documentation for the Oren-Nayar model

metadata
Wenzel Jakob 2011-07-08 14:36:16 +02:00
parent 2b140885e8
commit f412727cd6
14 changed files with 305 additions and 23 deletions

View File

@ -5,6 +5,8 @@
^doc/.*\.out$ ^doc/.*\.out$
^doc/.*\.pdf$ ^doc/.*\.pdf$
^doc/.*\.toc$ ^doc/.*\.toc$
^doc/.*\.bbl$
^doc/.*\.blg$
^doc/plugins_generated.tex$ ^doc/plugins_generated.tex$
# Build-related # Build-related

View File

@ -2,9 +2,6 @@
to be tested for consistency. This is done to be tested for consistency. This is done
using the testcase 'test_chisquare' --> using the testcase 'test_chisquare' -->
<scene> <scene>
<!-- Test the smooth plastic model -->
<bsdf type="plastic"/>
<!-- Test the smooth diffuse model --> <!-- Test the smooth diffuse model -->
<bsdf type="diffuse"/> <bsdf type="diffuse"/>
@ -33,6 +30,9 @@
<string name="extIOR" value="air"/> <string name="extIOR" value="air"/>
</bsdf> </bsdf>
<!-- Test the smooth plastic model -->
<bsdf type="plastic"/>
<!-- Test a mixture of degenerate materials --> <!-- Test a mixture of degenerate materials -->
<bsdf type="mixture"> <bsdf type="mixture">
<string name="weights" value=".8 .2"/> <string name="weights" value=".8 .2"/>

Binary file not shown.

After

Width:  |  Height:  |  Size: 182 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 191 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 174 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 155 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 KiB

View File

@ -37,3 +37,12 @@
year = {2005}, year = {2005},
publisher = {AK Peters, Ltd.} publisher = {AK Peters, Ltd.}
} }
@inproceedings{Oren1994Generalization,
title = {{Generalization of Lambert's reflectance model}},
author = {Oren, M. and Nayar, S.K.},
booktitle = {Proceedings of the 21st annual conference on Computer graphics and interactive techniques},
pages = {239--246},
year = {1994},
organization={ACM}
}

View File

@ -6,7 +6,7 @@ plugins += env.SharedLibrary('dielectric', ['dielectric.cpp'])
plugins += env.SharedLibrary('conductor', ['conductor.cpp']) plugins += env.SharedLibrary('conductor', ['conductor.cpp'])
plugins += env.SharedLibrary('plastic', ['plastic.cpp']) plugins += env.SharedLibrary('plastic', ['plastic.cpp'])
#plugins += env.SharedLibrary('roughdiffuse', ['roughdiffuse.cpp']) plugins += env.SharedLibrary('roughdiffuse', ['roughdiffuse.cpp'])
plugins += env.SharedLibrary('roughdielectric', ['roughdielectric.cpp']) plugins += env.SharedLibrary('roughdielectric', ['roughdielectric.cpp'])
plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp']) plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp'])
#plugins += env.SharedLibrary('roughplastic', ['roughplastic.cpp']) #plugins += env.SharedLibrary('roughplastic', ['roughplastic.cpp'])

View File

@ -21,7 +21,7 @@
MTS_NAMESPACE_BEGIN MTS_NAMESPACE_BEGIN
/*! \plugin{coating}{Smooth coating layer} /*! \plugin{coating}{Smooth coating}
* *
* \parameters{ * \parameters{
* \parameter{intIOR}{\Float}{Interior index of refraction \default{1.5046}} * \parameter{intIOR}{\Float}{Interior index of refraction \default{1.5046}}

View File

@ -330,12 +330,11 @@ public:
const Float nDotM = Frame::cosTheta(m), const Float nDotM = Frame::cosTheta(m),
nDotWo = Frame::cosTheta(wo), nDotWo = Frame::cosTheta(wo),
nDotWi = Frame::cosTheta(wi), nDotWi = Frame::cosTheta(wi),
woDotM = dot(wo, m), woDotM = dot(wo, m);
wiDotM = dot(wi, m);
return std::min((Float) 1, return std::min((Float) 1,
std::min(std::abs(2 * nDotM * nDotWo / woDotM), std::min(std::abs(2 * nDotM * nDotWo / woDotM),
std::abs(2 * nDotM * nDotWi / wiDotM))); std::abs(2 * nDotM * nDotWi / woDotM)));
} }
} }

