sphere works again, initial support for coherent RT with non-tri shapes

metadata
Wenzel Jakob 2010-10-18 19:20:20 +02:00
parent 2006538af3
commit e77e1096de
11 changed files with 148 additions and 181 deletions

View File

@ -517,7 +517,7 @@ plugins += env.SharedLibrary('plugins/obj', ['src/shapes/obj.cpp'])
plugins += env.SharedLibrary('plugins/ply', ['src/shapes/ply/ply.cpp', 'src/shapes/ply/ply_parser.cpp'], plugins += env.SharedLibrary('plugins/ply', ['src/shapes/ply/ply.cpp', 'src/shapes/ply/ply_parser.cpp'],
CPPPATH = env['CPPPATH'] + ['src/shapes/ply']) CPPPATH = env['CPPPATH'] + ['src/shapes/ply'])
plugins += env.SharedLibrary('plugins/serialized', ['src/shapes/serialized.cpp']) plugins += env.SharedLibrary('plugins/serialized', ['src/shapes/serialized.cpp'])
#plugins += env.SharedLibrary('plugins/sphere', ['src/shapes/sphere.cpp']) plugins += env.SharedLibrary('plugins/sphere', ['src/shapes/sphere.cpp'])
#plugins += env.SharedLibrary('plugins/cylinder', ['src/shapes/cylinder.cpp']) #plugins += env.SharedLibrary('plugins/cylinder', ['src/shapes/cylinder.cpp'])
#plugins += env.SharedLibrary('plugins/hair', ['src/shapes/hair.cpp', 'src/shapes/miterseg.cpp']) #plugins += env.SharedLibrary('plugins/hair', ['src/shapes/hair.cpp', 'src/shapes/miterseg.cpp'])
#plugins += env.SharedLibrary('plugins/group', ['src/shapes/group.cpp']) #plugins += env.SharedLibrary('plugins/group', ['src/shapes/group.cpp'])

View File

@ -200,7 +200,7 @@ To avoid having to do this every time \code{Li()} is called,
we can override the \code{preprocess} function: we can override the \code{preprocess} function:
\begin{cpp} \begin{cpp}
/// Preprocess function -- called on the initiating machine /// Preprocess function -- called on the initiating machine
void preprocess(const Scene *scene, RenderQueue *queue, bool preprocess(const Scene *scene, RenderQueue *queue,
const RenderJob *job, int sceneResID, int cameraResID, const RenderJob *job, int sceneResID, int cameraResID,
int samplerResID) { int samplerResID) {
SampleIntegrator::preprocess(scene, queue, job, sceneResID, SampleIntegrator::preprocess(scene, queue, job, sceneResID,
@ -213,6 +213,8 @@ we can override the \code{preprocess} function:
for (int i=0; i<8; ++i) for (int i=0; i<8; ++i)
m_maxDist = std::max(m_maxDist, m_maxDist = std::max(m_maxDist,
(cameraPosition - sceneAABB.getCorner(i)).length()); (cameraPosition - sceneAABB.getCorner(i)).length());
return true;
} }
\end{cpp} \end{cpp}
The bottom of this function should be relatively self-explanatory. The The bottom of this function should be relatively self-explanatory. The

View File

@ -40,8 +40,8 @@
#define MTS_KD_BLOCKSIZE_KD (512*1024/sizeof(KDNode)) #define MTS_KD_BLOCKSIZE_KD (512*1024/sizeof(KDNode))
#define MTS_KD_BLOCKSIZE_IDX (512*1024/sizeof(uint32_t)) #define MTS_KD_BLOCKSIZE_IDX (512*1024/sizeof(uint32_t))
/// 64 byte temporary storage for intersection computations /// 32 byte temporary storage for intersection computations
#define MTS_KD_INTERSECTION_TEMP 64 #define MTS_KD_INTERSECTION_TEMP 32
/// Use a simple hashed 8-entry mailbox per thread /// Use a simple hashed 8-entry mailbox per thread
//#define MTS_KD_MAILBOX_ENABLED 1 //#define MTS_KD_MAILBOX_ENABLED 1

