";" << endl << " float G = " << evalName << "_G(H, wi, wo);" << endl << " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl << " result += vec3(F * D * G / (4*cosTheta(wi)));" << endl << " }" << endl << " return result;" << endl << "}" << endl << endl << "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl << " return " << depNames[0] << "_diffuse(uv, wi, wo);" << endl << "}" << endl; } MTS_DECLARE_CLASS() private: ref m_nested; ref m_nestedShader; ref m_sigmaA; ref m_sigmaAShader; Float m_alpha, m_extIOR, m_intIOR, m_R0, m_eta; }; Shader *RoughCoating::createShader(Renderer *renderer) const { return new RoughCoatingShader(renderer, m_nested.get(), m_sigmaA.get(), m_alpha, m_extIOR, m_intIOR); } MTS_IMPLEMENT_CLASS(RoughCoatingShader, false, Shader) MTS_IMPLEMENT_CLASS_S(RoughCoating, false, BSDF) MTS_EXPORT_PLUGIN(RoughCoating, "Rough coating BSDF"); MTS_NAMESPACE_END