documentation for the Oren-Nayar model
parent
2b140885e8
commit
f412727cd6
|
@ -5,6 +5,8 @@
|
|||
^doc/.*\.out$
|
||||
^doc/.*\.pdf$
|
||||
^doc/.*\.toc$
|
||||
^doc/.*\.bbl$
|
||||
^doc/.*\.blg$
|
||||
^doc/plugins_generated.tex$
|
||||
|
||||
# Build-related
|
||||
|
|
|
@ -2,9 +2,6 @@
|
|||
to be tested for consistency. This is done
|
||||
using the testcase 'test_chisquare' -->
|
||||
<scene>
|
||||
<!-- Test the smooth plastic model -->
|
||||
<bsdf type="plastic"/>
|
||||
|
||||
<!-- Test the smooth diffuse model -->
|
||||
<bsdf type="diffuse"/>
|
||||
|
||||
|
@ -33,6 +30,9 @@
|
|||
<string name="extIOR" value="air"/>
|
||||
</bsdf>
|
||||
|
||||
<!-- Test the smooth plastic model -->
|
||||
<bsdf type="plastic"/>
|
||||
|
||||
<!-- Test a mixture of degenerate materials -->
|
||||
<bsdf type="mixture">
|
||||
<string name="weights" value=".8 .2"/>
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 182 KiB |
Binary file not shown.
After Width: | Height: | Size: 191 KiB |
Binary file not shown.
After Width: | Height: | Size: 174 KiB |
Binary file not shown.
After Width: | Height: | Size: 155 KiB |
Binary file not shown.
After Width: | Height: | Size: 152 KiB |
|
@ -37,3 +37,12 @@
|
|||
year = {2005},
|
||||
publisher = {AK Peters, Ltd.}
|
||||
}
|
||||
|
||||
@inproceedings{Oren1994Generalization,
|
||||
title = {{Generalization of Lambert's reflectance model}},
|
||||
author = {Oren, M. and Nayar, S.K.},
|
||||
booktitle = {Proceedings of the 21st annual conference on Computer graphics and interactive techniques},
|
||||
pages = {239--246},
|
||||
year = {1994},
|
||||
organization={ACM}
|
||||
}
|
||||
|
|
|
@ -6,7 +6,7 @@ plugins += env.SharedLibrary('dielectric', ['dielectric.cpp'])
|
|||
plugins += env.SharedLibrary('conductor', ['conductor.cpp'])
|
||||
plugins += env.SharedLibrary('plastic', ['plastic.cpp'])
|
||||
|
||||
#plugins += env.SharedLibrary('roughdiffuse', ['roughdiffuse.cpp'])
|
||||
plugins += env.SharedLibrary('roughdiffuse', ['roughdiffuse.cpp'])
|
||||
plugins += env.SharedLibrary('roughdielectric', ['roughdielectric.cpp'])
|
||||
plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp'])
|
||||
#plugins += env.SharedLibrary('roughplastic', ['roughplastic.cpp'])
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
|
||||
MTS_NAMESPACE_BEGIN
|
||||
|
||||
/*! \plugin{coating}{Smooth coating layer}
|
||||
/*! \plugin{coating}{Smooth coating}
|
||||
*
|
||||
* \parameters{
|
||||
* \parameter{intIOR}{\Float}{Interior index of refraction \default{1.5046}}
|
||||
|
|
|
@ -330,12 +330,11 @@ public:
|
|||
const Float nDotM = Frame::cosTheta(m),
|
||||
nDotWo = Frame::cosTheta(wo),
|
||||
nDotWi = Frame::cosTheta(wi),
|
||||
woDotM = dot(wo, m),
|
||||
wiDotM = dot(wi, m);
|
||||
woDotM = dot(wo, m);
|
||||
|
||||
return std::min((Float) 1,
|
||||
std::min(std::abs(2 * nDotM * nDotWo / woDotM),
|
||||
std::abs(2 * nDotM * nDotWi / wiDotM)));
|
||||
std::abs(2 * nDotM * nDotWi / woDotM)));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -31,17 +31,34 @@ MTS_NAMESPACE_BEGIN
|
|||
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
|
||||
* \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
|
||||
* factor used to modulate the specular component\default{1.0}}
|
||||
* \lastparameter{specular\showbreak Transmittance}{\Spectrum\Or\Texture}{Optional
|
||||
* \lastparameter{diffuse\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
|
||||
* factor used to modulate the diffuse component\default{0.5}}
|
||||
* }
|
||||
*
|
||||
* \renderings{
|
||||
* \medrendering{Air$\leftrightarrow$Water (IOR: 1.33) interface.
