got it to compile

metadata
Wenzel Jakob 2010-11-16 17:20:24 +01:00
parent ceaa1907c0
commit df1a3fc3ba
44 changed files with 184 additions and 112 deletions

View File

@ -31,24 +31,27 @@ struct Ray {
Vector d; ///< Ray direction
Float maxt; ///< Maximum range for intersection tests
Vector dRcp; ///< Componentwise reciprocals of the ray direction
Float time; ///< Time value associated with this ray
/// Construct a new ray
inline Ray() : mint(Epsilon), maxt(std::numeric_limits<Float>::infinity()) {
inline Ray() : mint(Epsilon),
maxt(std::numeric_limits<Float>::infinity()), time(0.0f) {
}
/// Copy constructor (1)
inline Ray(const Ray &ray)
: o(ray.o), mint(ray.mint), d(ray.d), maxt(ray.maxt), dRcp(ray.dRcp) {
: o(ray.o), mint(ray.mint), d(ray.d), maxt(ray.maxt),
dRcp(ray.dRcp), time(ray.time) {
}
/// Copy constructor (2)
inline Ray(const Ray &ray, Float mint, Float maxt)
: o(ray.o), mint(mint), d(ray.d), maxt(maxt), dRcp(ray.dRcp) {
: o(ray.o), mint(mint), d(ray.d), maxt(maxt), dRcp(ray.dRcp), time(ray.time) {
}
/// Construct a new ray
inline Ray(Point o, Vector _d)
: o(o), mint(Epsilon), d(_d), maxt(std::numeric_limits<Float>::infinity()) {
inline Ray(Point o, Vector _d, Float time)
: o(o), mint(Epsilon), d(_d), maxt(std::numeric_limits<Float>::infinity()), time(time) {
#ifdef MTS_DEBUG_FP
disable_fpexcept();
#endif
@ -61,8 +64,8 @@ struct Ray {
}
/// Construct a new ray
inline Ray(Point o, Vector _d, Float mint, Float maxt)
: o(o), mint(mint), d(_d), maxt(maxt) {
inline Ray(Point o, Vector _d, Float mint, Float maxt, Float time)
: o(o), mint(mint), d(_d), maxt(maxt), time(time) {
#ifdef MTS_DEBUG_FP
disable_fpexcept();
#endif
@ -76,6 +79,9 @@ struct Ray {
/// Set the origin
inline void setOrigin(const Point &oVal) { o = oVal; }
/// Set the origin
inline void setTime(const Float &tval) { time = tval; }
/// Set the direction and update the reciprocal
inline void setDirection(const Vector &dVal) {
@ -97,7 +103,8 @@ struct Ray {
/// Return a string representation of this ray
inline std::string toString() const {
std::ostringstream oss;
oss << "Ray[orig=" << o.toString() << ", dest=" << d.toString() << "]";
oss << "Ray[orig=" << o.toString() << ", dest="
<< d.toString() << ", time=" << time << "]";
return oss.str();
}
};
@ -112,8 +119,8 @@ struct RayDifferential : public Ray {
: hasDifferentials(false) {
}
inline RayDifferential(const Point &p, const Vector &d)
: Ray(p, d), hasDifferentials(false) {
inline RayDifferential(const Point &p, const Vector &d, Float time)
: Ray(p, d, time), hasDifferentials(false) {
}
inline explicit RayDifferential(const Ray &ray)

View File

@ -310,6 +310,7 @@ public:
b.dRcp.x = 1.0f / b.d.x;
b.dRcp.y = 1.0f / b.d.y;
b.dRcp.z = 1.0f / b.d.z;
b.time = a.time;
#ifdef MTS_DEBUG_FP
enable_fpexcept();
#endif

View File

@ -31,11 +31,11 @@ class MTS_EXPORT_RENDER Camera : public ConfigurableObject {
public:
/// Create a ray from the given sample
virtual void generateRay(const Point2 &sample, const Point2 &lensSample,
Ray &ray) const = 0;
Float timeSample, Ray &ray) const = 0;
/// Create ray differentials from the given sample
void generateRayDifferential(const Point2 &sample,
const Point2 &lensSample, RayDifferential &ray) const;
const Point2 &lensSample, Float timeSample, RayDifferential &ray) const;
/**
* Turn a world-space position into fractional pixel coordinates.
@ -46,6 +46,9 @@ public:
/// Does generateRay() expect a proper lens sample?
virtual bool needsLensSample() const = 0;
/// Does generateRay() expect a proper time sample?
inline bool needsTimeSample() const { return m_shutterOpenTime > 0; }
/// Return the camera position (approximate in the case of finite sensor area)
inline const Point &getPosition() const { return m_position; }
@ -81,11 +84,20 @@ public:
*/
inline const Sampler *getSampler() const { return m_sampler.get(); }
/// Return the time value of the shutter opening event
inline Float getShutterOpen() const { return m_shutterOpen; }
/// Return the length, for which the shutter remains open
inline Float getShutterOpenTime() const { return m_shutterOpenTime; }
/// Return the time value of the shutter closing event
inline Float getShutterClose() const { return m_shutterOpen; }
/// Return the image plane normal
inline Normal getImagePlaneNormal() const {
return Normal(normalize(m_cameraToWorld(Vector(0, 0, 1))));
}
/// Return the view transformation
inline const Transform &getViewTransform() const { return m_worldToCamera; }
@ -143,6 +155,7 @@ protected:
Transform m_worldToCamera, m_cameraToWorld;
Point m_position;
Properties m_properties;
Float m_shutterOpen, m_shutterClose, m_shutterOpenTime;
};
class MTS_EXPORT_RENDER ProjectiveCamera : public Camera {

View File

@ -3163,7 +3163,7 @@ template <typename AABBType, typename Derived>
sample2(random->nextFloat(), random->nextFloat());
Point p1 = bsphere.center + squareToSphere(sample1) * bsphere.radius;
Point p2 = bsphere.center + squareToSphere(sample2) * bsphere.radius;
Ray ray(p1, normalize(p2-p1));
Ray ray(p1, normalize(p2-p1), 0.0f);
Float mint, maxt, t;
if (this->m_aabb.rayIntersect(ray, mint, maxt)) {
if (ray.mint > mint) mint = ray.mint;

View File

@ -288,7 +288,7 @@ public:
* cosine-weighted sampling and a configurable number of rays.
*/
virtual Spectrum E(const Scene *scene, const Point &p, const
Normal &n, Sampler *sampler) const;
Normal &n, Float time, Sampler *sampler) const;
/**
* Perform the main rendering task. The work is automatically