View File

@ -31,17 +31,34 @@ MTS_NAMESPACE_BEGIN
* numerically or using a known material name. \default{\texttt{air} / 1.000277}} * numerically or using a known material name. \default{\texttt{air} / 1.000277}}
* \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional * \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
* factor used to modulate the specular component\default{1.0}} * factor used to modulate the specular component\default{1.0}}
* \lastparameter{specular\showbreak Transmittance}{\Spectrum\Or\Texture}{Optional * \lastparameter{diffuse\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
* factor used to modulate the diffuse component\default{0.5}} * factor used to modulate the diffuse component\default{0.5}}
* } * }
* *
* \renderings{ * \renderings{
* \medrendering{Air$\leftrightarrow$Water (IOR: 1.33) interface. * \rendering{A rendering with the default parameters}{bsdf_plastic_default}
* See \lstref{dielectric-water}.}{bsdf_dielectric_water} * \rendering{A rendering with custom parameters (\lstref{plastic-shiny})}{bsdf_plastic_shiny}
* \medrendering{Air$\leftrightarrow$Diamond (IOR: 2.419)}{bsdf_dielectric_diamond}
* \medrendering{Air$\leftrightarrow$Glass (IOR: 1.504) interface and absorption within.
* See \lstref{dielectric-glass}.}{bsdf_dielectric_glass}
* } * }
*
* This plugin describes a perfectly smooth plastic-like dielectric material
* with internal scattering. The model interpolates between ideally specular
* and ideally diffuse reflection based on the Fresnel reflectance (i.e. it
* does so in a way that depends on the angle of incidence). Similar to the
* \pluginref{dielectric} plugin, IOR values can either be specified
* numerically, or based on a list of known materials (see
* \tblref{dielectric-iors} for an overview).
*
* Since it is very simple and fast, this model is often a better choice
* than the \pluginref{phong}, \pluginref{ward}, and \pluginref{roughplastic}
* plugins when rendering very smooth plastic-like materials. \vspace{4mm}
*
* \begin{xml}[caption=A shiny material whose diffuse reflectance is
* specified using sRGB, label=lst:plastic-shiny]
* <bsdf type="plastic">
* <srgb name="diffuseReflectance" value="#18455c"/>
* <float name="intIOR" value="1.9"/>
* </bsdf>
* \end{xml}
*/ */
class SmoothPlastic : public BSDF { class SmoothPlastic : public BSDF {
public: public:
@ -157,8 +174,8 @@ public:
fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR) : 1.0f; fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR) : 1.0f;
} else if (measure == ESolidAngle && sampleDiffuse) { } else if (measure == ESolidAngle && sampleDiffuse) {
return Frame::cosTheta(bRec.wo) * INV_PI * return Frame::cosTheta(bRec.wo) * INV_PI *
sampleSpecular ? (1 - fresnel(Frame::cosTheta(bRec.wi), (sampleSpecular ? (1 - fresnel(Frame::cosTheta(bRec.wi),
m_extIOR, m_intIOR)) : 1.0f; m_extIOR, m_intIOR)) : 1.0f);
} }
return 0.0f; return 0.0f;
@ -170,7 +187,7 @@ public:
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection) bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
&& (bRec.component == -1 || bRec.component == 1); && (bRec.component == -1 || bRec.component == 1);
if ((!sampleDiffuse && !sampleSpecular) || Frame::cosTheta(bRec.wi) < 0) if ((!sampleDiffuse && !sampleSpecular) || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f); return Spectrum(0.0f);
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR); Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
@ -205,7 +222,7 @@ public:
if (Fr == 1.0f) /* Total internal reflection */ if (Fr == 1.0f) /* Total internal reflection */
return Spectrum(0.0f); return Spectrum(0.0f);
bRec.wo = squareToSphere(sample); bRec.wo = squareToHemispherePSA(sample);
return m_diffuseReflectance->getValue(bRec.its) * (1-Fr); return m_diffuseReflectance->getValue(bRec.its) * (1-Fr);
} }
@ -217,7 +234,7 @@ public:
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection) bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
&& (bRec.component == -1 || bRec.component == 1); && (bRec.component == -1 || bRec.component == 1);
if ((!sampleDiffuse && !sampleSpecular) || Frame::cosTheta(bRec.wi) < 0) if ((!sampleDiffuse && !sampleSpecular) || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f); return Spectrum(0.0f);
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR); Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
@ -257,7 +274,7 @@ public:
if (Fr == 1.0f) /* Total internal reflection */ if (Fr == 1.0f) /* Total internal reflection */
return Spectrum(0.0f); return Spectrum(0.0f);
bRec.wo = squareToSphere(sample); bRec.wo = squareToHemispherePSA(sample);
pdf = Frame::cosTheta(bRec.wo) * INV_PI; pdf = Frame::cosTheta(bRec.wo) * INV_PI;

