cleanups
parent
e22b47cc4a
commit
de4fe46aff
|
@ -2,6 +2,15 @@
|
||||||
to be tested for consistency. This is done
|
to be tested for consistency. This is done
|
||||||
using the testcase 'test_chisquare' -->
|
using the testcase 'test_chisquare' -->
|
||||||
<scene>
|
<scene>
|
||||||
|
<!-- Test the rough dielectric model with the anisotropic
|
||||||
|
Ashikhmin-Shirley microfacet distribution -->
|
||||||
|
<bsdf type="roughconductor">
|
||||||
|
<string name="preset" value="Au"/>
|
||||||
|
<string name="distribution" value="as"/>
|
||||||
|
<float name="alphaU" value="0.1"/>
|
||||||
|
<float name="alphaV" value="0.3"/>
|
||||||
|
</bsdf>
|
||||||
|
|
||||||
<!-- Test the diffuse model -->
|
<!-- Test the diffuse model -->
|
||||||
<bsdf type="diffuse"/>
|
<bsdf type="diffuse"/>
|
||||||
|
|
||||||
|
@ -81,4 +90,11 @@
|
||||||
<float name="intIOR" value="1.5"/>
|
<float name="intIOR" value="1.5"/>
|
||||||
<float name="extIOR" value="1.0"/>
|
<float name="extIOR" value="1.0"/>
|
||||||
</bsdf>
|
</bsdf>
|
||||||
|
|
||||||
|
<!-- Test the rough conductor model with the
|
||||||
|
Beckmann microfacet distribution -->
|
||||||
|
<bsdf type="roughconductor">
|
||||||
|
<string name="distribution" value="beckmann"/>
|
||||||
|
<float name="alpha" value=".3"/>
|
||||||
|
</bsdf>
|
||||||
</scene>
|
</scene>
|
||||||
|
|
|
@ -7,7 +7,7 @@ plugins += env.SharedLibrary('diffuse', ['diffuse.cpp'])
|
||||||
#plugins += env.SharedLibrary('plastic', ['plastic.cpp'])
|
#plugins += env.SharedLibrary('plastic', ['plastic.cpp'])
|
||||||
|
|
||||||
plugins += env.SharedLibrary('roughdielectric', ['roughdielectric.cpp'])
|
plugins += env.SharedLibrary('roughdielectric', ['roughdielectric.cpp'])
|
||||||
#plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp'])
|
plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp'])
|
||||||
#plugins += env.SharedLibrary('roughdiffuse', ['roughdiffuse.cpp'])
|
#plugins += env.SharedLibrary('roughdiffuse', ['roughdiffuse.cpp'])
|
||||||
#plugins += env.SharedLibrary('roughplastic', ['roughplastic.cpp'])
|
#plugins += env.SharedLibrary('roughplastic', ['roughplastic.cpp'])
|
||||||
|
|
||||||
|
|
|
@ -157,7 +157,8 @@ public:
|
||||||
return eval(m, alphaU, alphaV) * Frame::cosTheta(m);
|
return eval(m, alphaU, alphaV) * Frame::cosTheta(m);
|
||||||
|
|
||||||
/* For the Ashikhmin-Shirley model, the sampling density
|
/* For the Ashikhmin-Shirley model, the sampling density
|
||||||
does not include the cos(theta_M) factor */
|
does not include the cos(theta_M) factor, and the
|
||||||
|
normalization is slightly different than in eval(). */
|
||||||
const Float cosTheta = Frame::cosTheta(m);
|
const Float cosTheta = Frame::cosTheta(m);
|
||||||
const Float ds = 1 - cosTheta * cosTheta;
|
const Float ds = 1 - cosTheta * cosTheta;
|
||||||
if (ds < 0)
|
if (ds < 0)
|
||||||
|
@ -277,7 +278,9 @@ public:
|
||||||
/* Approximation recommended by Bruce Walter: Use
|
/* Approximation recommended by Bruce Walter: Use
|
||||||
the Beckmann shadowing-masking function with
|
the Beckmann shadowing-masking function with
|
||||||
specially chosen roughness value */
|
specially chosen roughness value */
|
||||||
|
cout << alpha << endl;
|
||||||
alpha = std::sqrt(0.5f * alpha + 1) / tanTheta;
|
alpha = std::sqrt(0.5f * alpha + 1) / tanTheta;
|
||||||
|
cout << " becomes " << alpha << endl;
|
||||||
|
|
||||||
case EBeckmann: {
|
case EBeckmann: {
|
||||||
/* Use a fast and accurate (<0.35% rel. error) rational
|
/* Use a fast and accurate (<0.35% rel. error) rational
|
||||||
|
|
|
@ -0,0 +1,402 @@
|
||||||
|
/*
|
||||||
|
This file is part of Mitsuba, a physically based rendering system.
|
||||||
|
|
||||||
|
Copyright (c) 2007-2011 by Wenzel Jakob and others.
|
||||||
|
|
||||||
|
Mitsuba is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License Version 3
|
||||||
|
as published by the Free Software Foundation.
|
||||||
|
|
||||||
|
Mitsuba is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <mitsuba/core/fresolver.h>
|
||||||
|
#include <mitsuba/render/bsdf.h>
|
||||||
|
#include <mitsuba/render/sampler.h>
|
||||||
|
#include <mitsuba/render/texture.h>
|
||||||
|
#include "microfacet.h"
|
||||||
|
|
||||||
|
MTS_NAMESPACE_BEGIN
|
||||||
|
|
||||||
|
/* Suggestion by Bruce Walter: sample the model using a slightly
|
||||||
|
wider density function. This in practice limits the importance
|
||||||
|
weights to values <= 4.
|
||||||
|
|
||||||
|
Turned off by default, since it seems to increase the variance
|
||||||
|
of the reflection component.