View File

@ -353,6 +353,7 @@ protected:
shape->fillIntersectionRecord(ray,
reinterpret_cast<const uint8_t*>(temp) + 8, its);
}
its.time = ray.time;
}
/// Plain shadow ray query (used by the 'instance' plugin)

View File

@ -106,7 +106,7 @@ public:
* which occurred while tracing particles.
*/
virtual void handleMediumInteraction(int depth, bool caustic,
const MediumSamplingRecord &mRec, const Vector &wi,
const MediumSamplingRecord &mRec, Float time, const Vector &wi,
const Spectrum &weight);
MTS_DECLARE_CLASS()

View File

@ -64,7 +64,7 @@ inline bool RadianceQueryRecord::rayIntersect(const RayDifferential &ray) {
/* Only search for an intersection if this was explicitly requested */
if (type & EIntersection) {
scene->rayIntersect(ray, its);
attenuation = scene->getAttenuation(Ray(ray.o, ray.d, 0, its.t));
attenuation = scene->getAttenuation(Ray(ray.o, ray.d, 0, its.t, ray.time));
if (type & EOpacity)
alpha = its.isValid() ? 1 : (1 - attenuation.average());
if (type & EDistance)

View File

@ -131,8 +131,8 @@ public:
}
/// Cast a shadow ray
inline bool isOccluded(const Point &p1, const Point &p2) const {
Ray ray(p1, p2-p1);
inline bool isOccluded(const Point &p1, const Point &p2, Float time) const {
Ray ray(p1, p2-p1, time);
ray.mint = ShadowEpsilon;
ray.maxt = 1-ShadowEpsilon;
return m_kdtree->rayIntersect(ray);
@ -155,6 +155,9 @@ public:
* @param lRec
* A luminaire sampling record, which will hold information such as the
* probability density, associated measure etc.
* @param time
* Associated time value -- this is needed to check the visibility when
* objects are potentially moving over time
* @param testVisibility
* If this is true, a shadow-ray will be cast to ensure that no surface
* blocks the path lRec.sRec.p <-> p.
@ -162,7 +165,8 @@ public:
* true if sampling was successful
*/
bool sampleLuminaire(const Point &p,
LuminaireSamplingRecord &lRec, const Point2 &sample, bool testVisibility = true) const;
LuminaireSamplingRecord &lRec, Float time,
const Point2 &sample, bool testVisibility = true) const;
/**
* Sample a visible point on a luminaire (ideally uniform wrt. the solid angle of p). Takes
@ -186,9 +190,10 @@ public:
* lRec.Le by the integrated extinction coefficient on the path lRec.sRec.p <-> p.
*/
inline bool sampleLuminaireAttenuated(const Point &p,
LuminaireSamplingRecord &lRec, const Point2 &sample, bool testVisibility = true) const {
if (sampleLuminaire(p, lRec, sample, testVisibility)) {
lRec.Le *= getAttenuation(Ray(p, lRec.sRec.p-p, 0, 1));
LuminaireSamplingRecord &lRec, Float time,
const Point2 &sample, bool testVisibility = true) const {
if (sampleLuminaire(p, lRec, time, sample, testVisibility)) {
lRec.Le *= getAttenuation(Ray(p, lRec.sRec.p-p, 0, 1, 0));
return true;
}
return false;
@ -201,7 +206,7 @@ public:
inline bool sampleLuminaireAttenuated(const Intersection &its,
LuminaireSamplingRecord &lRec, const Point2 &sample, bool testVisibility = true) const {
if (sampleLuminaire(its, lRec, sample, testVisibility)) {
lRec.Le *= getAttenuation(Ray(its.p, lRec.sRec.p-its.p, 0, 1));
lRec.Le *= getAttenuation(Ray(its.p, lRec.sRec.p-its.p, 0, 1, 0));
return true;
}
return false;

View File

@ -132,6 +132,9 @@ public:
/// Texture coordinate mapping partials wrt. changes in screen-space
Float dudx, dudy, dvdx, dvdy;
/// Time value associated with the intersection
Float time;
/// Interpolated vertex color
Spectrum color;

View File

@ -104,13 +104,14 @@ public:
}
void generateRay(const Point2 &dirSample, const Point2 &lensSample,
Ray &ray) const {
Float timeSample, Ray &ray) const {
Point rasterCoords(dirSample.x, dirSample.y, 0);
Point imageCoords;
m_rasterToCamera(rasterCoords, imageCoords);
/* Construct ray in camera space */
Ray localRay(imageCoords, Vector(0, 0, 1));
Ray localRay(imageCoords, Vector(0, 0, 1),
m_shutterOpen + m_shutterOpenTime * timeSample);
localRay.mint = 0;
localRay.maxt = m_farClip - m_nearClip;
@ -154,6 +155,8 @@ public:
<< " aspect = " << m_aspect << "," << std::endl
<< " nearClip = " << m_nearClip << "," << std::endl
<< " farClip = " << m_farClip << "," << std::endl
<< " shutterOpen = " << m_shutterOpen << "," << std::endl
<< " shutterClose = " << m_shutterClose << "," << std::endl
<< " areaDensity = " << m_areaDensity << "," << std::endl
<< " cameraToWorld = " << indent(m_cameraToWorld.toString()) << "," << std::endl
<< " cameraToScreen = " << indent(m_cameraToScreen.toString()) << "," << std::endl

View File

@ -109,15 +109,16 @@ public:
return m_lensRadius > 0.0f;
}
void generateRay(const Point2 &dirSample, const Point2 &lensSample,
Ray &ray) const {
void generateRay(const Point2 &dirSample, const Point2 &lensSample,
Float timeSample, Ray &ray) const {
/* Calculate intersection on the image plane */
Point rasterCoords(dirSample.x, dirSample.y, 0);
Point imageCoords;
m_rasterToCamera(rasterCoords, imageCoords);
/* Construct ray in camera space */
Ray localRay(Point(0, 0, 0), Vector(imageCoords));
Ray localRay(Point(0, 0, 0), Vector(imageCoords),
m_shutterOpen + m_shutterOpenTime * timeSample);
if (m_lensRadius > 0.0f) {
/* Sample a point on the aperture */
@ -184,6 +185,8 @@ public:
<< " yfov = " << m_yfov << "," << std::endl
<< " nearClip = " << m_nearClip << "," << std::endl
<< " farClip = " << m_farClip << "," << std::endl
<< " shutterOpen = " << m_shutterOpen << "," << std::endl
<< " shutterClose = " << m_shutterClose << "," << std::endl
<< " lensRadius = " << m_lensRadius << "," << std::endl
<< " focalDistance = " << m_focalDistance << "," << std::endl
<< " cameraToWorld = " << indent(m_cameraToWorld.toString()) << "," << std::endl