View File

@ -513,10 +513,10 @@ public:
<< " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl << " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl
<< " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl << " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl
<< " return 0.0;" << endl << " return 0.0;" << endl
<< " float nDotM = cosTheta(m);" << endl << " float nDotM = cosTheta(m), tmp = 1.0 / dot(wo, m);" << endl
<< " return min(1.0, min(" << endl << " return min(1.0, min(" << endl
<< " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl << " abs(2 * nDotM * cosTheta(wo) * tmp)," << endl
<< " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl << " abs(2 * nDotM * cosTheta(wi) * tmp)));" << endl
<< "}" << endl << "}" << endl
<< endl << endl
<< "vec3 " << evalName << "_schlick(vec3 wi) {" << endl << "vec3 " << evalName << "_schlick(vec3 wi) {" << endl

255
src/bsdfs/roughdiffuse.cpp Normal file
View File

@ -0,0 +1,255 @@
/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/render/texture.h>
#include <mitsuba/hw/renderer.h>
MTS_NAMESPACE_BEGIN
/*!\plugin{diffuse}{Rough diffuse material}
* \order{2}
* \parameters{
* \parameter{reflectance}{\Spectrum\Or\Texture}{
* Specifies the reflectance / albedo of the material \linebreak(Default: 0.5)
* }
* \lastparameter{alpha}{\Spectrum\Or\Texture}{
* Specifies the roughness of the unresolved surface microgeometry.
* This parameter is approximately equal to the \emph{root mean square}
* (RMS) slope of the microfacets.\default{0.1}
* }
* }
*
* \renderings{
* \rendering{Homogeneous reflectance, see \lstref{diffuse-uniform}}{bsdf_diffuse_plain}
* \rendering{Textured reflectance, see \lstref{diffuse-textured}}{bsdf_diffuse_textured}
* }
*
* This reflectance model describes scattering from a rough diffuse material,
* such as plaster, sand, clay, or concrete.
* The underlying theory was developed by Oren and Nayar
* \cite{Oren1994Generalization}, who model the microscopic surface structure as
* an arrangement of unresolved planar facets with different slopes, where each facet
* is an ideal diffuse reflector. The model takes into account shadowing,
* masking, as well as interreflections between the facets.
*
* Since the original publication in 1994, this approach has been shown to
* be a very good match for many real-world materials, in particular
* compared to Lambertian scattering, which does not take surface
* roughness into account.
*
* To get an intuition about the effect of the surface roughness
* parameter $\alpha$, consider the following approximate differentiation:
* a value of $\alpha=0.001-0.01$ corresponds to a material
* with slight imperfections on an otherwise smooth surface (for such small
* values, the model will behave almost identically to \pluginref{diffuse}), $\alpha=0.1$
* is relatively rough, and $\alpha=0.3-0.5$ is \emph{extremely} rough
* (e.g. an etched or ground finish).
*
* Note that this material is one-sided---that is, observed from the
* back side, it will be completely black. If this is undesirable,
* consider using the \pluginref{twosided} BRDF adapter plugin.
* \vspace{4mm}
*
* \begin{xml}[caption={A diffuse material, whose reflectance is specified as an sRGB color}, label=lst:diffuse-uniform]
* <bsdf type="diffuse">
* <srgb name="reflectance" value="#6d7185"/>
* </bsdf>
* \end{xml}
*/
class RoughDiffuse : public BSDF {
public:
RoughDiffuse(const Properties &props)
: BSDF(props) {
/* For better compatibility with other models, support both
'reflectance' and 'diffuseReflectance' as parameter names */
m_reflectance = new ConstantSpectrumTexture(props.getSpectrum(
props.hasProperty("reflectance") ? "reflectance"
: "diffuseReflectance", Spectrum(.5f)));
m_alpha = new ConstantFloatTexture(props.getFloat("alpha", 0.1f));
m_components.push_back(EGlossyReflection | EFrontSide);
m_usesRayDifferentials = false;
}
RoughDiffuse(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_reflectance = static_cast<Texture *>(manager->getInstance(stream));
m_alpha = static_cast<Texture *>(manager->getInstance(stream));
m_components.push_back(EGlossyReflection | EFrontSide);
m_usesRayDifferentials = m_reflectance->usesRayDifferentials();
}
virtual ~RoughDiffuse() { }
void configure() {
BSDF::configure();
/* Verify the input parameter and fix them if necessary */
m_reflectance = ensureEnergyConservation(m_reflectance, "reflectance", 1.0f);