|
||||||
|
*/
|
||||||
|
#define ENLARGE_LOBE_TRICK 0
|
||||||
|
|
||||||
|
/*! \plugin{roughconductor}{Rough conductor material}
|
||||||
|
* \parameters{
|
||||||
|
* \parameter{distribution}{\String}{
|
||||||
|
* Specifies the type of microfacet normal distribution
|
||||||
|
* used to model the surface roughness.
|
||||||
|
* \begin{enumerate}[(i)]
|
||||||
|
* \item \code{beckmann}: Physically-based distribution derived from
|
||||||
|
* Gaussian random surfaces. This is the default.
|
||||||
|
* \item \code{phong}: Classical $\cos^p\theta$ distribution.
|
||||||
|
* Due to the underlying microfacet theory,
|
||||||
|
* the use of this distribution here leads to more realistic
|
||||||
|
* behavior than the separately available \pluginref{phong} plugin.
|
||||||
|
* \item \code{ggx}: New distribution proposed by
|
||||||
|
* Walter et al. meant to better handle the long
|
||||||
|
* tails observed in measurements of ground surfaces.
|
||||||
|
* Renderings with this distribution may converge slowly.
|
||||||
|
* \item \code{as}: Anisotropic Phong-style microfacet distribution proposed by
|
||||||
|
* Ashikhmin and Shirley \cite{Ashikhmin2005Anisotropic}.\vspace{-3mm}
|
||||||
|
* \end{enumerate}
|
||||||
|
* }
|
||||||
|
* \parameter{alpha}{\Float\Or\Texture}{
|
||||||
|
* Specifies the roughness value of the unresolved surface microgeometry.
|
||||||
|
* When the Beckmann distribution is used, this parameter is equal to the
|
||||||
|
* \emph{root mean square} (RMS) slope of the microfacets. This
|
||||||
|
* parameter is only valid when \texttt{distribution=beckmann/phong/ggx}.
|
||||||
|
* \default{0.1}.
|
||||||
|
* }
|
||||||
|
* \parameter{alphaU, alphaV}{\Float\Or\Texture}{
|
||||||
|
* Specifies the anisotropic rougness values along the tangent and bitangent directions. These
|
||||||
|
* parameter are only valid when \texttt{distribution=as}.
|
||||||
|
* \default{0.1}.
|
||||||
|
* }
|
||||||
|
* \parameter{preset}{\String}{Name of a material preset, see
|
||||||
|
* \tblref{conductor-iors}.\!\default{\texttt{Cu} / copper}}
|
||||||
|
* \parameter{eta}{\Spectrum}{Real part of the material's index
|
||||||
|
* of refraction \default{based on the value of \texttt{preset}}}
|
||||||
|
* \parameter{k}{\Spectrum}{Imaginary part of the material's index of
|
||||||
|
* refraction, also known as absorption coefficient.
|
||||||
|
* \default{based on the value of \texttt{preset}}}
|
||||||
|
* \lastparameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
|
||||||
|
* factor used to modulate the reflectance component\default{1.0}}
|
||||||
|
* }
|
||||||
|
*/
|
||||||
|
class RoughConductor : public BSDF {
|
||||||
|
public:
|
||||||
|
RoughConductor(const Properties &props) : BSDF(props) {
|
||||||
|
ref<FileResolver> fResolver = Thread::getThread()->getFileResolver();
|
||||||
|
|
||||||
|
m_specularReflectance = new ConstantSpectrumTexture(
|
||||||
|
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
|
||||||
|
|
||||||
|
std::string preset = props.getString("preset", "Cu");
|
||||||
|
Spectrum presetEta, presetK;
|
||||||
|
presetEta.fromContinuousSpectrum(InterpolatedSpectrum(
|
||||||
|
fResolver->resolve("data/ior/" + preset + ".eta.spd")));
|
||||||
|
presetK.fromContinuousSpectrum(InterpolatedSpectrum(
|
||||||
|
fResolver->resolve("data/ior/" + preset + ".k.spd")));
|
||||||
|
|
||||||
|
m_eta = props.getSpectrum("eta", presetEta);
|
||||||
|
m_k = props.getSpectrum("k", presetK);
|
||||||
|
|
||||||
|
m_distribution = MicrofacetDistribution(
|
||||||
|
props.getString("distribution", "beckmann")
|
||||||
|
);
|
||||||
|
|
||||||
|
Float alpha = props.getFloat("alpha", 0.1f),
|
||||||
|
alphaU = props.getFloat("alphaU", alpha),
|
||||||
|
alphaV = props.getFloat("alphaV", alpha);
|
||||||
|
|
||||||
|
m_alphaU = new ConstantFloatTexture(alphaU);
|
||||||
|
if (alphaU == alphaV)
|
||||||
|
m_alphaV = m_alphaU;
|
||||||
|
else
|
||||||
|
m_alphaV = new ConstantFloatTexture(alphaV);
|
||||||
|
|
||||||
|
m_usesRayDifferentials = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
RoughConductor(Stream *stream, InstanceManager *manager)
|
||||||
|
: BSDF(stream, manager) {
|
||||||
|
m_distribution = MicrofacetDistribution(
|
||||||
|
(MicrofacetDistribution::EType) stream->readUInt()
|
||||||
|
);
|
||||||
|
m_alphaU = static_cast<Texture *>(manager->getInstance(stream));
|
||||||
|
m_alphaV = static_cast<Texture *>(manager->getInstance(stream));
|
||||||
|
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
||||||
|
m_eta = Spectrum(stream);
|
||||||
|
m_k = Spectrum(stream);
|
||||||
|
|
||||||
|
m_usesRayDifferentials =
|
||||||
|
m_alphaU->usesRayDifferentials() ||
|
||||||
|