|
||||
* See \lstref{dielectric-water}.}{bsdf_dielectric_water}
|
||||
* \medrendering{Air$\leftrightarrow$Diamond (IOR: 2.419)}{bsdf_dielectric_diamond}
|
||||
* \medrendering{Air$\leftrightarrow$Glass (IOR: 1.504) interface and absorption within.
|
||||
* See \lstref{dielectric-glass}.}{bsdf_dielectric_glass}
|
||||
* \rendering{A rendering with the default parameters}{bsdf_plastic_default}
|
||||
* \rendering{A rendering with custom parameters (\lstref{plastic-shiny})}{bsdf_plastic_shiny}
|
||||
* }
|
||||
*
|
||||
* This plugin describes a perfectly smooth plastic-like dielectric material
|
||||
* with internal scattering. The model interpolates between ideally specular
|
||||
* and ideally diffuse reflection based on the Fresnel reflectance (i.e. it
|
||||
* does so in a way that depends on the angle of incidence). Similar to the
|
||||
* \pluginref{dielectric} plugin, IOR values can either be specified
|
||||
* numerically, or based on a list of known materials (see
|
||||
* \tblref{dielectric-iors} for an overview).
|
||||
*
|
||||
* Since it is very simple and fast, this model is often a better choice
|
||||
* than the \pluginref{phong}, \pluginref{ward}, and \pluginref{roughplastic}
|
||||
* plugins when rendering very smooth plastic-like materials. \vspace{4mm}
|
||||
*
|
||||
* \begin{xml}[caption=A shiny material whose diffuse reflectance is
|
||||
* specified using sRGB, label=lst:plastic-shiny]
|
||||
* <bsdf type="plastic">
|
||||
* <srgb name="diffuseReflectance" value="#18455c"/>
|
||||
* <float name="intIOR" value="1.9"/>
|
||||
* </bsdf>
|
||||
* \end{xml}
|
||||
*/
|
||||
class SmoothPlastic : public BSDF {
|
||||
public:
|
||||
|
@ -157,8 +174,8 @@ public:
|
|||
fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR) : 1.0f;
|
||||
} else if (measure == ESolidAngle && sampleDiffuse) {
|
||||
return Frame::cosTheta(bRec.wo) * INV_PI *
|
||||
sampleSpecular ? (1 - fresnel(Frame::cosTheta(bRec.wi),
|
||||
m_extIOR, m_intIOR)) : 1.0f;
|
||||
(sampleSpecular ? (1 - fresnel(Frame::cosTheta(bRec.wi),
|
||||
m_extIOR, m_intIOR)) : 1.0f);
|
||||
}
|
||||
|
||||
return 0.0f;
|
||||
|
@ -170,7 +187,7 @@ public:
|
|||
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 1);
|
||||
|
||||
if ((!sampleDiffuse && !sampleSpecular) || Frame::cosTheta(bRec.wi) < 0)
|
||||
if ((!sampleDiffuse && !sampleSpecular) || Frame::cosTheta(bRec.wi) <= 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
|
||||
|
@ -205,7 +222,7 @@ public:
|
|||
if (Fr == 1.0f) /* Total internal reflection */
|
||||
return Spectrum(0.0f);
|
||||
|
||||
bRec.wo = squareToSphere(sample);
|
||||
bRec.wo = squareToHemispherePSA(sample);
|
||||
|
||||
return m_diffuseReflectance->getValue(bRec.its) * (1-Fr);
|
||||
}
|
||||
|
@ -217,7 +234,7 @@ public:
|
|||
bool sampleDiffuse = (bRec.typeMask & EDiffuseReflection)
|
||||
&& (bRec.component == -1 || bRec.component == 1);
|
||||
|
||||
if ((!sampleDiffuse && !sampleSpecular) || Frame::cosTheta(bRec.wi) < 0)
|
||||
if ((!sampleDiffuse && !sampleSpecular) || Frame::cosTheta(bRec.wi) <= 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
|
||||
|
@ -257,7 +274,7 @@ public:
|
|||
if (Fr == 1.0f) /* Total internal reflection */
|
||||
return Spectrum(0.0f);
|
||||
|
||||
bRec.wo = squareToSphere(sample);
|
||||
bRec.wo = squareToHemispherePSA(sample);
|
||||
|
||||
pdf = Frame::cosTheta(bRec.wo) * INV_PI;
|
||||
|
||||
|
|
|
@ -513,10 +513,10 @@ public:
|
|||
<< " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl
|
||||
<< " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl
|
||||
<< " return 0.0;" << endl
|
||||
<< " float nDotM = cosTheta(m);" << endl
|
||||
<< " float nDotM = cosTheta(m), tmp = 1.0 / dot(wo, m);" << endl
|
||||
<< " return min(1.0, min(" << endl
|
||||
<< " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl
|
||||
<< " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl
|
||||
<< " abs(2 * nDotM * cosTheta(wo) * tmp)," << endl
|
||||
<< " abs(2 * nDotM * cosTheta(wi) * tmp)));" << endl
|
||||
<< "}" << endl
|
||||
<< endl
|
||||
<< "vec3 " << evalName << "_schlick(vec3 wi) {" << endl
|
||||
|
|
|
@ -0,0 +1,255 @@
|
|||
/*
|
||||
This file is part of Mitsuba, a physically based rendering system.