View File

@ -168,7 +168,7 @@ public:
bsdfVal /= bsdfPdf;
/* Trace a ray in this direction */
Ray bsdfRay(its.p, its.toWorld(bRec.wo));
Ray bsdfRay(its.p, its.toWorld(bRec.wo), ray.time);
bool hitLuminaire = false;
if (scene->rayIntersect(bsdfRay, bsdfIts)) {
bsdfRay.mint = 0; bsdfRay.maxt = bsdfIts.t;

View File

@ -103,8 +103,9 @@ public:
Vector2i filmSize = camera->getFilm()->getSize();
bool needsLensSample = camera->needsLensSample();
bool needsTimeSample = camera->needsTimeSample();
const int nSamples = 10000;
Float luminance = 0;
Float luminance = 0, timeSample = 0;
RadianceQueryRecord rRec(scene, sampler);
for (int i=0; i<nSamples; ++i) {
Point2 sample, lensSample;
@ -113,10 +114,12 @@ public:
rRec.newQuery(RadianceQueryRecord::ERadiance);
if (needsLensSample)
lensSample = rRec.nextSample2D();
if (needsTimeSample)
timeSample = rRec.nextSample1D();
sample = rRec.nextSample2D();
sample.x *= filmSize.x;
sample.y *= filmSize.y;
camera->generateRayDifferential(sample, lensSample, eyeRay);
camera->generateRayDifferential(sample, lensSample, timeSample, eyeRay);
luminance += m_subIntegrator->Li(eyeRay, rRec).getLuminance();
}
@ -130,13 +133,14 @@ public:
void renderBlock(const Scene *scene, const Camera *camera, Sampler *sampler,
ImageBlock *block, const bool &stop) const {
bool needsLensSample = camera->needsLensSample();
bool needsTimeSample = camera->needsTimeSample();
const TabulatedFilter *filter = camera->getFilm()->getTabulatedFilter();
Float mean, meanSqr;
Point2 sample, lensSample;
RayDifferential eyeRay;
int x, y;
Float sampleLuminance;
Float sampleLuminance, timeSample = 0;
RadianceQueryRecord rRec(scene, sampler);
int sampleIndex;
@ -157,10 +161,12 @@ public:
rRec.newQuery(RadianceQueryRecord::ECameraRay);
if (needsLensSample)
lensSample = rRec.nextSample2D();
if (needsTimeSample)
timeSample = rRec.nextSample1D();
sample = rRec.nextSample2D();
sample.x += x; sample.y += y;
camera->generateRayDifferential(sample,
lensSample, eyeRay);
lensSample, timeSample, eyeRay);
Spectrum sampleValue = m_subIntegrator->Li(eyeRay, rRec);
@ -217,8 +223,8 @@ public:
return m_subIntegrator->Li(ray, rRec);
}
Spectrum E(const Scene *scene, const Point &p, const Normal &n, Sampler *sampler) const {
return m_subIntegrator->E(scene, p, n, sampler);
Spectrum E(const Scene *scene, const Point &p, const Normal &n, Float time, Sampler *sampler) const {
return m_subIntegrator->E(scene, p, n, time, sampler);
}
void serialize(Stream *stream, InstanceManager *manager) const {

View File

@ -277,7 +277,7 @@ public:
RadianceQueryRecord::ERadianceNoEmission | RadianceQueryRecord::EDistance);
rRec2.extra = 1;
rRec2.sampler = sampler;
entry.L = m_subIntegrator->Li(RayDifferential(rRec.its.p, entry.d), rRec2);
entry.L = m_subIntegrator->Li(RayDifferential(rRec.its.p, entry.d, ray.time), rRec2);
entry.dist = rRec2.dist;
sampler->advance();
}
@ -288,7 +288,7 @@ public:
E = hs->getIrradiance();
}
Spectrum E(const Scene *scene, const Point &p, const Normal &n, Sampler *sampler) const {
Spectrum E(const Scene *scene, const Point &p, const Normal &n, Float time, Sampler *sampler) const {
Spectrum EDir(0.0f), EIndir(0.0f);
RadianceQueryRecord rRec(scene, sampler);
LuminaireSamplingRecord lRec;
@ -297,7 +297,7 @@ public:
for (unsigned int i=0; i<m_irrSamples; i++) {
rRec.newQuery(RadianceQueryRecord::ERadianceNoEmission);
if (scene->sampleLuminaireAttenuated(p, lRec, rRec.nextSample2D())) {
if (scene->sampleLuminaireAttenuated(p, lRec, time, rRec.nextSample2D())) {
Float dp = dot(lRec.d, n);
if (dp < 0)
EDir -= lRec.Le * dp;

View File

@ -104,7 +104,7 @@ public:
if (stop)
break;
Point2 sample(x + .5f, y + .5f);
m_camera->generateRayDifferential(sample, lensSample, eyeRay);
m_camera->generateRayDifferential(sample, lensSample, 0.0f, eyeRay);
if (m_scene->rayIntersect(eyeRay, its)) {
const BSDF *bsdf = its.shape->getBSDF();
if (!bsdf->getType() == BSDF::EDiffuseReflection)
@ -125,7 +125,7 @@ public:
rRec.newQuery(RadianceQueryRecord::ERadianceNoEmission | RadianceQueryRecord::EDistance);
rRec.depth = 2;
rRec.extra = 1; // mark as irradiance cache query
entry.L = integrator->Li(RayDifferential(its.p, entry.d), rRec);
entry.L = integrator->Li(RayDifferential(its.p, entry.d, 0.0f), rRec);
entry.dist = rRec.dist;
m_sampler->advance();
}

View File

@ -115,7 +115,7 @@ public:
prevIts = its;
/* Trace a ray in this direction */
ray = Ray(its.p, its.toWorld(bRec.wo));
ray = Ray(its.p, its.toWorld(bRec.wo), ray.time);
bool hitLuminaire = false;
if (scene->rayIntersect(ray, its)) {
/* Intersected something - check if it was a luminaire */