m_alphaV->usesRayDifferentials() ||
|
||||||
|
m_specularReflectance->usesRayDifferentials();
|
||||||
|
|
||||||
|
configure();
|
||||||
|
}
|
||||||
|
|
||||||
|
void configure() {
|
||||||
|
unsigned int extraFlags = 0;
|
||||||
|
if (m_alphaU != m_alphaV) {
|
||||||
|
extraFlags |= EAnisotropic;
|
||||||
|
if (m_distribution.getType() !=
|
||||||
|
MicrofacetDistribution::EAshikhminShirley)
|
||||||
|
Log(EError, "Different roughness values along the tangent and "
|
||||||
|
"bitangent directions are only supported when using the "
|
||||||
|
"anisotropic Ashikhmin-Shirley microfacet distribution "
|
||||||
|
"(named \"as\")");
|
||||||
|
}
|
||||||
|
|
||||||
|
m_components.clear();
|
||||||
|
m_components.push_back(
|
||||||
|
EGlossyReflection | EFrontSide | extraFlags);
|
||||||
|
|
||||||
|
/* Verify the input parameter and fix them if necessary */
|
||||||
|
m_specularReflectance = ensureEnergyConservation(
|
||||||
|
m_specularReflectance, "specularReflectance", 1.0f);
|
||||||
|
|
||||||
|
BSDF::configure();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual ~RoughConductor() { }
|
||||||
|
|
||||||
|
/// Helper function: reflect \c wi with respect to a given surface normal
|
||||||
|
inline Vector reflect(const Vector &wi, const Normal &m) const {
|
||||||
|
return 2 * dot(wi, m) * Vector(m) - wi;
|
||||||
|
}
|
||||||
|
|
||||||
|
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
|
||||||
|
/* Stop if this component was not requested */
|
||||||
|
if (measure != ESolidAngle ||
|
||||||
|
Frame::cosTheta(bRec.wi) < 0 ||
|
||||||
|
Frame::cosTheta(bRec.wo) < 0 ||
|
||||||
|
((bRec.component != -1 && bRec.component != 0) ||
|
||||||
|
!(bRec.typeMask & EGlossyReflection)))
|
||||||
|
return Spectrum(0.0f);
|
||||||
|
|
||||||
|
/* Calculate the reflection half-vector */
|
||||||
|
Vector H = normalize(bRec.wo+bRec.wi);
|
||||||
|
|
||||||
|
/* Evaluate the roughness */
|
||||||
|
Float alphaU = m_distribution.transformRoughness(
|
||||||
|
m_alphaU->getValue(bRec.its).average()),
|
||||||
|
alphaV = m_distribution.transformRoughness(
|
||||||
|
m_alphaV->getValue(bRec.its).average());
|
||||||
|
|
||||||
|
/* Evaluate the microsurface normal distribution */
|
||||||
|
const Float D = m_distribution.eval(H, alphaU, alphaV);
|
||||||
|
if (D == 0)
|
||||||
|
return Spectrum(0.0f);
|
||||||
|
|
||||||
|
/* Fresnel factor */
|
||||||
|
const Spectrum F = fresnelConductor(Frame::cosTheta(bRec.wi), m_eta, m_k);
|
||||||
|
|
||||||
|
/* Smith's shadow-masking function */
|
||||||
|
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, alphaU, alphaV);
|
||||||
|
|
||||||
|
/* Calculate the total amount of reflection */
|
||||||
|
Float value = D * G / (4.0f * Frame::cosTheta(bRec.wi));
|
||||||
|
|
||||||
|
return m_specularReflectance->getValue(bRec.its) * F * value;
|
||||||
|
}
|
||||||
|
|
||||||
|
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
|
||||||
|
if (measure != ESolidAngle ||
|
||||||
|
Frame::cosTheta(bRec.wi) < 0 ||
|
||||||
|
Frame::cosTheta(bRec.wo) < 0 ||
|
||||||
|
((bRec.component != -1 && bRec.component != 0) ||
|
||||||
|
!(bRec.typeMask & EGlossyReflection)))
|
||||||
|
return 0.0f;
|
||||||
|
|
||||||
|
/* Calculate the reflection half-vector */
|
||||||
|
Vector H = normalize(bRec.wo+bRec.wi);
|
||||||
|
|
||||||
|
/* Evaluate the roughness */
|
||||||
|
Float alphaU = m_distribution.transformRoughness(
|
||||||
|
m_alphaU->getValue(bRec.its).average()),
|
||||||
|
alphaV = m_distribution.transformRoughness(
|
||||||
|
m_alphaV->getValue(bRec.its).average());
|
||||||
|
|
||||||
|
#if ENLARGE_LOBE_TRICK == 1
|
||||||
|
Float factor = (1.2f - 0.2f * std::sqrt(
|
||||||
|
std::abs(Frame::cosTheta(bRec.wi))));
|
||||||
|
alphaU *= factor; alphaV *= factor;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
return m_distribution.pdf(H, alphaU, alphaV)
|
||||||
|
/ (4 * absDot(bRec.wo, H));
|
||||||
|
}
|
||||||
|
|
||||||
|
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
|
||||||
|
if (Frame::cosTheta(bRec.wi) < 0 ||
|
||||||
|
((bRec.component != -1 && bRec.component != 0) ||
|
||||||
|
!(bRec.typeMask & EGlossyReflection)))
|
||||||
|
return Spectrum(0.0f);
|
||||||
|
|
||||||
|
/* Evaluate the roughness */
|
||||||
|
Float alphaU = m_distribution.transformRoughness(
|
||||||
|
m_alphaU->getValue(bRec.its).average()),
|
||||||
|
alphaV = m_distribution.transformRoughness(
|
||||||
|
m_alphaV->getValue(bRec.its).average());
|
||||||
|
|
||||||
|
#if ENLARGE_LOBE_TRICK == 1
|
||||||
|
Float factor = (1.2f - 0.2f * std::sqrt(
|
||||||
|
std::abs(Frame::cosTheta(bRec.wi))));
|
||||||
|
Float sampleAlphaU = alphaU * factor,
|
||||||
|
sampleAlphaV = alphaV * factor;
|
||||||
|