|
||||
|
||||
Copyright (c) 2007-2011 by Wenzel Jakob and others.
|
||||
|
||||
Mitsuba is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License Version 3
|
||||
as published by the Free Software Foundation.
|
||||
|
||||
Mitsuba is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <mitsuba/render/bsdf.h>
|
||||
#include <mitsuba/render/texture.h>
|
||||
#include <mitsuba/hw/renderer.h>
|
||||
|
||||
MTS_NAMESPACE_BEGIN
|
||||
|
||||
/*!\plugin{diffuse}{Rough diffuse material}
|
||||
* \order{2}
|
||||
* \parameters{
|
||||
* \parameter{reflectance}{\Spectrum\Or\Texture}{
|
||||
* Specifies the reflectance / albedo of the material \linebreak(Default: 0.5)
|
||||
* }
|
||||
* \lastparameter{alpha}{\Spectrum\Or\Texture}{
|
||||
* Specifies the roughness of the unresolved surface microgeometry.
|
||||
* This parameter is approximately equal to the \emph{root mean square}
|
||||
* (RMS) slope of the microfacets.\default{0.1}
|
||||
* }
|
||||
* }
|
||||
*
|
||||
* \renderings{
|
||||
* \rendering{Homogeneous reflectance, see \lstref{diffuse-uniform}}{bsdf_diffuse_plain}
|
||||
* \rendering{Textured reflectance, see \lstref{diffuse-textured}}{bsdf_diffuse_textured}
|
||||
* }
|
||||
*
|
||||
* This reflectance model describes scattering from a rough diffuse material,
|
||||
* such as plaster, sand, clay, or concrete.
|
||||
* The underlying theory was developed by Oren and Nayar
|
||||
* \cite{Oren1994Generalization}, who model the microscopic surface structure as
|
||||
* an arrangement of unresolved planar facets with different slopes, where each facet
|
||||
* is an ideal diffuse reflector. The model takes into account shadowing,
|
||||
* masking, as well as interreflections between the facets.
|
||||
*
|
||||
* Since the original publication in 1994, this approach has been shown to
|
||||
* be a very good match for many real-world materials, in particular
|
||||
* compared to Lambertian scattering, which does not take surface
|
||||
* roughness into account.
|
||||
*
|
||||
* To get an intuition about the effect of the surface roughness
|
||||
* parameter $\alpha$, consider the following approximate differentiation:
|
||||
* a value of $\alpha=0.001-0.01$ corresponds to a material
|
||||
* with slight imperfections on an otherwise smooth surface (for such small
|
||||
* values, the model will behave almost identically to \pluginref{diffuse}), $\alpha=0.1$
|
||||
* is relatively rough, and $\alpha=0.3-0.5$ is \emph{extremely} rough
|
||||
* (e.g. an etched or ground finish).
|
||||
*
|
||||
* Note that this material is one-sided---that is, observed from the
|
||||
* back side, it will be completely black. If this is undesirable,
|
||||
* consider using the \pluginref{twosided} BRDF adapter plugin.