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (!(bRec.typeMask & EGlossyReflection) || measure != ESolidAngle
|| Frame::cosTheta(bRec.wi) <= 0
|| Frame::cosTheta(bRec.wo) <= 0)
return Spectrum(0.0f);
/* Conversion from Beckmann-style RMS roughness to
Oren-Nayar-style slope-area variance. The factor
of 1/sqrt(2) was found to be a perfect fit up
to extreme roughness values (>.5), after which
the match is not as good anymore */
const Float conversionFactor = 1 / std::sqrt((Float) 2);
Float sigma = m_alpha->getValue(bRec.its).average()
* conversionFactor;
Float sigma2 = sigma*sigma;
Float A = 10.f - (sigma2 / (2.0f * (sigma2 + 0.33f)));
Float B = 0.45f * sigma2 / (sigma2 + 0.09f);
return m_reflectance->getValue(bRec.its)
* (INV_PI * Frame::cosTheta(bRec.wo));
}
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (!(bRec.typeMask & EGlossyReflection) || measure != ESolidAngle
|| Frame::cosTheta(bRec.wi) <= 0
|| Frame::cosTheta(bRec.wo) <= 0)
return 0.0f;
return Frame::cosTheta(bRec.wo) * INV_PI;
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
if (!(bRec.typeMask & EGlossyReflection) || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
bRec.wo = squareToHemispherePSA(sample);
bRec.sampledComponent = 0;
bRec.sampledType = EGlossyReflection;
return m_reflectance->getValue(bRec.its);
}
Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &sample) const {
if (!(bRec.typeMask & EGlossyReflection) || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
bRec.wo = squareToHemispherePSA(sample);
bRec.sampledComponent = 0;
bRec.sampledType = EGlossyReflection;
pdf = Frame::cosTheta(bRec.wo) * INV_PI;
return m_reflectance->getValue(bRec.its)
* (INV_PI * Frame::cosTheta(bRec.wo));
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))
&& (name == "reflectance" || name == "diffuseReflectance")) {
m_reflectance = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_reflectance->usesRayDifferentials();
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture))
&& name == "alpha") {
m_alpha = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_reflectance->usesRayDifferentials();
} else {
BSDF::addChild(name, child);
}
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
manager->serialize(stream, m_reflectance.get());
manager->serialize(stream, m_alpha.get());
}
std::string toString() const {
std::ostringstream oss;
oss << "RoughDiffuse[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " reflectance = " << indent(m_reflectance->toString()) << "," << endl
<< " alpha = " << indent(m_alpha->toString()) << endl
<< "]";
return oss.str();
}
Shader *createShader(Renderer *renderer) const;
MTS_DECLARE_CLASS()
private:
ref<Texture> m_reflectance;
ref<Texture> m_alpha;
};
// ================ Hardware shader implementation ================
class RoughDiffuseShader : public Shader {
public:
RoughDiffuseShader(Renderer *renderer, const Texture *reflectance, const Texture *alpha)
: Shader(renderer, EBSDFShader), m_reflectance(reflectance), m_alpha(alpha) {
m_reflectanceShader = renderer->registerShaderForResource(m_reflectance.get());
m_alphaShader = renderer->registerShaderForResource(m_alpha.get());
}
bool isComplete() const {
return m_reflectanceShader.get() != NULL &&
m_alphaShader.get() != NULL;
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_reflectance.get());
renderer->unregisterShaderForResource(m_alpha.get());
}
void putDependencies(std::vector<Shader *> &deps) {
deps.push_back(m_reflectanceShader.get());
deps.push_back(m_alphaShader.get());
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " if (cosTheta(wi) < 0.0 || cosTheta(wo) < 0.0)" << endl
<< " return vec3(0.0);" << endl
<< " return " << depNames[0] << "(uv) * 0.31831 * cosTheta(wo);" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " return " << evalName << "(uv, wi, wo);" << endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
private:
ref<const Texture> m_reflectance;
ref<const Texture> m_alpha;
ref<Shader> m_reflectanceShader;
ref<Shader> m_alphaShader;
};
Shader *RoughDiffuse::createShader(Renderer *renderer) const {
return new RoughDiffuseShader(renderer, m_reflectance.get(), m_alpha.get());
}
MTS_IMPLEMENT_CLASS(RoughDiffuseShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(RoughDiffuse, false, BSDF)
MTS_EXPORT_PLUGIN(RoughDiffuse, "Rough diffuse BRDF")
MTS_NAMESPACE_END