#else
|
||||||
|
Float sampleAlphaU = alphaU,
|
||||||
|
sampleAlphaV = alphaV;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* Sample M, the microsurface normal */
|
||||||
|
const Normal m = m_distribution.sample(sample,
|
||||||
|
sampleAlphaU, sampleAlphaV);
|
||||||
|
|
||||||
|
/* Perfect specular reflection based on the microsurface normal */
|
||||||
|
bRec.wo = reflect(bRec.wi, m);
|
||||||
|
bRec.sampledComponent = 0;
|
||||||
|
bRec.sampledType = EGlossyReflection;
|
||||||
|
|
||||||
|
/* Side check */
|
||||||
|
if (Frame::cosTheta(bRec.wo) <= 0)
|
||||||
|
return Spectrum(0.0f);
|
||||||
|
|
||||||
|
const Spectrum F = fresnelConductor(Frame::cosTheta(bRec.wi),
|
||||||
|
m_eta, m_k);
|
||||||
|
|
||||||
|
Float numerator = m_distribution.eval(m, alphaU, alphaV)
|
||||||
|
* m_distribution.G(bRec.wi, bRec.wo, m, alphaU, alphaV)
|
||||||
|
* dot(bRec.wi, m);
|
||||||
|
|
||||||
|
Float denominator = m_distribution.pdf(m, sampleAlphaU, sampleAlphaV)
|
||||||
|
* Frame::cosTheta(bRec.wi);
|
||||||
|
|
||||||
|
return m_specularReflectance->getValue(bRec.its) * F
|
||||||
|
* (numerator / denominator);
|
||||||
|
}
|
||||||
|
|
||||||
|
Spectrum sample(BSDFQueryRecord &bRec, Float &_pdf, const Point2 &sample) const {
|
||||||
|
if (Frame::cosTheta(bRec.wi) < 0 ||
|
||||||
|
((bRec.component != -1 && bRec.component != 0) ||
|
||||||
|
!(bRec.typeMask & EGlossyReflection)))
|
||||||
|
return Spectrum(0.0f);
|
||||||
|
|
||||||
|
/* Evaluate the roughness */
|
||||||
|
Float alphaU = m_distribution.transformRoughness(
|
||||||
|
m_alphaU->getValue(bRec.its).average()),
|
||||||
|
alphaV = m_distribution.transformRoughness(
|
||||||
|
m_alphaV->getValue(bRec.its).average());
|
||||||
|
|
||||||
|
#if ENLARGE_LOBE_TRICK == 1
|
||||||
|
Float factor = (1.2f - 0.2f * std::sqrt(
|
||||||
|
std::abs(Frame::cosTheta(bRec.wi))));
|
||||||
|
Float sampleAlphaU = alphaU * factor,
|
||||||
|
sampleAlphaV = alphaV * factor;
|
||||||
|
#else
|
||||||
|
Float sampleAlphaU = alphaU,
|
||||||
|
sampleAlphaV = alphaV;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* Sample M, the microsurface normal */
|
||||||
|
const Normal m = m_distribution.sample(sample,
|
||||||
|
sampleAlphaU, sampleAlphaV);
|
||||||
|
|
||||||
|
/* Perfect specular reflection based on the microsurface normal */
|
||||||
|
bRec.wo = reflect(bRec.wi, m);
|
||||||
|
bRec.sampledComponent = 0;
|
||||||
|
bRec.sampledType = EGlossyReflection;
|
||||||
|
|
||||||
|
/* Side check */
|
||||||
|
if (Frame::cosTheta(bRec.wo) <= 0)
|
||||||
|
return Spectrum(0.0f);
|
||||||
|
|
||||||
|
/* Guard against numerical imprecisions */
|
||||||
|
_pdf = pdf(bRec, ESolidAngle);
|
||||||
|
|
||||||
|
if (_pdf == 0)
|
||||||
|
return Spectrum(0.0f);
|
||||||
|
else
|
||||||
|
return eval(bRec, ESolidAngle);
|
||||||
|
}
|
||||||
|
|
||||||
|
void addChild(const std::string &name, ConfigurableObject *child) {
|
||||||
|
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "alpha") {
|
||||||
|
m_alphaU = m_alphaV = static_cast<Texture *>(child);
|
||||||
|
m_usesRayDifferentials |= m_alphaU->usesRayDifferentials();
|
||||||
|
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "alphaU") {
|
||||||
|
m_alphaU = static_cast<Texture *>(child);
|
||||||
|
m_usesRayDifferentials |= m_alphaU->usesRayDifferentials();
|
||||||
|
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "alphaV") {
|
||||||
|
m_alphaV = static_cast<Texture *>(child);
|
||||||
|
m_usesRayDifferentials |= m_alphaV->usesRayDifferentials();
|
||||||
|
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
|
||||||
|
m_specularReflectance = static_cast<Texture *>(child);
|
||||||
|
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
|
||||||
|
} else {
|
||||||
|
BSDF::addChild(name, child);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void serialize(Stream *stream, InstanceManager *manager) const {
|
||||||
|
BSDF::serialize(stream, manager);
|
||||||
|
|
||||||
|
stream->writeUInt((uint32_t) m_distribution.getType());
|
||||||
|
manager->serialize(stream, m_alphaU.get());
|
||||||
|
manager->serialize(stream, m_alphaV.get());
|
||||||
|
manager->serialize(stream, m_specularReflectance.get());
|
||||||
|
m_eta.serialize(stream);
|
||||||
|
m_k.serialize(stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string toString() const {
|
||||||
|
std::ostringstream oss;
|
||||||
|
oss << "RoughConductor[" << endl
|
||||||
|
<< " name = \"" << getName() << "\"," << endl
|
||||||
|
<< " distribution = " << m_distribution.toString() << "," << endl
|
||||||
|
<< " alphaU = " << indent(m_alphaU->toString()) << "," << endl
|
||||||
|
<< " alphaV = " << indent(m_alphaV->toString()) << "," << endl