|
||||
* \vspace{4mm}
|
||||
*
|
||||
* \begin{xml}[caption={A diffuse material, whose reflectance is specified as an sRGB color}, label=lst:diffuse-uniform]
|
||||
* <bsdf type="diffuse">
|
||||
* <srgb name="reflectance" value="#6d7185"/>
|
||||
* </bsdf>
|
||||
* \end{xml}
|
||||
*/
|
||||
class RoughDiffuse : public BSDF {
|
||||
public:
|
||||
RoughDiffuse(const Properties &props)
|
||||
: BSDF(props) {
|
||||
/* For better compatibility with other models, support both
|
||||
'reflectance' and 'diffuseReflectance' as parameter names */
|
||||
m_reflectance = new ConstantSpectrumTexture(props.getSpectrum(
|
||||
props.hasProperty("reflectance") ? "reflectance"
|
||||
: "diffuseReflectance", Spectrum(.5f)));
|
||||
|
||||
m_alpha = new ConstantFloatTexture(props.getFloat("alpha", 0.1f));
|
||||
m_components.push_back(EGlossyReflection | EFrontSide);
|
||||
m_usesRayDifferentials = false;
|
||||
}
|
||||
|
||||
RoughDiffuse(Stream *stream, InstanceManager *manager)
|
||||
: BSDF(stream, manager) {
|
||||
m_reflectance = static_cast<Texture *>(manager->getInstance(stream));
|
||||
m_alpha = static_cast<Texture *>(manager->getInstance(stream));
|
||||
m_components.push_back(EGlossyReflection | EFrontSide);
|
||||
m_usesRayDifferentials = m_reflectance->usesRayDifferentials();
|
||||
}
|
||||
|
||||
virtual ~RoughDiffuse() { }
|
||||
|
||||
void configure() {
|
||||
BSDF::configure();
|
||||
|
||||
/* Verify the input parameter and fix them if necessary */
|
||||
m_reflectance = ensureEnergyConservation(m_reflectance, "reflectance", 1.0f);
|
||||
}
|
||||
|
||||
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
|
||||
if (!(bRec.typeMask & EGlossyReflection) || measure != ESolidAngle
|
||||
|| Frame::cosTheta(bRec.wi) <= 0
|
||||
|| Frame::cosTheta(bRec.wo) <= 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
/* Conversion from Beckmann-style RMS roughness to
|
||||
Oren-Nayar-style slope-area variance. The factor
|
||||
of 1/sqrt(2) was found to be a perfect fit up
|
||||
to extreme roughness values (>.5), after which
|
||||
the match is not as good anymore */
|
||||
const Float conversionFactor = 1 / std::sqrt((Float) 2);
|
||||
|
||||
Float sigma = m_alpha->getValue(bRec.its).average()
|
||||
* conversionFactor;
|
||||
|
||||
Float sigma2 = sigma*sigma;
|
||||
Float A = 10.f - (sigma2 / (2.0f * (sigma2 + 0.33f)));
|
||||
Float B = 0.45f * sigma2 / (sigma2 + 0.09f);
|
||||
|
||||
return m_reflectance->getValue(bRec.its)
|
||||
* (INV_PI * Frame::cosTheta(bRec.wo));
|
||||
}
|
||||
|
||||
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
|
||||
if (!(bRec.typeMask & EGlossyReflection) || measure != ESolidAngle
|
||||
|| Frame::cosTheta(bRec.wi) <= 0
|
||||
|| Frame::cosTheta(bRec.wo) <= 0)
|
||||
return 0.0f;
|
||||
|
||||
return Frame::cosTheta(bRec.wo) * INV_PI;
|
||||
}
|
||||
|
||||
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
|
||||
if (!(bRec.typeMask & EGlossyReflection) || Frame::cosTheta(bRec.wi) <= 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
bRec.wo = squareToHemispherePSA(sample);
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EGlossyReflection;
|
||||
return m_reflectance->getValue(bRec.its);
|
||||
}
|
||||
|
||||
Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &sample) const {
|
||||
if (!(bRec.typeMask & EGlossyReflection) || Frame::cosTheta(bRec.wi) <= 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
bRec.wo = squareToHemispherePSA(sample);
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EGlossyReflection;
|
||||
pdf = Frame::cosTheta(bRec.wo) * INV_PI;
|
||||
return m_reflectance->getValue(bRec.its)
|
||||
* (INV_PI * Frame::cosTheta(bRec.wo));
|
||||
}
|
||||
|
||||
void addChild(const std::string &name, ConfigurableObject *child) {
|
||||
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))
|
||||
&& (name == "reflectance" || name == "diffuseReflectance")) {
|
||||
m_reflectance = static_cast<Texture *>(child);
|
||||
m_usesRayDifferentials |= m_reflectance->usesRayDifferentials();
|
||||
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture))
|
||||
&& name == "alpha") {
|
||||
m_alpha = static_cast<Texture *>(child);
|
||||
m_usesRayDifferentials |= m_reflectance->usesRayDifferentials();
|
||||
} else {
|
||||
BSDF::addChild(name, child);
|
||||
}
|
||||
}
|
||||
|
||||
void serialize(Stream *stream, InstanceManager *manager) const {
|
||||
BSDF::serialize(stream, manager);
|
||||
|
||||
manager->serialize(stream, m_reflectance.get());
|
||||
manager->serialize(stream, m_alpha.get());
|
||||
}
|
||||
|
||||
std::string toString() const {
|
||||
std::ostringstream oss;
|
||||
oss << "RoughDiffuse[" << endl
|
||||
<< " name = \"" << getName() << "\"," << endl
|
||||
<< " reflectance = " << indent(m_reflectance->toString()) << "," << endl
|
||||
<< " alpha = " << indent(m_alpha->toString()) << endl
|
||||
<< "]";
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
Shader *createShader(Renderer *renderer) const;
|
||||
|
||||
MTS_DECLARE_CLASS()
|
||||
private:
|
||||
ref<Texture> m_reflectance;
|
||||
ref<Texture> m_alpha;
|
||||
};
|
||||
|
||||
// ================ Hardware shader implementation ================
|
||||
|
||||
class RoughDiffuseShader : public Shader {
|
||||
public:
|
||||
RoughDiffuseShader(Renderer *renderer, const Texture *reflectance, const Texture *alpha)
|
||||
: Shader(renderer, EBSDFShader), m_reflectance(reflectance), m_alpha(alpha) {
|
||||
m_reflectanceShader = renderer->registerShaderForResource(m_reflectance.get());
|
||||
m_alphaShader = renderer->registerShaderForResource(m_alpha.get());
|
||||
}
|
||||
|
||||
bool isComplete() const {
|
||||
return m_reflectanceShader.get() != NULL &&
|
||||
m_alphaShader.get() != NULL;
|
||||
}
|
||||
|
||||
void cleanup(Renderer *renderer) {
|
||||
renderer->unregisterShaderForResource(m_reflectance.get());
|
||||
renderer->unregisterShaderForResource(m_alpha.get());
|
||||
}
|
||||
|
||||
void putDependencies(std::vector<Shader *> &deps) {
|
||||
deps.push_back(m_reflectanceShader.get());
|
||||
deps.push_back(m_alphaShader.get());
|
||||
}
|
||||
|
||||
void generateCode(std::ostringstream &oss,
|
||||
const std::string &evalName,
|
||||
const std::vector<std::string> &depNames) const {
|
||||
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
|
||||
<< " if (cosTheta(wi) < 0.0 || cosTheta(wo) < 0.0)" << endl
|
||||
<< " return vec3(0.0);" << endl
|
||||
<< " return " << depNames[0] << "(uv) * 0.31831 * cosTheta(wo);" << endl
|
||||
<< "}" << endl
|
||||
<< endl
|
||||
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
|
||||
<< " return " << evalName << "(uv, wi, wo);" << endl
|
||||
<< "}" << endl;
|
||||
}
|
||||
|
||||
MTS_DECLARE_CLASS()
|
||||
private:
|
||||
ref<const Texture> m_reflectance;
|
||||
ref<const Texture> m_alpha;
|
||||
ref<Shader> m_reflectanceShader;
|
||||
ref<Shader> m_alphaShader;
|
||||
};
|
||||
|
||||
Shader *RoughDiffuse::createShader(Renderer *renderer) const {
|
||||
return new RoughDiffuseShader(renderer, m_reflectance.get(), m_alpha.get());
|
||||
}
|
||||
|
||||
MTS_IMPLEMENT_CLASS(RoughDiffuseShader, false, Shader)
|
||||
MTS_IMPLEMENT_CLASS_S(RoughDiffuse, false, BSDF)
|
||||
MTS_EXPORT_PLUGIN(RoughDiffuse, "Rough diffuse BRDF")
|
||||
MTS_NAMESPACE_END
|
Loading…
Reference in New Issue