View File

@ -90,14 +90,14 @@ public:
* use of ray coherence to do this very efficiently. Requires SSE. * use of ray coherence to do this very efficiently. Requires SSE.
*/ */
void rayIntersectPacket(const RayPacket4 &packet, void rayIntersectPacket(const RayPacket4 &packet,
const RayInterval4 &interval, Intersection4 &its) const; const RayInterval4 &interval, Intersection4 &its, void *temp) const;
/** /**
* \brief Fallback for incoherent rays * \brief Fallback for incoherent rays
* \sa rayIntesectPacket * \sa rayIntesectPacket
*/ */
void rayIntersectPacketIncoherent(const RayPacket4 &packet, void rayIntersectPacketIncoherent(const RayPacket4 &packet,
const RayInterval4 &interval, Intersection4 &its) const; const RayInterval4 &interval, Intersection4 &its, void *temp) const;
#endif #endif
MTS_DECLARE_CLASS() MTS_DECLARE_CLASS()
@ -135,7 +135,7 @@ protected:
const TriMesh *mesh = static_cast<const TriMesh *>(shape); const TriMesh *mesh = static_cast<const TriMesh *>(shape);
return mesh->getTriangles()[idx].getClippedAABB(mesh->getVertexPositions(), aabb); return mesh->getTriangles()[idx].getClippedAABB(mesh->getVertexPositions(), aabb);
} else { } else {
return shape->getAABB(); return shape->getClippedAABB(aabb);
} }
} }
@ -146,7 +146,7 @@ protected:
/// Temporarily holds some intersection information /// Temporarily holds some intersection information
struct IntersectionCache { struct IntersectionCache {
size_type shapeIndex; size_type shapeIndex;
size_type index; size_type primIndex;
Float u, v; Float u, v;
}; };
@ -173,7 +173,7 @@ protected:
return ENo; return ENo;
t = tempT; t = tempT;
cache->shapeIndex = shapeIdx; cache->shapeIndex = shapeIdx;
cache->index = idx; cache->primIndex = primIdx;
cache->u = tempU; cache->u = tempU;
cache->v = tempV; cache->v = tempV;
return EYes; return EYes;
@ -181,8 +181,9 @@ protected:
} else { } else {
const Shape *shape = m_shapes[shapeIndex]; const Shape *shape = m_shapes[shapeIndex];
if (shape->rayIntersect(ray, mint, maxt, t, if (shape->rayIntersect(ray, mint, maxt, t,
reinterpret_cast<uint8_t*>(temp) + 4)) { reinterpret_cast<uint8_t*>(temp) + 8)) {
cache->shapeIndex = shapeIdx; cache->shapeIndex = shapeIdx;
cache->primIndex = KNoTriangleFlag;
return EYes; return EYes;
} }
} }
@ -193,7 +194,7 @@ protected:
if (ta.rayIntersect(ray, mint, maxt, tempU, tempV, tempT)) { if (ta.rayIntersect(ray, mint, maxt, tempU, tempV, tempT)) {
t = tempT; t = tempT;
cache->shapeIndex = ta.shapeIndex; cache->shapeIndex = ta.shapeIndex;
cache->index = ta.index; cache->primIndex = ta.primIndex;
cache->u = tempU; cache->u = tempU;
cache->v = tempV; cache->v = tempV;
return EYes; return EYes;
@ -202,8 +203,9 @@ protected:
uint32_t shapeIndex = ta.shapeIndex; uint32_t shapeIndex = ta.shapeIndex;
const Shape *shape = m_shapes[shapeIndex]; const Shape *shape = m_shapes[shapeIndex];
if (shape->rayIntersect(ray, mint, maxt, t, if (shape->rayIntersect(ray, mint, maxt, t,
reinterpret_cast<uint8_t*>(temp) + 4)) { reinterpret_cast<uint8_t*>(temp) + 8)) {
cache->shapeIndex = shapeIndex; cache->shapeIndex = shapeIndex;
cache->primIndex = KNoTriangleFlag;
return EYes; return EYes;
} }
} }
@ -221,17 +223,6 @@ protected:
}; };
#endif #endif
/**
* Fallback for incoherent rays
*/
inline void rayIntersectPacketIncoherent(const Ray *rays,
Intersection *its) const {
for (int i=0; i<4; i++) {
if (!rayIntersect(rays[i], its[i]))
its[i].t = std::numeric_limits<float>::infinity();
}
}
/// Virtual destructor /// Virtual destructor
virtual ~KDTree(); virtual ~KDTree();
private: private:

View File

@ -111,9 +111,6 @@ public:
/// Return a string representation /// Return a string representation
std::string toString() const; std::string toString() const;
public: public:
/// Incident direction in the local frame
Vector wi;
/// Distance traveled along the ray /// Distance traveled along the ray
Float t; Float t;
@ -129,7 +126,7 @@ public:
/// UV surface coordinates /// UV surface coordinates
Point2 uv; Point2 uv;
/// Position partials wrt. to changes in texture-space /// Position partials wrt. the texture space parameterization
Vector dpdu, dpdv; Vector dpdu, dpdv;
/// Texture coordinate mapping partials wrt. changes in screen-space /// Texture coordinate mapping partials wrt. changes in screen-space
@ -138,6 +135,9 @@ public:
/// Interpolated vertex color /// Interpolated vertex color
Spectrum color; Spectrum color;
/// Incident direction in the local frame
Vector wi;
/// Affected shape /// Affected shape
const Shape *shape; const Shape *shape;
@ -197,13 +197,6 @@ public:
virtual void fillIntersectionRecord(const Ray &ray, Float t, virtual void fillIntersectionRecord(const Ray &ray, Float t,
const void *temp, Intersection &its) const; const void *temp, Intersection &its) const;
#if defined(MTS_SSE)
/// Perform 4 simultaneous intersection tests using SSE
// virtual __m128 rayIntersectPacket(const RayPacket4 &packet, const
// __m128 mint, __m128 maxt, __m128 inactive,
// Intersection4 &its) const;
#endif
/** /**
* \brief Sample a point on the shape * \brief Sample a point on the shape
* *

View File

@ -44,8 +44,8 @@ struct TriAccel {
Float c_nu; Float c_nu;
Float c_nv; Float c_nv;
uint32_t index;
uint32_t shapeIndex; uint32_t shapeIndex;
uint32_t primIndex;
/// Construct from vertex data. Returns '1' if there was a failure /// Construct from vertex data. Returns '1' if there was a failure
inline int load(const Point &A, const Point &B, const Point &C); inline int load(const Point &A, const Point &B, const Point &C);

View File

@ -86,7 +86,7 @@ void KDTree::build() {
const Point &v2 = positions[tri.idx[2]]; const Point &v2 = positions[tri.idx[2]];
m_triAccel[idx].load(v0, v1, v2); m_triAccel[idx].load(v0, v1, v2);
m_triAccel[idx].shapeIndex = i; m_triAccel[idx].shapeIndex = i;
m_triAccel[idx].index = j; m_triAccel[idx].primIndex = j;
++idx; ++idx;
} }
} else { } else {
@ -128,7 +128,7 @@ bool KDTree::rayIntersect(const Ray &ray, Intersection &its) const {
const Shape *shape = m_shapes[cache->shapeIndex]; const Shape *shape = m_shapes[cache->shapeIndex];
if (m_triangleFlag[cache->shapeIndex]) { if (m_triangleFlag[cache->shapeIndex]) {
const TriMesh *trimesh = static_cast<const TriMesh *>(shape); const TriMesh *trimesh = static_cast<const TriMesh *>(shape);
const Triangle &tri = trimesh->getTriangles()[cache->index]; const Triangle &tri = trimesh->getTriangles()[cache->primIndex];
const Point *vertexPositions = trimesh->getVertexPositions(); const Point *vertexPositions = trimesh->getVertexPositions();
const Normal *vertexNormals = trimesh->getVertexNormals(); const Normal *vertexNormals = trimesh->getVertexNormals();
const Point2 *vertexTexcoords = trimesh->getVertexTexcoords(); const Point2 *vertexTexcoords = trimesh->getVertexTexcoords();
@ -195,7 +195,8 @@ bool KDTree::rayIntersect(const Ray &ray, Intersection &its) const {
return true; return true;
} else { } else {
shape->fillIntersectionRecord(ray, its.t, shape->fillIntersectionRecord(ray, its.t,
reinterpret_cast<const uint8_t*>(temp) + 4, its); reinterpret_cast<const uint8_t*>(temp) + 8, its);
return true;
} }
} }
} }
@ -231,7 +232,7 @@ static StatsCounter coherentPackets("General", "Coherent ray packets");
static StatsCounter incoherentPackets("General", "Incoherent ray packets"); static StatsCounter incoherentPackets("General", "Incoherent ray packets");
void KDTree::rayIntersectPacket(const RayPacket4 &packet, void KDTree::rayIntersectPacket(const RayPacket4 &packet,
const RayInterval4 &rayInterval, Intersection4 &its) const { const RayInterval4 &rayInterval, Intersection4 &its, void *temp) const {
CoherentKDStackEntry MM_ALIGN16 stack[MTS_KD_MAXDEPTH]; CoherentKDStackEntry MM_ALIGN16 stack[MTS_KD_MAXDEPTH];
RayInterval4 MM_ALIGN16 interval; RayInterval4 MM_ALIGN16 interval;
@ -248,9 +249,9 @@ void KDTree::rayIntersectPacket(const RayPacket4 &packet,
interval.mint.ps = _mm_max_ps(interval.mint.ps, rayInterval.mint.ps); interval.mint.ps = _mm_max_ps(interval.mint.ps, rayInterval.mint.ps);
interval.maxt.ps = _mm_min_ps(interval.maxt.ps, rayInterval.maxt.ps); interval.maxt.ps = _mm_min_ps(interval.maxt.ps, rayInterval.maxt.ps);
__m128 itsFound = _mm_cmpgt_ps(interval.mint.ps, interval.maxt.ps), SSEVector itsFound( _mm_cmpgt_ps(interval.mint.ps, interval.maxt.ps));
masked = itsFound; __m128 masked = itsFound.ps;
if (_mm_movemask_ps(itsFound) == 0xF) if (_mm_movemask_ps(itsFound.ps) == 0xF)
return; return;
while (currNode != NULL) { while (currNode != NULL) {
@ -295,54 +296,57 @@ void KDTree::rayIntersectPacket(const RayPacket4 &packet,
const index_type primEnd = currNode->getPrimEnd(); const index_type primEnd = currNode->getPrimEnd();
if (EXPECT_NOT_TAKEN(primStart != primEnd)) { if (EXPECT_NOT_TAKEN(primStart != primEnd)) {
#ifdef MTS_USE_TRIACCEL4 SSEVector
const int count = m_packedTriangles[primStart].indirectionCount; searchStart(_mm_max_ps(rayInterval.mint.ps,
primStart = m_packedTriangles[primStart].indirectionIndex; _mm_mul_ps(interval.mint.ps, SSEConstants::om_eps.ps))),
primEnd = primStart + count; searchEnd(_mm_min_ps(rayInterval.maxt.ps,
#endif _mm_mul_ps(interval.maxt.ps, SSEConstants::op_eps.ps)));
__m128
searchStart = _mm_max_ps(rayInterval.mint.ps,
_mm_mul_ps(interval.mint.ps, SSEConstants::om_eps.ps)),
searchEnd = _mm_min_ps(rayInterval.maxt.ps,
_mm_mul_ps(interval.maxt.ps, SSEConstants::op_eps.ps));
for (index_type entry=primStart; entry != primEnd; entry++) { for (index_type entry=primStart; entry != primEnd; entry++) {
const TriAccel &kdTri = m_triAccel[m_indices[entry]]; const TriAccel &kdTri = m_triAccel[m_indices[entry]];
if (EXPECT_TAKEN(kdTri.k != KNoTriangleFlag)) { if (EXPECT_TAKEN(kdTri.k != KNoTriangleFlag)) {
itsFound = _mm_or_ps(itsFound, itsFound.ps = _mm_or_ps(itsFound.ps,
kdTri.rayIntersectPacket(packet, searchStart, searchEnd, masked, its)); kdTri.rayIntersectPacket(packet, searchStart.ps, searchEnd.ps, masked, its));
} else { } else {
#if 0 const Shape *shape = m_shapes[kdTri.shapeIndex];
/* Not a triangle - invoke the shape's intersection routine */
__m128 hasIts = m_shapes[kdTri.shapeIndex]->rayIntersectPacket(packet, for (int i=0; i<4; ++i) {
searchStart, searchEnd, masked, its); Ray ray;
itsFound = _mm_or_ps(itsFound, hasIts); for (int axis=0; axis<3; axis++) {
its.primIndex.pi = mux_epi32(pstoepi32(hasIts), ray.o[axis] = packet.o[axis].f[i];
load1_epi32(kdTri.index), its.primIndex.pi); ray.d[axis] = packet.d[axis].f[i];
its.shapeIndex.pi = mux_epi32(pstoepi32(hasIts),
load1_epi32(kdTri.shapeIndex), its.shapeIndex.pi);
#endif
} }
searchEnd = _mm_min_ps(searchEnd, its.t.ps); Float t;
if (shape->rayIntersect(ray, searchStart.f[i], searchEnd.f[i], t,
reinterpret_cast<uint8_t *>(temp)
+ i * MTS_KD_INTERSECTION_TEMP + 8)) {
its.t.f[i] = t;
its.shapeIndex.i[i] = kdTri.shapeIndex;
its.primIndex.i[i] = KNoTriangleFlag;
itsFound.i[i] = 0xFFFFFFFF;
}
}
}
searchEnd.ps = _mm_min_ps(searchEnd.ps, its.t.ps);
} }
} }
/* Abort if the tree has been traversed or if /* Abort if the tree has been traversed or if
intersections have been found for all four rays */ intersections have been found for all four rays */
if (_mm_movemask_ps(itsFound) == 0xF || --stackIndex < 0) if (_mm_movemask_ps(itsFound.ps) == 0xF || --stackIndex < 0)
break; break;
/* Pop from the stack */ /* Pop from the stack */
currNode = stack[stackIndex].node; currNode = stack[stackIndex].node;
interval = stack[stackIndex].interval; interval = stack[stackIndex].interval;
masked = _mm_or_ps(itsFound, masked = _mm_or_ps(itsFound.ps,
_mm_cmpgt_ps(interval.mint.ps, interval.maxt.ps)); _mm_cmpgt_ps(interval.mint.ps, interval.maxt.ps));
} }
} }
void KDTree::rayIntersectPacketIncoherent(const RayPacket4 &packet, void KDTree::rayIntersectPacketIncoherent(const RayPacket4 &packet,
const RayInterval4 &rayInterval, Intersection4 &its4) const { const RayInterval4 &rayInterval, Intersection4 &its4, void *temp) const {
uint8_t temp[MTS_KD_INTERSECTION_TEMP];
++incoherentPackets; ++incoherentPackets;
for (int i=0; i<4; i++) { for (int i=0; i<4; i++) {
@ -354,12 +358,13 @@ void KDTree::rayIntersectPacketIncoherent(const RayPacket4 &packet,
} }
ray.mint = rayInterval.mint.f[i]; ray.mint = rayInterval.mint.f[i];
ray.maxt = rayInterval.maxt.f[i]; ray.maxt = rayInterval.maxt.f[i];
if (ray.mint < ray.maxt && rayIntersectHavran<false>(ray, ray.mint, ray.maxt, its4.t.f[i], temp)) { if (ray.mint < ray.maxt && rayIntersectHavran<false>(ray, ray.mint,
ray.maxt, its4.t.f[i], reinterpret_cast<uint8_t *>(temp) + i * MTS_KD_INTERSECTION_TEMP)) {
const IntersectionCache *cache = reinterpret_cast<const IntersectionCache *>(temp); const IntersectionCache *cache = reinterpret_cast<const IntersectionCache *>(temp);
its4.u.f[i] = cache->u; its4.u.f[i] = cache->u;
its4.v.f[i] = cache->u; its4.v.f[i] = cache->v;
its4.shapeIndex.i[i] = cache->shapeIndex; its4.shapeIndex.i[i] = cache->shapeIndex;
its4.primIndex.i[i] = cache->index; its4.primIndex.i[i] = cache->primIndex;
} }
} }
} }

View File

@ -137,6 +137,7 @@ void PreviewWorker::processCoherent(const WorkUnit *workUnit, WorkResult *workRe
const SSEVector MM_ALIGN16 yOffset(0.0f, 0.0f, 1.0f, 1.0f); const SSEVector MM_ALIGN16 yOffset(0.0f, 0.0f, 1.0f, 1.0f);
const int pixelOffset[] = {0, 1, width, width+1}; const int pixelOffset[] = {0, 1, width, width+1};
const __m128 clamping = _mm_set1_ps(1/(m_minDist*m_minDist)); const __m128 clamping = _mm_set1_ps(1/(m_minDist*m_minDist));
uint8_t temp[MTS_KD_INTERSECTION_TEMP*4];
const __m128 camTL[3] = { const __m128 camTL[3] = {
_mm_set1_ps(m_cameraTL.x), _mm_set1_ps(m_cameraTL.x),
@ -232,9 +233,9 @@ void PreviewWorker::processCoherent(const WorkUnit *workUnit, WorkResult *workRe
primRay4.signs[0][0] = primSignsX ? 1 : 0; primRay4.signs[0][0] = primSignsX ? 1 : 0;
primRay4.signs[1][0] = primSignsY ? 1 : 0; primRay4.signs[1][0] = primSignsY ? 1 : 0;
primRay4.signs[2][0] = primSignsZ ? 1 : 0; primRay4.signs[2][0] = primSignsZ ? 1 : 0;
m_kdtree->rayIntersectPacket(primRay4, itv4, its4); m_kdtree->rayIntersectPacket(primRay4, itv4, its4, temp);
} else { } else {
m_kdtree->rayIntersectPacketIncoherent(primRay4, itv4, its4); m_kdtree->rayIntersectPacketIncoherent(primRay4, itv4, its4, temp);
} }
numRays += 4; numRays += 4;
@ -288,7 +289,6 @@ void PreviewWorker::processCoherent(const WorkUnit *workUnit, WorkResult *workRe
const Shape *shape = (*m_shapes)[its4.shapeIndex.i[idx]]; const Shape *shape = (*m_shapes)[its4.shapeIndex.i[idx]];
const BSDF *bsdf = shape->getBSDF(); const BSDF *bsdf = shape->getBSDF();
if (EXPECT_TAKEN(primIndex != KNoTriangleFlag)) { if (EXPECT_TAKEN(primIndex != KNoTriangleFlag)) {
const TriMesh *mesh = static_cast<const TriMesh *>(shape); const TriMesh *mesh = static_cast<const TriMesh *>(shape);
const Triangle &t = mesh->getTriangles()[primIndex]; const Triangle &t = mesh->getTriangles()[primIndex];
@ -343,13 +343,12 @@ void PreviewWorker::processCoherent(const WorkUnit *workUnit, WorkResult *workRe
its.dpdv = t0.dpdv * alpha + t1.dpdv * beta + t2.dpdv * gamma; its.dpdv = t0.dpdv * alpha + t1.dpdv * beta + t2.dpdv * gamma;
} }
} else { } else {
#if 0
Ray ray( Ray ray(
Point(primRay4.o[0].f[idx], primRay4.o[1].f[idx], primRay4.o[2].f[idx]), Point(primRay4.o[0].f[idx], primRay4.o[1].f[idx], primRay4.o[2].f[idx]),
Vector(primRay4.d[0].f[idx], primRay4.d[1].f[idx], primRay4.d[2].f[idx]) Vector(primRay4.d[0].f[idx], primRay4.d[1].f[idx], primRay4.d[2].f[idx])
); );
shape->rayIntersect(ray, its); shape->fillIntersectionRecord(ray, its4.t.f[idx], temp +
#endif + idx * MTS_KD_INTERSECTION_TEMP + 8, its);
} }
wo.x = nSecD[0].f[idx]; wo.y = nSecD[1].f[idx]; wo.z = nSecD[2].f[idx]; wo.x = nSecD[0].f[idx]; wo.y = nSecD[1].f[idx]; wo.z = nSecD[2].f[idx];
@ -427,9 +426,9 @@ void PreviewWorker::processCoherent(const WorkUnit *workUnit, WorkResult *workRe
secRay4.signs[0][0] = secSignsX ? 1 : 0; secRay4.signs[0][0] = secSignsX ? 1 : 0;
secRay4.signs[1][0] = secSignsY ? 1 : 0; secRay4.signs[1][0] = secSignsY ? 1 : 0;
secRay4.signs[2][0] = secSignsZ ? 1 : 0; secRay4.signs[2][0] = secSignsZ ? 1 : 0;
m_kdtree->rayIntersectPacket(secRay4, secItv4, secIts4); m_kdtree->rayIntersectPacket(secRay4, secItv4, secIts4, temp);
} else { } else {
m_kdtree->rayIntersectPacketIncoherent(secRay4, secItv4, secIts4); m_kdtree->rayIntersectPacketIncoherent(secRay4, secItv4, secIts4, temp);
} }
for (int idx=0; idx<4; ++idx) { for (int idx=0; idx<4; ++idx) {

View File

@ -239,7 +239,7 @@ void Scene::configure() {
Float maxExtents = std::max(extents.x, extents.y); Float maxExtents = std::max(extents.x, extents.y);
Float distance = maxExtents/(2.0f * std::tan(45 * .5f * M_PI/180)); Float distance = maxExtents/(2.0f * std::tan(45 * .5f * M_PI/180));
props.setTransform("toWorld", Transform::translate(Vector(center.x, center.y, aabb.getMinimum().x - distance))); props.setTransform("toWorld", Transform::translate(Vector(center.x, center.y, aabb.getMinimum().z - distance)));
props.setFloat("fov", 45.0f); props.setFloat("fov", 45.0f);
m_camera = static_cast<Camera *> (PluginManager::getInstance()->createObject(Camera::m_theClass, props)); m_camera = static_cast<Camera *> (PluginManager::getInstance()->createObject(Camera::m_theClass, props));

View File

@ -29,136 +29,116 @@ MTS_NAMESPACE_BEGIN
*/ */
class Sphere : public Shape { class Sphere : public Shape {
private:
Point m_center;
Float m_radius;
public: public:
Sphere(const Properties &props) : Shape(props) { Sphere(const Properties &props) : Shape(props) {
m_radius = props.getFloat("radius", 1.0f); // Negative radius -> inside-out sphere m_objectToWorld = props.getTransform("toWorld", Transform());
if (m_objectToWorld.hasScale()) m_center = m_objectToWorld(Point(0,0,0));
Log(EError, "The scale needs to be specified using the 'radius' parameter!"); /// non-uniform scales are not supported!
m_radius = m_objectToWorld(Vector(1,0,0)).length();
m_worldToObject = m_objectToWorld.inverse();
m_invSurfaceArea = 1/(4*M_PI*m_radius*m_radius);
} }
Sphere(Stream *stream, InstanceManager *manager) Sphere(Stream *stream, InstanceManager *manager)
: Shape(stream, manager) { : Shape(stream, manager) {
m_objectToWorld = Transform(stream);
m_radius = stream->readFloat(); m_radius = stream->readFloat();
configure(); m_center = Point(stream);
m_worldToObject = m_objectToWorld.inverse();
m_invSurfaceArea = 1/(4*M_PI*m_radius*m_radius);
} }
void configure() { void serialize(Stream *stream, InstanceManager *manager) const {
Shape::configure(); Shape::serialize(stream, manager);
m_objectToWorld.serialize(stream);
stream->writeFloat(m_radius);
m_center.serialize(stream);
}
m_surfaceArea = 4*M_PI*m_radius*m_radius; AABB getAABB() const {
m_invSurfaceArea = 1.0f / m_surfaceArea; AABB aabb;
m_center = m_objectToWorld(Point(0,0,0));
Float absRadius = std::abs(m_radius); Float absRadius = std::abs(m_radius);
m_aabb.min = m_center - Vector(absRadius, absRadius, absRadius); aabb.min = m_center - Vector(absRadius);
m_aabb.max = m_center + Vector(absRadius, absRadius, absRadius); aabb.max = m_center + Vector(absRadius);
m_bsphere.center = m_center; return aabb;
m_bsphere.radius = absRadius;
} }
bool rayIntersect(const Ray &ray, Float start, Float end, Float &t) const { Float getSurfaceArea() const {
return 4*M_PI*m_radius*m_radius;
}
bool rayIntersect(const Ray &ray, Float mint, Float maxt, Float &t, void *tmp) const {
Vector ro = ray.o - m_center;
/* Transform into the local coordinate system and normalize */ /* Transform into the local coordinate system and normalize */
double nearT, farT; Float A = ray.d.x*ray.d.x + ray.d.y*ray.d.y + ray.d.z*ray.d.z;
const double ox = (double) ray.o.x - (double) m_center.x, Float B = 2 * (ray.d.x*ro.x + ray.d.y*ro.y + ray.d.z*ro.z);
oy = (double) ray.o.y - (double) m_center.y, Float C = ro.x*ro.x + ro.y*ro.y +
oz = (double) ray.o.z - (double) m_center.z; ro.z*ro.z - m_radius*m_radius;
const double dx = ray.d.x, dy = ray.d.y, dz = ray.d.z;
const double A = dx*dx + dy*dy + dz*dz;
const double B = 2 * (dx*ox + dy*oy + dz*oz);
const double C = ox*ox + oy*oy + oz*oz - m_radius * m_radius;
if (!solveQuadraticDouble(A, B, C, nearT, farT)) Float nearT, farT;
if (!solveQuadratic(A, B, C, nearT, farT))
return false; return false;
if (nearT > end || farT < start) if (nearT > maxt || farT < mint)
return false; return false;
if (nearT < start) { if (nearT < mint) {
if (farT > end) if (farT > maxt)
return false; return false;
t = (Float) farT; t = farT;
} else { } else {
t = (Float) nearT; t = nearT;
} }
return true; return true;
} }
bool rayIntersect(const Ray &ray, Intersection &its) const { void fillIntersectionRecord(const Ray &ray, Float t,
if (!rayIntersect(ray, ray.mint, ray.maxt, its.t)) const void *temp, Intersection &its) const {
return false; its.t = t;
its.p = ray(its.t); its.p = ray(t);
Vector local = normalize(m_worldToObject(its.p - m_center));
Point local = m_worldToObject(its.p); Float theta = std::acos(local.z);
Float absRadius = std::abs(m_radius);
Float theta = std::acos(local.z / absRadius);
Float phi = std::atan2(local.y, local.x); Float phi = std::atan2(local.y, local.x);
if (phi < 0) if (phi < 0)
phi += 2*M_PI; phi += 2*M_PI;
its.uv.x = theta / M_PI;
its.uv.y = phi / (2*M_PI); its.uv.x = phi * (0.5 * INV_PI);
its.shape = this; its.uv.y = theta * INV_PI;
its.dpdu = m_objectToWorld(Vector(-local.y, local.x, 0) * (2*M_PI));
Float zrad = std::sqrt(local.x*local.x + local.y*local.y); Float zrad = std::sqrt(local.x*local.x + local.y*local.y);
its.geoFrame.n = Normal(normalize(its.p - m_center));
if (m_radius < 0)
its.geoFrame.n *= -1;
if (zrad > 0) { if (zrad > 0) {
Float invZRad = 1.0f / zrad; Float invZRad = 1.0f / zrad,
Float cosPhi = local.x * invZRad; cosPhi = local.x * invZRad,
Float sinPhi = local.y * invZRad; sinPhi = local.y * invZRad;
its.dpdu = m_objectToWorld(Vector(-local.y, local.x, 0) * (2*M_PI));
its.dpdv = m_objectToWorld(Vector(local.z * cosPhi, local.z * sinPhi, its.dpdv = m_objectToWorld(Vector(local.z * cosPhi, local.z * sinPhi,
- absRadius * std::sin(theta)) * M_PI); -std::sin(theta)) * M_PI);
its.geoFrame.s = normalize(its.dpdu - its.geoFrame.n its.geoFrame.s = normalize(its.dpdu);
* dot(its.geoFrame.n, its.dpdu)); its.geoFrame.t = normalize(its.dpdv);
its.geoFrame.t = cross(its.geoFrame.n, its.geoFrame.s); its.geoFrame.n = normalize(cross(its.dpdv, its.dpdu));
} else { } else {
// avoid a singularity // avoid a singularity
Float cosPhi = 0, sinPhi = 1; const Float cosPhi = 0, sinPhi = 1;
its.dpdv = m_objectToWorld(Vector(local.z * cosPhi, local.z * sinPhi, its.dpdv = m_objectToWorld(Vector(local.z * cosPhi, local.z * sinPhi,
-absRadius*std::sin(theta))* M_PI); -std::sin(theta)) * M_PI);
its.dpdu = cross(its.dpdv, its.geoFrame.n); its.geoFrame = Frame(normalize(its.p - m_center));
coordinateSystem(its.geoFrame.n, its.geoFrame.s, its.geoFrame.t); if (m_radius < 0)
its.geoFrame.n *= -1;
} }
its.shFrame = its.geoFrame; its.shFrame = its.geoFrame;
its.wi = its.toLocal(-ray.d); its.wi = its.toLocal(-ray.d);
its.shape = this;
its.hasUVPartials = false; its.hasUVPartials = false;
return true;
} }
#if defined(MTS_SSE)
/* SSE-accelerated packet tracing is not supported for spheres at the moment */
__m128 rayIntersectPacket(const RayPacket4 &packet, const
__m128 start, __m128 end, __m128 inactive, Intersection4 &its) const {
SSEVector result(_mm_setzero_ps()), mint(start), maxt(end), mask(inactive);
Float t;
for (int i=0; i<4; i++) {
Ray ray;
for (int axis=0; axis<3; axis++) {
ray.o[axis] = packet.o[axis].f[i];
ray.d[axis] = packet.d[axis].f[i];
}
if (mask.i[i] != 0)
continue;
if (rayIntersect(ray, mint.f[i], maxt.f[i], t)) {
result.i[i] = 0xFFFFFFFF;
its.t.f[i] = t;
}
}
return result.ps;
}
#endif
Float sampleArea(ShapeSamplingRecord &sRec, const Point2 &sample) const { Float sampleArea(ShapeSamplingRecord &sRec, const Point2 &sample) const {
Vector v = squareToSphere(sample); Vector v = squareToSphere(sample);
sRec.n = m_objectToWorld(Normal(v)); sRec.n = Normal(v);
sRec.p = m_objectToWorld(Point(v * m_radius)); sRec.p = Point(v * m_radius) + m_center;
return m_invSurfaceArea; return 1.0f / (4*M_PI*m_radius*m_radius);
} }
/** /**
@ -193,7 +173,7 @@ public:
Ray ray(p, d); Ray ray(p, d);
Float t; Float t;
if (!rayIntersect(ray, 0, std::numeric_limits<Float>::infinity(), t)) { if (!rayIntersect(ray, 0, std::numeric_limits<Float>::infinity(), t, NULL)) {
// This can happen sometimes due to roundoff errors - just fail to // This can happen sometimes due to roundoff errors - just fail to
// generate a sample in this case. // generate a sample in this case.
return 0; return 0;
@ -223,28 +203,25 @@ public:
return squareToConePdf(cosThetaMax); return squareToConePdf(cosThetaMax);
} }
void serialize(Stream *stream, InstanceManager *manager) const {
Shape::serialize(stream, manager);
stream->writeFloat(m_radius);
}
std::string toString() const { std::string toString() const {
std::ostringstream oss; std::ostringstream oss;
oss << "Sphere[" << endl oss << "Sphere[" << endl
<< " radius = " << m_radius << ", " << endl << " radius = " << m_radius << ", " << endl
<< " center = " << m_center.toString() << ", " << endl << " center = " << m_center.toString() << ", " << endl
<< " objectToWorld = " << indent(m_objectToWorld.toString()) << "," << endl
<< " aabb = " << m_aabb.toString() << "," << endl
<< " bsphere = " << m_bsphere.toString() << "," << endl
<< " bsdf = " << indent(m_bsdf.toString()) << "," << endl << " bsdf = " << indent(m_bsdf.toString()) << "," << endl
<< " luminaire = " << indent(m_luminaire.toString()) << "," << endl << " luminaire = " << indent(m_luminaire.toString()) << "," << endl
<< " subsurface = " << indent(m_subsurface.toString()) << "," << endl << " subsurface = " << indent(m_subsurface.toString()) << endl
<< " surfaceArea = " << m_surfaceArea << endl
<< "]"; << "]";
return oss.str(); return oss.str();
} }
MTS_DECLARE_CLASS() MTS_DECLARE_CLASS()
private:
Transform m_objectToWorld;
Transform m_worldToObject;
Point m_center;
Float m_radius;
Float m_invSurfaceArea;
}; };
MTS_IMPLEMENT_CLASS_S(Sphere, false, Shape) MTS_IMPLEMENT_CLASS_S(Sphere, false, Shape)