|
||||||
|
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
|
||||||
|
<< " eta = " << m_eta.toString() << "," << endl
|
||||||
|
<< " k = " << m_k.toString() << endl
|
||||||
|
<< "]";
|
||||||
|
return oss.str();
|
||||||
|
}
|
||||||
|
|
||||||
|
Shader *createShader(Renderer *renderer) const;
|
||||||
|
|
||||||
|
MTS_DECLARE_CLASS()
|
||||||
|
private:
|
||||||
|
MicrofacetDistribution m_distribution;
|
||||||
|
ref<Texture> m_specularReflectance;
|
||||||
|
ref<Texture> m_alphaU, m_alphaV;
|
||||||
|
Spectrum m_eta, m_k;
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Fake conductor shader -- it is really hopeless to visualize
|
||||||
|
this material in the VPL renderer, so let's try to do at least
|
||||||
|
something that suggests the presence of a translucent boundary */
|
||||||
|
class RoughConductorShader : public Shader {
|
||||||
|
public:
|
||||||
|
RoughConductorShader(Renderer *renderer) :
|
||||||
|
Shader(renderer, EBSDFShader) {
|
||||||
|
m_flags = ETransparent;
|
||||||
|
}
|
||||||
|
|
||||||
|
void generateCode(std::ostringstream &oss,
|
||||||
|
const std::string &evalName,
|
||||||
|
const std::vector<std::string> &depNames) const {
|
||||||
|
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
|
||||||
|
<< " return vec3(0.08);" << endl
|
||||||
|
<< "}" << endl
|
||||||
|
<< endl
|
||||||
|
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
|
||||||
|
<< " return " << evalName << "(uv, wi, wo);" << endl
|
||||||
|
<< "}" << endl;
|
||||||
|
}
|
||||||
|
MTS_DECLARE_CLASS()
|
||||||
|
};
|
||||||
|
|
||||||
|
Shader *RoughConductor::createShader(Renderer *renderer) const {
|
||||||
|
return new RoughConductorShader(renderer);
|
||||||
|
}
|
||||||
|
|
||||||
|
MTS_IMPLEMENT_CLASS(RoughConductorShader, false, Shader)
|
||||||
|
MTS_IMPLEMENT_CLASS_S(RoughConductor, false, BSDF)
|
||||||
|
MTS_EXPORT_PLUGIN(RoughConductor, "Rough conductor BRDF");
|
||||||
|
MTS_NAMESPACE_END
|
|
@ -24,9 +24,10 @@
|
||||||
|
|
||||||
MTS_NAMESPACE_BEGIN
|
MTS_NAMESPACE_BEGIN
|
||||||
|
|
||||||
/* Suggestion by Bruce Walter: sample using a slightly wider
|
/* Suggestion by Bruce Walter: sample the model using a slightly
|
||||||
density function. This in practice limits the importance
|
wider density function. This in practice limits the importance
|
||||||
weights to values <= 4. See also \ref sample() */
|
weights to values <= 4.
|
||||||
|
*/
|
||||||
#define ENLARGE_LOBE_TRICK 1
|
#define ENLARGE_LOBE_TRICK 1
|
||||||
|
|
||||||
/*! \plugin{roughdielectric}{Rough dielectric material}
|
/*! \plugin{roughdielectric}{Rough dielectric material}
|
||||||
|
@ -140,8 +141,7 @@ MTS_NAMESPACE_BEGIN
|
||||||
*/
|
*/
|
||||||
class RoughDielectric : public BSDF {
|
class RoughDielectric : public BSDF {
|
||||||
public:
|
public:
|
||||||
RoughDielectric(const Properties &props)
|
RoughDielectric(const Properties &props) : BSDF(props) {
|
||||||
: BSDF(props) {
|
|
||||||
m_specularReflectance = new ConstantSpectrumTexture(
|
m_specularReflectance = new ConstantSpectrumTexture(
|
||||||
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
|
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
|
||||||
m_specularTransmittance = new ConstantSpectrumTexture(
|
m_specularTransmittance = new ConstantSpectrumTexture(
|
||||||
|
@ -186,22 +186,17 @@ public:
|
||||||
m_intIOR = stream->readFloat();
|
m_intIOR = stream->readFloat();
|
||||||
m_extIOR = stream->readFloat();
|
m_extIOR = stream->readFloat();
|
||||||
|
|
||||||
m_components.push_back(
|
|
||||||
EGlossyReflection | EFrontSide | EBackSide | ECanUseSampler);
|
|
||||||
m_components.push_back(
|
|
||||||
EGlossyTransmission | EFrontSide | EBackSide | ECanUseSampler);
|
|
||||||
|
|
||||||
m_usesRayDifferentials =
|
m_usesRayDifferentials =
|
||||||
m_alphaU->usesRayDifferentials() ||
|
m_alphaU->usesRayDifferentials() ||
|
||||||
m_alphaV->usesRayDifferentials() ||
|
m_alphaV->usesRayDifferentials() ||
|
||||||
m_specularReflectance->usesRayDifferentials() ||
|
m_specularReflectance->usesRayDifferentials() ||
|
||||||
m_specularTransmittance->usesRayDifferentials();
|
m_specularTransmittance->usesRayDifferentials();
|
||||||
|
|
||||||
configure();
|
configure();
|
||||||
}
|
}
|
||||||
|
|
||||||
void configure() {
|
void configure() {
|
||||||
unsigned int extraFlags = 0;
|
unsigned int extraFlags = 0;
|
||||||
m_components.clear();
|
|
||||||
if (m_alphaU != m_alphaV) {
|
if (m_alphaU != m_alphaV) {
|
||||||
extraFlags |= EAnisotropic;
|
extraFlags |= EAnisotropic;
|
||||||
if (m_distribution.getType() !=
|
if (m_distribution.getType() !=
|
||||||
|
@ -212,6 +207,7 @@ public:
|
||||||
"(named \"as\")");
|