View File

@ -77,7 +77,7 @@ void CaptureParticleWorker::handleSurfaceInteraction(int, bool,
if (m_camera->positionToSample(its.p, screenSample)) {
Point cameraPosition = m_camera->getPosition(screenSample);
if (m_scene->isOccluded(cameraPosition, its.p))
if (m_scene->isOccluded(cameraPosition, its.p, its.time))
return;
const BSDF *bsdf = its.shape->getBSDF();
@ -94,7 +94,7 @@ void CaptureParticleWorker::handleSurfaceInteraction(int, bool,
importance = 1/m_camera->areaDensity(screenSample);
/* Compute Le * importance and store it in an accumulation buffer */
Ray ray(its.p, d, 0, dist);
Ray ray(its.p, d, 0, dist, its.time);
Spectrum sampleVal = weight * bsdf->fCos(bRec)
* m_scene->getAttenuation(ray) * importance;
@ -103,13 +103,13 @@ void CaptureParticleWorker::handleSurfaceInteraction(int, bool,
}
void CaptureParticleWorker::handleMediumInteraction(int, bool,
const MediumSamplingRecord &mRec, const Vector &wi,
const MediumSamplingRecord &mRec, Float time, const Vector &wi,
const Spectrum &weight) {
Point2 screenSample;
if (m_camera->positionToSample(mRec.p, screenSample)) {
Point cameraPosition = m_camera->getPosition(screenSample);
if (m_scene->isOccluded(cameraPosition, mRec.p))
if (m_scene->isOccluded(cameraPosition, mRec.p, time))
return;
Vector wo = cameraPosition - mRec.p;
@ -122,7 +122,7 @@ void CaptureParticleWorker::handleMediumInteraction(int, bool,
importance = 1/m_camera->areaDensity(screenSample);
/* Compute Le * importance and store in accumulation buffer */
Ray ray(mRec.p, wo, 0, dist);
Ray ray(mRec.p, wo, 0, dist, time);
Spectrum sampleVal = weight * mRec.medium->getPhaseFunction()->f(mRec, wi, wo)
* m_scene->getAttenuation(ray) * importance;

View File

@ -103,7 +103,7 @@ public:
* pixel of the accumulation buffer.
*/
void handleMediumInteraction(int depth, bool caustic,
const MediumSamplingRecord &mRec, const Vector &wi,
const MediumSamplingRecord &mRec, Float time, const Vector &wi,
const Spectrum &weight);
MTS_DECLARE_CLASS()

View File

@ -81,7 +81,7 @@ public:
/* Estimate the single scattering component if this is requested */
if (rRec.type & RadianceQueryRecord::EInscatteredDirectRadiance &&
scene->sampleLuminaireAttenuated(mRec.p, lRec, rRec.nextSample2D())) {
scene->sampleLuminaireAttenuated(mRec.p, lRec, ray.time, rRec.nextSample2D())) {
/* Evaluate the phase function */
Spectrum phaseVal = phase->f(mRec, -ray.d, -lRec.d);
@ -111,7 +111,7 @@ public:
prevIts = its;
/* Trace a ray in this direction */
ray = Ray(mRec.p, wo);
ray = Ray(mRec.p, wo, ray.time);
bool hitLuminaire = false;
if (scene->rayIntersect(ray, its)) {
/* Intersected something - check if it was a luminaire */
@ -230,7 +230,7 @@ public:
prevIts = its;
/* Trace a ray in this direction */
ray = Ray(its.p, its.toWorld(bRec.wo));
ray = Ray(its.p, its.toWorld(bRec.wo), ray.time);
bool hitLuminaire = false;
if (scene->rayIntersect(ray, its)) {
/* Intersected something - check if it was a luminaire */

View File

@ -77,7 +77,7 @@ public:
/* Estimate the single scattering component if this is requested */
if (rRec.type & RadianceQueryRecord::EInscatteredDirectRadiance &&
scene->sampleLuminaireAttenuated(mRec.p, lRec, rRec.nextSample2D())) {
scene->sampleLuminaireAttenuated(mRec.p, lRec, ray.time, rRec.nextSample2D())) {
Li += pathThroughput * lRec.Le * phase->f(mRec, -ray.d, -lRec.d);
}
@ -92,7 +92,7 @@ public:
prevIts = its;
/* Trace a ray in this direction */
ray = Ray(mRec.p, wo);
ray = Ray(mRec.p, wo, ray.time);
computeIntersection = true;
/* ==================================================================== */
@ -179,7 +179,7 @@ public:
prevIts = its;
/* Trace a ray in this direction */
ray = Ray(its.p, its.toWorld(bRec.wo));
ray = Ray(its.p, its.toWorld(bRec.wo), ray.time);
computeIntersection = true;
/* ==================================================================== */

View File

@ -353,7 +353,7 @@ public:
continue;
rRec2.recursiveQuery(rRec, RadianceQueryRecord::ERadiance);
recursiveRay = Ray(its.p, its.toWorld(bRec.wo));
recursiveRay = Ray(its.p, its.toWorld(bRec.wo), ray.time);
Li += m_parentIntegrator->Li(recursiveRay, rRec2) * bsdfVal;
}
}
@ -370,7 +370,7 @@ public:
Spectrum bsdfVal = bsdf->sampleCos(bRec);
rRec2.recursiveQuery(rRec, RadianceQueryRecord::ERadianceNoEmission);
recursiveRay = Ray(its.p, its.toWorld(bRec.wo));
recursiveRay = Ray(its.p, its.toWorld(bRec.wo), ray.time);
Li += m_parentIntegrator->Li(recursiveRay, rRec2) * bsdfVal * weight;
}
} else {

View File

@ -135,9 +135,11 @@ public:
m_totalEmitted = 0;
bool needsLensSample = camera->needsLensSample();
bool needsTimeSample = camera->needsTimeSample();
Log(EInfo, "Creating approximately %i gather points", cropSize.x*cropSize.y*sampleCount);
Point2 lensSample, sample;
RayDifferential eyeRay;
Float timeSample = 0;
m_filter = camera->getFilm()->getTabulatedFilter();
Vector2 filterSize = m_filter->getFilterSize();
int borderSize = (int) std::ceil(std::max(filterSize.x, filterSize.y));
@ -179,10 +181,12 @@ public:
for (uint64_t j = 0; j<sampleCount; j++) {
if (needsLensSample)
lensSample = cameraSampler->next2D();
if (needsTimeSample)
timeSample = cameraSampler->next1D();
sample = cameraSampler->next2D();
sample.x += x; sample.y += y;
camera->generateRayDifferential(sample,
lensSample, eyeRay);
lensSample, timeSample, eyeRay);
size_t offset = gatherPoints.size();
int count = createGatherPoints(scene, eyeRay, sample, Spectrum(1.0f),
gatherPoints, 1);
@ -240,7 +244,7 @@ public:
continue;
bsdfVal = bsdf->fDelta(bRec);
RayDifferential recursiveRay(p.its.p, p.its.toWorld(bRec.wo));
RayDifferential recursiveRay(p.its.p, p.its.toWorld(bRec.wo), ray.time);
count += createGatherPoints(scene, recursiveRay, sample,
weight * bsdfVal, gatherPoints, depth+1);
}

View File

@ -169,6 +169,7 @@ public:
void distributedRTPass(Scene *scene, std::vector<SerializableObject *> &samplers) {
ref<Camera> camera = scene->getCamera();
bool needsLensSample = camera->needsLensSample();
bool needsTimeSample = camera->needsTimeSample();
ref<Film> film = camera->getFilm();
Vector2i cropSize = film->getCropSize();
Point2i cropOffset = film->getCropOffset();
@ -191,16 +192,19 @@ public:
for (int xofsInt = 0; xofsInt < m_blockSize; ++xofsInt) {
if (xofsInt + xofs - cropOffset.x >= cropSize.x)
continue;
Point2 lensSample, sample;
Point2 lensSample, sample;
Float timeSample = 0.0f;
GatherPoint &gatherPoint = gatherPoints[index++];
sampler->generate();
if (needsLensSample)
lensSample = sampler->next2D();
if (needsTimeSample)
timeSample = sampler->next1D();
gatherPoint.pos = Point2i(xofs + xofsInt, yofs + yofsInt);
sample = sampler->next2D();
sample += Vector2((Float) gatherPoint.pos.x, (Float) gatherPoint.pos.y);
RayDifferential ray;
camera->generateRayDifferential(sample, lensSample, ray);
camera->generateRayDifferential(sample, lensSample, timeSample, ray);
Spectrum weight(1.0f);
int depth = 1;
@ -232,7 +236,7 @@ public:
gatherPoint.depth = -1;
break;
}
ray = RayDifferential(gatherPoint.its.p, gatherPoint.its.toWorld(bRec.wo));
ray = RayDifferential(gatherPoint.its.p, gatherPoint.its.toWorld(bRec.wo), ray.time);
++depth;
}
} else {

View File

@ -844,7 +844,7 @@ Float SparseWaveletOctree::lineIntegral(Point start, Point end) const {
start /= (Float) m_size;
end /= (Float) m_size;
Ray ray(start, normalize(end-start));
Ray ray(start, normalize(end-start), 0.0f);
uint8_t a = 0;
if (ray.d.x < 0) {

View File

@ -24,8 +24,14 @@ MTS_NAMESPACE_BEGIN
Camera::Camera(const Properties &props)
: ConfigurableObject(props), m_properties(props) {
m_cameraToWorld = props.getTransform("toWorld", Transform());
m_shutterOpen = props.getFloat("shutterOpen", 0.0f);
m_shutterClose = props.getFloat("shutterClose", 5.0f);
if (m_shutterOpen > m_shutterClose)
Log(EError, "Shutter opening time must be less than "
"or equal to the shutter closing time!");
m_worldToCamera = m_cameraToWorld.inverse();
m_position = m_cameraToWorld(Point(0,0,0));
m_shutterOpenTime = m_shutterClose - m_shutterOpen;
}
Camera::Camera(Stream *stream, InstanceManager *manager)
@ -34,7 +40,10 @@ Camera::Camera(Stream *stream, InstanceManager *manager)
m_sampler = static_cast<Sampler *>(manager->getInstance(stream));
m_worldToCamera = Transform(stream);
m_cameraToWorld = Transform(stream);
m_shutterOpen = stream->readFloat();
m_shutterClose = stream->readFloat();
m_position = m_cameraToWorld(Point(0,0,0));
m_shutterOpenTime = m_shutterClose - m_shutterOpen;
}
Camera::~Camera() {
@ -60,16 +69,18 @@ void Camera::serialize(Stream *stream, InstanceManager *manager) const {
manager->serialize(stream, m_sampler.get());
m_worldToCamera.serialize(stream);
m_cameraToWorld.serialize(stream);
stream->writeFloat(m_shutterOpen);
stream->writeFloat(m_shutterClose);
}
void Camera::generateRayDifferential(const Point2 &sample,
const Point2 &lensSample, RayDifferential &ray) const {
const Point2 &lensSample, Float timeSample, RayDifferential &ray) const {
generateRay(sample, lensSample, ray);
generateRay(sample, lensSample, timeSample, ray);
Point2 temp = sample; temp.x += 1;
generateRay(temp, lensSample, ray.rx);
generateRay(temp, lensSample, timeSample, ray.rx);
temp = sample; temp.y += 1;
generateRay(temp, lensSample, ray.ry);
generateRay(temp, lensSample, timeSample, ray.ry);
ray.hasDifferentials = true;
}

View File

@ -68,7 +68,7 @@ void SampleIntegrator::serialize(Stream *stream, InstanceManager *manager) const
stream->writeBool(m_irrIndirect);
}
Spectrum SampleIntegrator::E(const Scene *scene, const Point &p, const Normal &n,
Spectrum SampleIntegrator::E(const Scene *scene, const Point &p, const Normal &n, Float time,
Sampler *sampler) const {
Spectrum E(0.0f);
LuminaireSamplingRecord lRec;
@ -80,7 +80,7 @@ Spectrum SampleIntegrator::E(const Scene *scene, const Point &p, const Normal &n
rRec.newQuery(RadianceQueryRecord::ERadianceNoEmission);
/* Direct */
if (scene->sampleLuminaireAttenuated(p, lRec, rRec.nextSample2D())) {
if (scene->sampleLuminaireAttenuated(p, lRec, time, rRec.nextSample2D())) {
Float dp = dot(lRec.d, n);
if (dp < 0)
E -= lRec.Le * dp;
@ -90,7 +90,7 @@ Spectrum SampleIntegrator::E(const Scene *scene, const Point &p, const Normal &n
if (m_irrIndirect) {
Vector d = frame.toWorld(squareToHemispherePSA(rRec.nextSample2D()));
++rRec.depth;
E += Li(RayDifferential(p, d), rRec) * M_PI;
E += Li(RayDifferential(p, d, time), rRec) * M_PI;
}
sampler->advance();
}
@ -150,6 +150,7 @@ void SampleIntegrator::renderBlock(const Scene *scene,
const Camera *camera, Sampler *sampler, ImageBlock *block, const bool &stop) const {
Point2 sample, lensSample;
RayDifferential eyeRay;
Float timeSample = 0;
Spectrum spec;
int x, y;
uint64_t j;
@ -162,6 +163,7 @@ void SampleIntegrator::renderBlock(const Scene *scene,
block->clear();
RadianceQueryRecord rRec(scene, sampler);
bool needsLensSample = camera->needsLensSample();
bool needsTimeSample = camera->needsTimeSample();
const TabulatedFilter *filter = camera->getFilm()->getTabulatedFilter();
Float scaleFactor = 1.0f/std::sqrt((Float) sampler->getSampleCount());
@ -175,10 +177,12 @@ void SampleIntegrator::renderBlock(const Scene *scene,
rRec.newQuery(RadianceQueryRecord::ECameraRay);
if (needsLensSample)
lensSample = rRec.nextSample2D();
if (needsTimeSample)
timeSample = rRec.nextSample1D();
sample = rRec.nextSample2D();
sample.x += x; sample.y += y;
camera->generateRayDifferential(sample,
lensSample, eyeRay);
lensSample, timeSample, eyeRay);
eyeRay.scaleDifferential(scaleFactor);
++cameraRays;
spec = Li(eyeRay, rRec);
@ -199,10 +203,12 @@ void SampleIntegrator::renderBlock(const Scene *scene,
rRec.newQuery(RadianceQueryRecord::ECameraRay);
if (needsLensSample)
lensSample = rRec.nextSample2D();
if (needsTimeSample)
timeSample = rRec.nextSample1D();
sample = rRec.nextSample2D();
sample.x += x; sample.y += y;
camera->generateRayDifferential(sample,
lensSample, eyeRay);
lensSample, timeSample, eyeRay);
eyeRay.scaleDifferential(scaleFactor);
++cameraRays;
spec = Li(eyeRay, rRec);

View File

@ -86,6 +86,7 @@ std::string Intersection::toString() const {
<< " uv = " << uv.toString() << "," << std::endl
<< " dpdu = " << dpdu.toString() << "," << std::endl
<< " dpdv = " << dpdv.toString() << "," << std::endl
<< " time = " << time << "," << std::endl
<< " shape = " << indent(((Object *)shape)->toString()) << std::endl
<< "]";
return oss.str();

View File

@ -262,7 +262,7 @@ inline int new_node(Float t1, int a, Float t2, int b, Float t3, int c) {
Float SparseMipmap3D::lineIntegral(const Ray &r) const {
Float length = r.d.length();
Ray ray(r(r.mint), r.d/length, 0, (r.maxt-r.mint)*length);
Ray ray(r(r.mint), r.d/length, 0, (r.maxt-r.mint)*length, 0.0f);
uint8_t a = 0;
if (ray.d.x < 0) {
@ -304,7 +304,7 @@ bool SparseMipmap3D::invertLineIntegral(const Ray &r, Float desiredDensity,
Float &accumDensity, Float &samplePos, Float &sampleDensity) const {
Float length = r.d.length();
Ray ray(r(r.mint), r.d/length, 0, (r.maxt-r.mint)*length);
Ray ray(r(r.mint), r.d/length, 0, (r.maxt-r.mint)*length, 0.0f);
uint8_t a = 0;
if (ray.d.x < 0) {

View File

@ -98,6 +98,9 @@ void ParticleTracer::process(const WorkUnit *workUnit, WorkResult *workResult,
Spectrum weight, bsdfVal;
int depth;
bool caustic;
ref<Camera> camera = m_scene->getCamera();
Float shutterOpen = camera->getShutterOpen(),
shutterOpenTime = camera->getShutterOpenTime();
m_sampler->generate();
for (size_t index = range->getRangeStart(); index <= range->getRangeEnd() && !stop; ++index) {
@ -108,7 +111,7 @@ void ParticleTracer::process(const WorkUnit *workUnit, WorkResult *workResult,
/* Sample an emitted particle */
m_scene->sampleEmission(eRec, areaSample, dirSample);
ray = Ray(eRec.sRec.p, eRec.d);
ray = Ray(eRec.sRec.p, eRec.d, shutterOpen + shutterOpenTime * m_sampler->next1D());
weight = eRec.P;
depth = 1;
caustic = true;
@ -126,7 +129,7 @@ void ParticleTracer::process(const WorkUnit *workUnit, WorkResult *workResult,
*/
weight *= mRec.sigmaS * mRec.attenuation / mRec.pdf;
handleMediumInteraction(depth, caustic, mRec, -ray.d, weight);
handleMediumInteraction(depth, caustic, mRec, ray.time, -ray.d, weight);
if (!m_multipleScattering)
break;
@ -144,7 +147,7 @@ void ParticleTracer::process(const WorkUnit *workUnit, WorkResult *workResult,
weight /= mRec.albedo;
}
ray = Ray(mRec.p, wo);
ray = Ray(mRec.p, wo, ray.time);
} else if (its.t == std::numeric_limits<Float>::infinity()) {
/* There is no surface in this direction */
break;
@ -179,7 +182,7 @@ void ParticleTracer::process(const WorkUnit *workUnit, WorkResult *workResult,
weight *= bsdfVal;
Vector wi = -ray.d, wo = its.toWorld(bRec.wo);
ray = Ray(its.p, wo);
ray = Ray(its.p, wo, ray.time);
/* Prevent light leaks due to the use of shading normals -- [Veach, p. 158] */
Float wiDotGeoN = dot(its.geoFrame.n, wi),
@ -206,7 +209,7 @@ void ParticleTracer::handleSurfaceInteraction(int depth, bool caustic,
}
void ParticleTracer::handleMediumInteraction(int depth, bool caustic,
const MediumSamplingRecord &mRec, const Vector &wi,
const MediumSamplingRecord &mRec, Float time, const Vector &wi,
const Spectrum &weight) {
}

View File

@ -74,7 +74,7 @@ void PreviewWorker::processIncoherent(const WorkUnit *workUnit, WorkResult *work
/* Generate a camera ray without normalization */
primary = Ray(m_cameraO, m_cameraTL
+ m_cameraDx * (Float) x
+ m_cameraDy * (Float) y);
+ m_cameraDy * (Float) y, 0.0f);
++numRays;
if (!m_kdtree->rayIntersect(primary, its)) {
@ -88,7 +88,7 @@ void PreviewWorker::processIncoherent(const WorkUnit *workUnit, WorkResult *work
value = Spectrum(0.0f);
toVPL = m_vpl.its.p - its.p;
secondary = Ray(its.p, toVPL, ShadowEpsilon, 1-ShadowEpsilon);
secondary = Ray(its.p, toVPL, ShadowEpsilon, 1-ShadowEpsilon, 0.0f);
++numRays;
if (m_kdtree->rayIntersect(secondary)) {
block->setPixel(pos++, value);
@ -281,7 +281,8 @@ void PreviewWorker::processCoherent(const WorkUnit *workUnit, WorkResult *workRe
secItv4.maxt.f[idx] = 0;
emitted[idx] = m_scene->LeBackground(Ray(
Point(primRay4.o[0].f[idx], primRay4.o[1].f[idx], primRay4.o[2].f[idx]),
Vector(primRay4.d[0].f[idx], primRay4.d[1].f[idx], primRay4.d[2].f[idx])
Vector(primRay4.d[0].f[idx], primRay4.d[1].f[idx], primRay4.d[2].f[idx]),
0.0f
));
memset(&direct[idx], 0, sizeof(Spectrum));
continue;
@ -346,7 +347,8 @@ void PreviewWorker::processCoherent(const WorkUnit *workUnit, WorkResult *workRe
} else {
Ray ray(
Point(primRay4.o[0].f[idx], primRay4.o[1].f[idx], primRay4.o[2].f[idx]),
Vector(primRay4.d[0].f[idx], primRay4.d[1].f[idx], primRay4.d[2].f[idx])
Vector(primRay4.d[0].f[idx], primRay4.d[1].f[idx], primRay4.d[2].f[idx]),
0.0f
);
its.t = its4.t.f[idx];
shape->fillIntersectionRecord(ray, temp + idx * MTS_KD_INTERSECTION_TEMP + 8, its);

View File

@ -383,7 +383,7 @@ Float Scene::pdfLuminaire(const Intersection &its,
}
bool Scene::sampleLuminaire(const Point &p,
LuminaireSamplingRecord &lRec, const Point2 &s,
LuminaireSamplingRecord &lRec, Float time, const Point2 &s,
bool testVisibility) const {
Point2 sample(s);
Float lumPdf;
@ -392,7 +392,7 @@ bool Scene::sampleLuminaire(const Point &p,
luminaire->sample(p, lRec, sample);
if (lRec.pdf != 0) {
if (testVisibility && isOccluded(p, lRec.sRec.p))
if (testVisibility && isOccluded(p, lRec.sRec.p, time))
return false;
lRec.pdf *= lumPdf;
lRec.Le /= lRec.pdf;
@ -413,7 +413,7 @@ bool Scene::sampleLuminaire(const Intersection &its,
luminaire->sample(its, lRec, sample);
if (lRec.pdf != 0) {
if (testVisibility && isOccluded(its.p, lRec.sRec.p))
if (testVisibility && isOccluded(its.p, lRec.sRec.p, its.time))
return false;
lRec.pdf *= lumPdf;
lRec.Le /= lRec.pdf;

View File

@ -93,8 +93,6 @@ void AnimatedTransform::eval(Float t, Transform &trafo) const {
"animation track type: %i!", track->getType());
}
}
//cout << "T:" << translation.toString() << " R:" << rotation.toString() << " S:" << scale.toString() << endl;
trafo = Transform::translate(translation) *
rotation.toTransform() *
Transform::scale(scale);

View File

@ -55,7 +55,7 @@ size_t generateVPLs(const Scene *scene, size_t offset, size_t count, int maxDept
weight *= scene->sampleEmissionDirection(eRec, dirSample);
Float cosTheta = (eRec.luminaire->getType() & Luminaire::EOnSurface) ? absDot(eRec.sRec.n, eRec.d) : 1;
weight *= cosTheta / eRec.pdfDir;
ray = Ray(eRec.sRec.p, eRec.d);
ray = Ray(eRec.sRec.p, eRec.d, 0.0f);
depth = 2;
while (!weight.isBlack() && depth < maxDepth) {
@ -85,7 +85,7 @@ size_t generateVPLs(const Scene *scene, size_t offset, size_t count, int maxDept
weight *= bsdfVal;
Vector wi = -ray.d, wo = its.toWorld(bRec.wo);
ray = Ray(its.p, wo);
ray = Ray(its.p, wo, 0.0f);
/* Prevent light leaks due to the use of shading normals -- [Veach, p. 158] */
Float wiDotGeoN = dot(its.geoFrame.n, wi),

View File

@ -377,7 +377,7 @@ public:
}
bool isInside(const Ray &r) const {
Ray ray(r(r.mint + Epsilon), r.d);
Ray ray(r(r.mint + Epsilon), r.d, 0.0f);
Intersection its;
if (!m_kdTree->rayIntersect(ray, its))
return false;
@ -386,7 +386,7 @@ public:
Spectrum tau(const Ray &r) const {
Float dLength = r.d.length();
Ray ray(r(r.mint), r.d / dLength);
Ray ray(r(r.mint), r.d / dLength, 0.0f);
Float coveredLength = 0, remaining = (r.maxt - r.mint) * dLength;
bool inside = isInside(r);
Intersection its;
@ -416,7 +416,7 @@ public:
bool sampleDistance(const Ray &theRay, Float distSurf,
MediumSamplingRecord &mRec, Sampler *sampler) const {
Intersection its;
Ray ray(theRay.o, theRay.d);
Ray ray(theRay.o, theRay.d, 0.0f);
int iterations = 0;
/* Check if the start of the ray is already inside the medium */

View File

@ -364,7 +364,7 @@ public:
Spectrum tau(const Ray &r) const {
Float dLength = r.d.length();
Ray ray(r(r.mint), r.d / dLength);
Ray ray(r(r.mint), r.d / dLength, 0.0f);
Float remaining = (r.maxt - r.mint) * dLength;
Float integral = 0.0f;
int iterations = 0;
@ -462,7 +462,7 @@ public:
bool sampleDistance(const Ray &r, Float maxDist,
MediumSamplingRecord &mRec, Sampler *sampler) const {
Float dLength = r.d.length();
Ray ray(r(r.mint), r.d / dLength);
Ray ray(r(r.mint), r.d / dLength, 0.0f);
Float remaining = (maxDist - r.mint) * dLength,
desiredTau = -std::log(1-sampler->next1D())/m_sizeMultiplier,
accumulatedTau = 0.0f,

View File

@ -168,7 +168,7 @@ public:
Spectrum tau(const Ray &r) const {
Float dLength = r.d.length();
Ray ray(r(r.mint), r.d / dLength);
Ray ray(r(r.mint), r.d / dLength, 0.0f);
Float remaining = (r.maxt - r.mint) * dLength;
Float integral = 0.0f;
int iterations = 0;
@ -266,7 +266,7 @@ public:
bool sampleDistance(const Ray &r, Float maxDist,
MediumSamplingRecord &mRec, Sampler *sampler) const {
Float dLength = r.d.length();
Ray ray(r(r.mint), r.d / dLength);
Ray ray(r(r.mint), r.d / dLength, 0.0f);
Float remaining = (maxDist - r.mint) * dLength,
desiredTau = -std::log(1-sampler->next1D())/m_sizeMultiplier,
accumulatedTau = 0.0f,

View File

@ -112,7 +112,7 @@ public:
}
bool isInside(const Ray &r) const {
Ray ray(r(r.mint + Epsilon), r.d);
Ray ray(r(r.mint + Epsilon), r.d, 0.0f);
Intersection its;
if (!m_kdTree->rayIntersect(ray, its))
return false;
@ -121,7 +121,7 @@ public:
Spectrum tau(const Ray &r) const {
Float dLength = r.d.length();
Ray ray(r(r.mint), r.d / dLength, Epsilon, std::numeric_limits<Float>::infinity());
Ray ray(r(r.mint), r.d / dLength, Epsilon, std::numeric_limits<Float>::infinity(), 0.0f);
Float coveredLength = 0, remaining = (r.maxt - r.mint) * dLength;
bool inside = isInside(r);
Intersection its;
@ -147,7 +147,7 @@ public:
bool sampleDistance(const Ray &theRay, Float distSurf,
MediumSamplingRecord &mRec, Sampler *sampler) const {
Intersection its;
Ray ray(theRay.o, theRay.d);
Ray ray(theRay.o, theRay.d, 0.0f);
int iterations = 0;
/* Check if the start of the ray is already inside the medium */

View File

@ -92,11 +92,12 @@ void PreviewProcess::configure(const VPL &vpl, Float minDist, const Point2 &jitt
const Point2 right(topLeft.x + m_film->getSize().x, topLeft.y);
const Point2 bottom(topLeft.x, topLeft.y + m_film->getSize().y);
const Point2 lens(0, 0);
Float time = 0.0f;
const Camera *camera = m_scene->getCamera();
camera->generateRay(topLeft, lens, topLeftRay);
camera->generateRay(right, lens, rightRay);
camera->generateRay(bottom, lens, bottomRay);
camera->generateRay(topLeft, lens, time, topLeftRay);
camera->generateRay(right, lens, time, rightRay);
camera->generateRay(bottom, lens, time, bottomRay);
m_cameraTL = Vector(topLeftRay.d);
m_cameraO = camera->getPosition();
m_cameraDx = (rightRay.d - topLeftRay.d)

View File

@ -23,8 +23,6 @@
MTS_NAMESPACE_BEGIN
#define TIME 0
class AnimatedInstance : public Shape {
public:
AnimatedInstance(const Properties &props) : Shape(props) {
@ -96,7 +94,7 @@ public:
const KDTree *kdtree = m_shapeGroup->getKDTree();
Ray ray;
Transform objectToWorld, worldToObject;
m_transform->eval(TIME, objectToWorld);
m_transform->eval(_ray.time, objectToWorld);
worldToObject = objectToWorld.inverse();
worldToObject(_ray, ray);
return kdtree->rayIntersect(ray, mint, maxt, t, temp);
@ -106,7 +104,7 @@ public:
const KDTree *kdtree = m_shapeGroup->getKDTree();
Ray ray;
Transform objectToWorld, worldToObject;
m_transform->eval(TIME, objectToWorld);
m_transform->eval(_ray.time, objectToWorld);
worldToObject = objectToWorld.inverse();
worldToObject(_ray, ray);
return kdtree->rayIntersect(ray, mint, maxt);
@ -116,7 +114,7 @@ public:
const void *temp, Intersection &its) const {
const KDTree *kdtree = m_shapeGroup->getKDTree();
Transform objectToWorld;
m_transform->eval(TIME, objectToWorld);
m_transform->eval(ray.time, objectToWorld);
kdtree->fillIntersectionRecord<false>(ray, temp, its);
its.shFrame.n = normalize(objectToWorld(its.shFrame.n));
its.shFrame.s = normalize(objectToWorld(its.shFrame.s));

View File

@ -209,7 +209,7 @@ public:
Vector d = Frame(w*invDistW).toWorld(
squareToCone(cosThetaMax, sample));
Ray ray(p, d);
Ray ray(p, d, 0.0f);
Float t;
if (!rayIntersect(ray, 0, std::numeric_limits<Float>::infinity(), t, NULL)) {
// This can happen sometimes due to roundoff errors - just fail to

View File

@ -72,6 +72,7 @@ public:
const RangeWorkUnit *range = static_cast<const RangeWorkUnit *>(workUnit);
IrradianceRecordVector *result = static_cast<IrradianceRecordVector *>(workResult);
const SampleIntegrator *integrator = m_integrator.get();
ref<Camera> camera = m_scene->getCamera();
result->clear();
for (size_t i=range->getRangeStart(); i<range->getRangeEnd(); ++i) {
@ -83,10 +84,11 @@ public:
expSamples *= m_sampleCount;
ShapeSamplingRecord sRec;
Float pdf = m_shapes[index]->sampleArea(sRec, sample) * expSamples;
Float time = camera->getShutterOpen() + m_sampler->next1D() * camera->getShutterOpenTime();
result->put(IrradianceSample(
sRec.p,
integrator->E(m_scene.get(), sRec.p, sRec.n, m_independentSampler),
integrator->E(m_scene.get(), sRec.p, sRec.n, time, m_independentSampler),
1/pdf
));
}

View File

@ -110,7 +110,7 @@ public:
sample2(random->nextFloat(), random->nextFloat());
Point p1 = bsphere.center + squareToSphere(sample1) * bsphere.radius;
Point p2 = bsphere.center + squareToSphere(sample2) * bsphere.radius;
Ray r(p1, normalize(p2-p1));
Ray r(p1, normalize(p2-p1), 0.0f);
Intersection its;
if (tree->rayIntersect(r))

View File

@ -225,7 +225,7 @@ public:
sample2(random->nextFloat(), random->nextFloat());
Point p1 = bsphere.center + squareToSphere(sample1) * bsphere.radius;
Point p2 = bsphere.center + squareToSphere(sample2) * bsphere.radius;
Ray r(p1, normalize(p2-p1));
Ray r(p1, normalize(p2-p1), 0.0f);
Intersection its;
if (kdtree->rayIntersect(r, its))