"(named \"as\")");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
m_components.clear();
|
||||||
m_components.push_back(
|
m_components.push_back(
|
||||||
EGlossyReflection | EFrontSide | EBackSide | ECanUseSampler | extraFlags);
|
EGlossyReflection | EFrontSide | EBackSide | ECanUseSampler | extraFlags);
|
||||||
m_components.push_back(
|
m_components.push_back(
|
||||||
|
@ -298,7 +294,7 @@ public:
|
||||||
alphaV = m_distribution.transformRoughness(
|
alphaV = m_distribution.transformRoughness(
|
||||||
m_alphaV->getValue(bRec.its).average());
|
m_alphaV->getValue(bRec.its).average());
|
||||||
|
|
||||||
/* Microsurface normal distribution */
|
/* Evaluate the microsurface normal distribution */
|
||||||
const Float D = m_distribution.eval(H, alphaU, alphaV);
|
const Float D = m_distribution.eval(H, alphaU, alphaV);
|
||||||
if (D == 0)
|
if (D == 0)
|
||||||
return Spectrum(0.0f);
|
return Spectrum(0.0f);
|
||||||
|
@ -388,16 +384,13 @@ public:
|
||||||
alphaV = m_distribution.transformRoughness(
|
alphaV = m_distribution.transformRoughness(
|
||||||
m_alphaV->getValue(bRec.its).average());
|
m_alphaV->getValue(bRec.its).average());
|
||||||
|
|
||||||
#if defined(ENLARGE_LOBE_TRICK)
|
#if ENLARGE_LOBE_TRICK == 1
|
||||||
/* Suggestion by Bruce Walter: sample using a slightly wider
|
|
||||||
density function. This in practice limits the importance
|
|
||||||
weights to values <= 4. See also \ref sample() */
|
|
||||||
Float factor = (1.2f - 0.2f * std::sqrt(
|
Float factor = (1.2f - 0.2f * std::sqrt(
|
||||||
std::abs(Frame::cosTheta(bRec.wi))));
|
std::abs(Frame::cosTheta(bRec.wi))));
|
||||||
alphaU *= factor; alphaV *= factor;
|
alphaU *= factor; alphaV *= factor;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
/* Microsurface normal sampling density */
|
/* Evaluate the microsurface normal sampling density */
|
||||||
Float prob = m_distribution.pdf(H, alphaU, alphaV);
|
Float prob = m_distribution.pdf(H, alphaU, alphaV);
|
||||||
|
|
||||||
if (sampleTransmission && sampleReflection) {
|
if (sampleTransmission && sampleReflection) {
|
||||||
|
@ -476,10 +469,7 @@ public:
|
||||||
alphaV = m_distribution.transformRoughness(
|
alphaV = m_distribution.transformRoughness(
|
||||||
m_alphaV->getValue(bRec.its).average());
|
m_alphaV->getValue(bRec.its).average());
|
||||||
|
|
||||||
/* Suggestion by Bruce Walter: sample using a slightly wider
|
#if ENLARGE_LOBE_TRICK == 1
|
||||||
density function. This in practice limits the importance
|
|
||||||
weights to values <= 4. See also \ref sample() */
|
|
||||||
#if defined(ENLARGE_LOBE_TRICK)
|
|
||||||
Float factor = (1.2f - 0.2f * std::sqrt(
|
Float factor = (1.2f - 0.2f * std::sqrt(
|
||||||
std::abs(Frame::cosTheta(bRec.wi))));
|
std::abs(Frame::cosTheta(bRec.wi))));
|
||||||
Float sampleAlphaU = alphaU * factor,
|
Float sampleAlphaU = alphaU * factor,
|
||||||
|
@ -607,10 +597,7 @@ public:
|
||||||
alphaV = m_distribution.transformRoughness(
|
alphaV = m_distribution.transformRoughness(
|
||||||
m_alphaV->getValue(bRec.its).average());
|
m_alphaV->getValue(bRec.its).average());
|
||||||
|
|
||||||
/* Suggestion by Bruce Walter: sample using a slightly wider
|
#if ENLARGE_LOBE_TRICK == 1
|
||||||
density function. This in practice limits the importance
|
|
||||||
weights to values <= 4. See also \ref sample() */
|
|
||||||
#if defined(ENLARGE_LOBE_TRICK)
|
|
||||||
Float factor = (1.2f - 0.2f * std::sqrt(
|
Float factor = (1.2f - 0.2f * std::sqrt(
|
||||||
std::abs(Frame::cosTheta(bRec.wi))));
|
std::abs(Frame::cosTheta(bRec.wi))));
|
||||||
Float sampleAlphaU = alphaU * factor,
|
Float sampleAlphaU = alphaU * factor,
|
||||||
|
@ -702,6 +689,7 @@ public:
|
||||||
std::string toString() const {
|
std::string toString() const {
|
||||||
std::ostringstream oss;
|
std::ostringstream oss;
|
||||||
oss << "RoughDielectric[" << endl
|
oss << "RoughDielectric[" << endl
|
||||||
|
<< " name = \"" << getName() << "\"," << endl
|
||||||
<< " distribution = " << m_distribution.toString() << "," << endl
|
<< " distribution = " << m_distribution.toString() << "," << endl
|
||||||
<< " alphaU = " << indent(m_alphaU->toString()) << "," << endl
|
<< " alphaU = " << indent(m_alphaU->toString()) << "," << endl
|
||||||
<< " alphaV = " << indent(m_alphaV->toString()) << "," << endl
|
<< " alphaV = " << indent(m_alphaV->toString()) << "," << endl
|
||||||
|
|
|
@ -1,204 +0,0 @@
|
||||||
/*
|
|
||||||
This file is part of Mitsuba, a physically based rendering system.
|
|
||||||
|
|
||||||
Copyright (c) 2007-2011 by Wenzel Jakob and others.
|
|
||||||
|
|
||||||
Mitsuba is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License Version 3
|
|
||||||
as published by the Free Software Foundation.
|
|
||||||
|
|
||||||
Mitsuba is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
|
||||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include <mitsuba/render/bsdf.h>
|
|
||||||
#include <mitsuba/render/consttexture.h>
|
|
||||||
|
|
||||||
MTS_NAMESPACE_BEGIN
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Rough metal BRDF model based on
|
|
||||||
* "Microfacet Models for Refraction through Rough Surfaces"
|
|
||||||
* by Bruce Walter, Stephen R. Marschner, Hongsong Li
|
|
||||||
* and Kenneth E. Torrance.
|
|
||||||
*
|
|
||||||
* This is similar to the 'microfacet' implementation, but
|
|
||||||
* the Fresnel term is now that of a conductor.
|
|
||||||
*/
|
|
||||||
class RoughMetal : public BSDF {
|
|
||||||
public:
|
|
||||||
RoughMetal(const Properties &props)
|
|
||||||
: BSDF(props) {
|
|
||||||
m_specularReflectance = new ConstantSpectrumTexture(
|
|
||||||
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
|
|
||||||
m_alphaB = props.getFloat("alphaB", .1f);
|
|
||||||
m_ior = props.getSpectrum("ior", Spectrum(0.370f)); /* Gold */
|
|
||||||
m_k = props.getSpectrum("k", Spectrum(2.820f));
|
|
||||||
|
|
||||||
m_componentCount = 1;
|
|
||||||
m_type = new unsigned int[m_componentCount];
|
|
||||||
m_combinedType = m_type[0] = EGlossyReflection | EFrontSide;
|
|
||||||
m_usesRayDifferentials = false;
|
|
||||||
}
|
|
||||||
|
|
||||||
RoughMetal(Stream *stream, InstanceManager *manager)
|
|
||||||
: BSDF(stream, manager) {
|
|
||||||
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
|
||||||
m_alphaB = stream->readFloat();
|
|
||||||
m_ior = Spectrum(stream);
|
|
||||||
m_k = Spectrum(stream);
|
|
||||||
|
|
||||||
m_componentCount = 1;
|
|
||||||
m_type = new unsigned int[m_componentCount];
|
|
||||||
m_combinedType = m_type[0] = EGlossyReflection | EFrontSide;
|
|
||||||
m_usesRayDifferentials =
|
|
||||||
m_specularReflectance->usesRayDifferentials();
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual ~RoughMetal() {
|
|
||||||
delete[] m_type;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Beckmann distribution function for gaussian random surfaces
|
|
||||||
* \param thetaM Tangent of the angle between M and N.
|
|
||||||
*/
|
|
||||||
Float beckmannD(const Vector &m) const {
|
|
||||||
Float ex = Frame::tanTheta(m) / m_alphaB;
|
|
||||||
return std::exp(-(ex*ex)) / (M_PI * m_alphaB*m_alphaB *
|
|
||||||
std::pow(Frame::cosTheta(m), (Float) 4.0f));
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Sample microsurface normals according to
|
|
||||||
* the Beckmann distribution
|
|
||||||
*/
|
|
||||||
Normal sampleBeckmannD(Point2 sample) const {
|
|
||||||
Float thetaM = std::atan(std::sqrt(-m_alphaB*m_alphaB
|
|
||||||
* std::log(1.0f - sample.x)));
|
|
||||||
Float phiM = (2.0f * M_PI) * sample.y;
|
|
||||||
return Normal(sphericalDirection(thetaM, phiM));
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Smith's shadow-masking function G1 for the Beckmann distribution
|
|
||||||
* \param m The microsurface normal
|
|
||||||
* \param v An arbitrary direction
|
|
||||||
*/
|
|
||||||
Float smithBeckmannG1(const Vector &v, const Vector &m) const {
|
|
||||||
if (dot(v, m) * Frame::cosTheta(v) <= 0)
|
|
||||||
return 0.0;
|
|
||||||
|
|
||||||
const Float tanTheta = Frame::tanTheta(v);
|
|
||||||
|
|
||||||
if (tanTheta == 0.0f)
|
|
||||||
return 1.0f;
|
|
||||||
|
|
||||||
const Float a = 1.0f / (m_alphaB * tanTheta);
|
|
||||||
const Float aSqr = a * a;
|
|
||||||
|
|
||||||
if (a >= 1.6f)
|
|
||||||
return 1.0f;
|
|
||||||
|
|
||||||
return (3.535f * a + 2.181f * aSqr) /
|
|
||||||
(1.0f + 2.276f * a + 2.577f * aSqr);
|
|
||||||
}
|
|
||||||
|
|
||||||
inline Vector reflect(const Vector &wi, const Normal &n) const {
|
|
||||||
return Vector(n*(2.0f*dot(n, wi))) - wi;
|
|
||||||
}
|
|
||||||
|
|
||||||
Spectrum f(const BSDFQueryRecord &bRec) const {
|
|
||||||
if (!(bRec.typeMask & m_combinedType)
|
|
||||||
|| bRec.wi.z <= 0 || bRec.wo.z <= 0)
|
|
||||||
return Spectrum(0.0f);\
|
|
||||||
|
|
||||||
Vector Hr = normalize(bRec.wi+bRec.wo);
|
|
||||||
|
|
||||||
/* Fresnel factor */
|
|
||||||
Spectrum F = fresnelConductor(dot(bRec.wi, Hr), m_ior, m_k);
|
|
||||||
|
|
||||||
/* Microsurface normal distribution */
|
|
||||||
Float D = beckmannD(Hr);
|
|
||||||
/* Smith's shadow-masking function for the Beckmann distribution */
|
|
||||||
Float G = smithBeckmannG1(bRec.wi, Hr) * smithBeckmannG1(bRec.wo, Hr);
|
|
||||||
/* Calculate the total amount of specular reflection */
|
|
||||||
Spectrum specRef = F * (D * G /
|
|
||||||
(4.0f * Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo)));
|
|
||||||
|
|
||||||
return m_specularReflectance->getValue(bRec.its) * specRef;
|
|
||||||
}
|
|
||||||
|
|
||||||
Float pdf(const BSDFQueryRecord &bRec) const {
|
|
||||||
if (bRec.wi.z <= 0 || bRec.wo.z <= 0)
|
|
||||||
return 0.0f;
|
|
||||||
|
|
||||||
Vector Hr = normalize(bRec.wi + bRec.wo);
|
|
||||||
/* Jacobian of the half-direction transform. */
|
|
||||||
Float dwhr_dwo = 1.0f / (4.0f * absDot(bRec.wo, Hr));
|
|
||||||
return beckmannD(Hr) * Frame::cosTheta(Hr) * dwhr_dwo;
|
|
||||||
}
|
|
||||||
|
|
||||||
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
|
|
||||||
if (bRec.wi.z <= 0)
|
|
||||||
return Spectrum(0.0f);
|
|
||||||
|
|
||||||
/* Sample M, the microsurface normal */
|
|
||||||
Normal m = sampleBeckmannD(sample);
|
|
||||||
/* Perfect specular reflection along the microsurface normal */
|
|
||||||
bRec.wo = reflect(bRec.wi, m);
|
|
||||||
|
|
||||||
bRec.sampledComponent = 1;
|
|
||||||
bRec.sampledType = EGlossyReflection;
|
|
||||||
|
|
||||||
if (bRec.wo.z <= 0)
|
|
||||||
return Spectrum(0.0f);
|
|
||||||
|
|
||||||
return f(bRec) / pdf(bRec);
|
|
||||||
}
|
|
||||||
|
|
||||||
void serialize(Stream *stream, InstanceManager *manager) const {
|
|
||||||
BSDF::serialize(stream, manager);
|
|
||||||
|
|
||||||
manager->serialize(stream, m_specularReflectance.get());
|
|
||||||
stream->writeFloat(m_alphaB);
|
|
||||||
m_ior.serialize(stream);
|
|
||||||
m_k.serialize(stream);
|
|
||||||
}
|
|
||||||
|
|
||||||
void addChild(const std::string &name, ConfigurableObject *child) {
|
|
||||||
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
|
|
||||||
m_specularReflectance = static_cast<Texture *>(child);
|
|
||||||
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
|
|
||||||
} else {
|
|
||||||
BSDF::addChild(name, child);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
std::string toString() const {
|
|
||||||
std::ostringstream oss;
|
|
||||||
oss << "RoughMetal[" << endl
|
|
||||||
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << std::endl
|
|
||||||
<< " ior = " << m_ior.toString() << "," << std::endl
|
|
||||||
<< " k = " << m_k.toString() << "," << std::endl
|
|
||||||
<< " alphaB = " << m_alphaB << std::endl
|
|
||||||
<< "]";
|
|
||||||
return oss.str();
|
|
||||||
}
|
|
||||||
|
|
||||||
MTS_DECLARE_CLASS()
|
|
||||||
private:
|
|
||||||
ref<Texture> m_specularReflectance;
|
|
||||||
Float m_alphaB;
|
|
||||||
Spectrum m_ior, m_k;
|
|
||||||
};
|
|
||||||
|
|
||||||
MTS_IMPLEMENT_CLASS_S(RoughMetal, false, BSDF)
|
|
||||||
MTS_EXPORT_PLUGIN(RoughMetal, "Rough metal BRDF");
|
|
||||||
MTS_NAMESPACE_END
|
|
|
@ -137,16 +137,16 @@ public:
|
||||||
|
|
||||||
if (f.isZero() || pdfVal == 0 || pdfVal2 == 0) {
|
if (f.isZero() || pdfVal == 0 || pdfVal2 == 0) {
|
||||||
if (!sampled.isZero())
|
if (!sampled.isZero())
|
||||||
Log(EWarn, "Inconsistency (1): f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s, measure=%i",
|
Log(EWarn, "Inconsistency (1): f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s",
|
||||||
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str(), measure);
|
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str());
|
||||||
#if defined(MTS_DEBUG_FP)
|
#if defined(MTS_DEBUG_FP)
|
||||||
disableFPExceptions();
|
disableFPExceptions();
|
||||||
#endif
|
#endif
|
||||||
return boost::make_tuple(bRec.wo, 0.0f, ESolidAngle);
|
return boost::make_tuple(bRec.wo, 0.0f, ESolidAngle);
|
||||||
} else if (sampled.isZero()) {
|
} else if (sampled.isZero()) {
|
||||||
if ((!f.isZero() && pdfVal != 0) || (!f2.isZero() && pdfVal2 != 0))
|
if ((!f.isZero() && pdfVal != 0) || (!f2.isZero() && pdfVal2 != 0))
|
||||||
Log(EWarn, "Inconsistency (2): f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s, measure=%i",
|
Log(EWarn, "Inconsistency (2): f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s",
|
||||||
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str(), measure);
|
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str());
|
||||||
#if defined(MTS_DEBUG_FP)
|
#if defined(MTS_DEBUG_FP)
|
||||||
disableFPExceptions();
|
disableFPExceptions();
|
||||||
#endif
|
#endif
|
||||||
|
@ -155,8 +155,8 @@ public:
|
||||||
|
|
||||||
Spectrum sampled2 = f/pdfVal, evaluated = f2/pdfVal2;
|
Spectrum sampled2 = f/pdfVal, evaluated = f2/pdfVal2;
|
||||||
if (!sampled.isValid() || !sampled2.isValid() || !evaluated.isValid()) {
|
if (!sampled.isValid() || !sampled2.isValid() || !evaluated.isValid()) {
|
||||||
Log(EWarn, "Ooops: f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s, measure=%i",
|
Log(EWarn, "Ooops: f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s",
|
||||||
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str(), measure);
|
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str());
|
||||||
return boost::make_tuple(bRec.wo, 0.0f, ESolidAngle);
|
return boost::make_tuple(bRec.wo, 0.0f, ESolidAngle);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue