metadata
Wenzel Jakob 2011-07-07 21:34:39 +02:00
parent e22b47cc4a
commit de4fe46aff
7 changed files with 442 additions and 237 deletions

View File

@ -2,6 +2,15 @@
to be tested for consistency. This is done
using the testcase 'test_chisquare' -->
<scene>
<!-- Test the rough dielectric model with the anisotropic
Ashikhmin-Shirley microfacet distribution -->
<bsdf type="roughconductor">
<string name="preset" value="Au"/>
<string name="distribution" value="as"/>
<float name="alphaU" value="0.1"/>
<float name="alphaV" value="0.3"/>
</bsdf>
<!-- Test the diffuse model -->
<bsdf type="diffuse"/>
@ -81,4 +90,11 @@
<float name="intIOR" value="1.5"/>
<float name="extIOR" value="1.0"/>
</bsdf>
<!-- Test the rough conductor model with the
Beckmann microfacet distribution -->
<bsdf type="roughconductor">
<string name="distribution" value="beckmann"/>
<float name="alpha" value=".3"/>
</bsdf>
</scene>

View File

@ -7,7 +7,7 @@ plugins += env.SharedLibrary('diffuse', ['diffuse.cpp'])
#plugins += env.SharedLibrary('plastic', ['plastic.cpp'])
plugins += env.SharedLibrary('roughdielectric', ['roughdielectric.cpp'])
#plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp'])
plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp'])
#plugins += env.SharedLibrary('roughdiffuse', ['roughdiffuse.cpp'])
#plugins += env.SharedLibrary('roughplastic', ['roughplastic.cpp'])

View File

@ -157,7 +157,8 @@ public:
return eval(m, alphaU, alphaV) * Frame::cosTheta(m);
/* For the Ashikhmin-Shirley model, the sampling density
does not include the cos(theta_M) factor */
does not include the cos(theta_M) factor, and the
normalization is slightly different than in eval(). */
const Float cosTheta = Frame::cosTheta(m);
const Float ds = 1 - cosTheta * cosTheta;
if (ds < 0)
@ -277,7 +278,9 @@ public:
/* Approximation recommended by Bruce Walter: Use
the Beckmann shadowing-masking function with
specially chosen roughness value */
cout << alpha << endl;
alpha = std::sqrt(0.5f * alpha + 1) / tanTheta;
cout << " becomes " << alpha << endl;
case EBeckmann: {
/* Use a fast and accurate (<0.35% rel. error) rational

View File

@ -0,0 +1,402 @@
/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/core/fresolver.h>
#include <mitsuba/render/bsdf.h>
#include <mitsuba/render/sampler.h>
#include <mitsuba/render/texture.h>
#include "microfacet.h"
MTS_NAMESPACE_BEGIN
/* Suggestion by Bruce Walter: sample the model using a slightly
wider density function. This in practice limits the importance
weights to values <= 4.
Turned off by default, since it seems to increase the variance
of the reflection component.
*/
#define ENLARGE_LOBE_TRICK 0
/*! \plugin{roughconductor}{Rough conductor material}
* \parameters{
* \parameter{distribution}{\String}{
* Specifies the type of microfacet normal distribution
* used to model the surface roughness.
* \begin{enumerate}[(i)]
* \item \code{beckmann}: Physically-based distribution derived from
* Gaussian random surfaces. This is the default.
* \item \code{phong}: Classical $\cos^p\theta$ distribution.
* Due to the underlying microfacet theory,
* the use of this distribution here leads to more realistic
* behavior than the separately available \pluginref{phong} plugin.
* \item \code{ggx}: New distribution proposed by
* Walter et al. meant to better handle the long
* tails observed in measurements of ground surfaces.
* Renderings with this distribution may converge slowly.
* \item \code{as}: Anisotropic Phong-style microfacet distribution proposed by
* Ashikhmin and Shirley \cite{Ashikhmin2005Anisotropic}.\vspace{-3mm}
* \end{enumerate}
* }
* \parameter{alpha}{\Float\Or\Texture}{
* Specifies the roughness value of the unresolved surface microgeometry.
* When the Beckmann distribution is used, this parameter is equal to the
* \emph{root mean square} (RMS) slope of the microfacets. This
* parameter is only valid when \texttt{distribution=beckmann/phong/ggx}.
* \default{0.1}.
* }
* \parameter{alphaU, alphaV}{\Float\Or\Texture}{
* Specifies the anisotropic rougness values along the tangent and bitangent directions. These
* parameter are only valid when \texttt{distribution=as}.
* \default{0.1}.
* }
* \parameter{preset}{\String}{Name of a material preset, see
* \tblref{conductor-iors}.\!\default{\texttt{Cu} / copper}}
* \parameter{eta}{\Spectrum}{Real part of the material's index
* of refraction \default{based on the value of \texttt{preset}}}
* \parameter{k}{\Spectrum}{Imaginary part of the material's index of
* refraction, also known as absorption coefficient.
* \default{based on the value of \texttt{preset}}}
* \lastparameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
* factor used to modulate the reflectance component\default{1.0}}
* }
*/
class RoughConductor : public BSDF {
public:
RoughConductor(const Properties &props) : BSDF(props) {
ref<FileResolver> fResolver = Thread::getThread()->getFileResolver();
m_specularReflectance = new ConstantSpectrumTexture(
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
std::string preset = props.getString("preset", "Cu");
Spectrum presetEta, presetK;
presetEta.fromContinuousSpectrum(InterpolatedSpectrum(
fResolver->resolve("data/ior/" + preset + ".eta.spd")));
presetK.fromContinuousSpectrum(InterpolatedSpectrum(
fResolver->resolve("data/ior/" + preset + ".k.spd")));
m_eta = props.getSpectrum("eta", presetEta);
m_k = props.getSpectrum("k", presetK);
m_distribution = MicrofacetDistribution(
props.getString("distribution", "beckmann")
);
Float alpha = props.getFloat("alpha", 0.1f),
alphaU = props.getFloat("alphaU", alpha),
alphaV = props.getFloat("alphaV", alpha);
m_alphaU = new ConstantFloatTexture(alphaU);
if (alphaU == alphaV)
m_alphaV = m_alphaU;
else
m_alphaV = new ConstantFloatTexture(alphaV);
m_usesRayDifferentials = false;
}
RoughConductor(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_distribution = MicrofacetDistribution(
(MicrofacetDistribution::EType) stream->readUInt()
);
m_alphaU = static_cast<Texture *>(manager->getInstance(stream));
m_alphaV = static_cast<Texture *>(manager->getInstance(stream));
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_eta = Spectrum(stream);
m_k = Spectrum(stream);
m_usesRayDifferentials =
m_alphaU->usesRayDifferentials() ||
m_alphaV->usesRayDifferentials() ||
m_specularReflectance->usesRayDifferentials();
configure();
}
void configure() {
unsigned int extraFlags = 0;
if (m_alphaU != m_alphaV) {
extraFlags |= EAnisotropic;
if (m_distribution.getType() !=
MicrofacetDistribution::EAshikhminShirley)
Log(EError, "Different roughness values along the tangent and "
"bitangent directions are only supported when using the "
"anisotropic Ashikhmin-Shirley microfacet distribution "
"(named \"as\")");
}
m_components.clear();
m_components.push_back(
EGlossyReflection | EFrontSide | extraFlags);
/* Verify the input parameter and fix them if necessary */
m_specularReflectance = ensureEnergyConservation(
m_specularReflectance, "specularReflectance", 1.0f);
BSDF::configure();
}
virtual ~RoughConductor() { }
/// Helper function: reflect \c wi with respect to a given surface normal
inline Vector reflect(const Vector &wi, const Normal &m) const {
return 2 * dot(wi, m) * Vector(m) - wi;
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
/* Stop if this component was not requested */
if (measure != ESolidAngle ||
Frame::cosTheta(bRec.wi) < 0 ||
Frame::cosTheta(bRec.wo) < 0 ||
((bRec.component != -1 && bRec.component != 0) ||
!(bRec.typeMask & EGlossyReflection)))
return Spectrum(0.0f);
/* Calculate the reflection half-vector */
Vector H = normalize(bRec.wo+bRec.wi);
/* Evaluate the roughness */
Float alphaU = m_distribution.transformRoughness(
m_alphaU->getValue(bRec.its).average()),
alphaV = m_distribution.transformRoughness(
m_alphaV->getValue(bRec.its).average());
/* Evaluate the microsurface normal distribution */
const Float D = m_distribution.eval(H, alphaU, alphaV);
if (D == 0)
return Spectrum(0.0f);
/* Fresnel factor */
const Spectrum F = fresnelConductor(Frame::cosTheta(bRec.wi), m_eta, m_k);
/* Smith's shadow-masking function */
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, alphaU, alphaV);
/* Calculate the total amount of reflection */
Float value = D * G / (4.0f * Frame::cosTheta(bRec.wi));
return m_specularReflectance->getValue(bRec.its) * F * value;
}
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (measure != ESolidAngle ||
Frame::cosTheta(bRec.wi) < 0 ||
Frame::cosTheta(bRec.wo) < 0 ||
((bRec.component != -1 && bRec.component != 0) ||
!(bRec.typeMask & EGlossyReflection)))
return 0.0f;
/* Calculate the reflection half-vector */
Vector H = normalize(bRec.wo+bRec.wi);
/* Evaluate the roughness */
Float alphaU = m_distribution.transformRoughness(
m_alphaU->getValue(bRec.its).average()),
alphaV = m_distribution.transformRoughness(
m_alphaV->getValue(bRec.its).average());
#if ENLARGE_LOBE_TRICK == 1
Float factor = (1.2f - 0.2f * std::sqrt(
std::abs(Frame::cosTheta(bRec.wi))));
alphaU *= factor; alphaV *= factor;
#endif
return m_distribution.pdf(H, alphaU, alphaV)
/ (4 * absDot(bRec.wo, H));
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
if (Frame::cosTheta(bRec.wi) < 0 ||
((bRec.component != -1 && bRec.component != 0) ||
!(bRec.typeMask & EGlossyReflection)))
return Spectrum(0.0f);
/* Evaluate the roughness */
Float alphaU = m_distribution.transformRoughness(
m_alphaU->getValue(bRec.its).average()),
alphaV = m_distribution.transformRoughness(
m_alphaV->getValue(bRec.its).average());
#if ENLARGE_LOBE_TRICK == 1
Float factor = (1.2f - 0.2f * std::sqrt(
std::abs(Frame::cosTheta(bRec.wi))));
Float sampleAlphaU = alphaU * factor,
sampleAlphaV = alphaV * factor;
#else
Float sampleAlphaU = alphaU,
sampleAlphaV = alphaV;
#endif
/* Sample M, the microsurface normal */
const Normal m = m_distribution.sample(sample,
sampleAlphaU, sampleAlphaV);
/* Perfect specular reflection based on the microsurface normal */
bRec.wo = reflect(bRec.wi, m);
bRec.sampledComponent = 0;
bRec.sampledType = EGlossyReflection;
/* Side check */
if (Frame::cosTheta(bRec.wo) <= 0)
return Spectrum(0.0f);
const Spectrum F = fresnelConductor(Frame::cosTheta(bRec.wi),
m_eta, m_k);
Float numerator = m_distribution.eval(m, alphaU, alphaV)
* m_distribution.G(bRec.wi, bRec.wo, m, alphaU, alphaV)
* dot(bRec.wi, m);
Float denominator = m_distribution.pdf(m, sampleAlphaU, sampleAlphaV)
* Frame::cosTheta(bRec.wi);
return m_specularReflectance->getValue(bRec.its) * F
* (numerator / denominator);
}
Spectrum sample(BSDFQueryRecord &bRec, Float &_pdf, const Point2 &sample) const {
if (Frame::cosTheta(bRec.wi) < 0 ||
((bRec.component != -1 && bRec.component != 0) ||
!(bRec.typeMask & EGlossyReflection)))
return Spectrum(0.0f);
/* Evaluate the roughness */
Float alphaU = m_distribution.transformRoughness(
m_alphaU->getValue(bRec.its).average()),
alphaV = m_distribution.transformRoughness(
m_alphaV->getValue(bRec.its).average());
#if ENLARGE_LOBE_TRICK == 1
Float factor = (1.2f - 0.2f * std::sqrt(
std::abs(Frame::cosTheta(bRec.wi))));
Float sampleAlphaU = alphaU * factor,
sampleAlphaV = alphaV * factor;
#else
Float sampleAlphaU = alphaU,
sampleAlphaV = alphaV;
#endif
/* Sample M, the microsurface normal */
const Normal m = m_distribution.sample(sample,
sampleAlphaU, sampleAlphaV);
/* Perfect specular reflection based on the microsurface normal */
bRec.wo = reflect(bRec.wi, m);
bRec.sampledComponent = 0;
bRec.sampledType = EGlossyReflection;
/* Side check */
if (Frame::cosTheta(bRec.wo) <= 0)
return Spectrum(0.0f);
/* Guard against numerical imprecisions */
_pdf = pdf(bRec, ESolidAngle);
if (_pdf == 0)
return Spectrum(0.0f);
else
return eval(bRec, ESolidAngle);
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "alpha") {
m_alphaU = m_alphaV = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_alphaU->usesRayDifferentials();
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "alphaU") {
m_alphaU = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_alphaU->usesRayDifferentials();
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "alphaV") {
m_alphaV = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_alphaV->usesRayDifferentials();
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
m_specularReflectance = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
} else {
BSDF::addChild(name, child);
}
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
stream->writeUInt((uint32_t) m_distribution.getType());
manager->serialize(stream, m_alphaU.get());
manager->serialize(stream, m_alphaV.get());
manager->serialize(stream, m_specularReflectance.get());
m_eta.serialize(stream);
m_k.serialize(stream);
}
std::string toString() const {
std::ostringstream oss;
oss << "RoughConductor[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " distribution = " << m_distribution.toString() << "," << endl
<< " alphaU = " << indent(m_alphaU->toString()) << "," << endl
<< " alphaV = " << indent(m_alphaV->toString()) << "," << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
<< " eta = " << m_eta.toString() << "," << endl
<< " k = " << m_k.toString() << endl
<< "]";
return oss.str();
}
Shader *createShader(Renderer *renderer) const;
MTS_DECLARE_CLASS()
private:
MicrofacetDistribution m_distribution;
ref<Texture> m_specularReflectance;
ref<Texture> m_alphaU, m_alphaV;
Spectrum m_eta, m_k;
};
/* Fake conductor shader -- it is really hopeless to visualize
this material in the VPL renderer, so let's try to do at least
something that suggests the presence of a translucent boundary */
class RoughConductorShader : public Shader {
public:
RoughConductorShader(Renderer *renderer) :
Shader(renderer, EBSDFShader) {
m_flags = ETransparent;
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " return vec3(0.08);" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " return " << evalName << "(uv, wi, wo);" << endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
};
Shader *RoughConductor::createShader(Renderer *renderer) const {
return new RoughConductorShader(renderer);
}
MTS_IMPLEMENT_CLASS(RoughConductorShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(RoughConductor, false, BSDF)
MTS_EXPORT_PLUGIN(RoughConductor, "Rough conductor BRDF");
MTS_NAMESPACE_END

View File

@ -24,9 +24,10 @@
MTS_NAMESPACE_BEGIN
/* Suggestion by Bruce Walter: sample using a slightly wider
density function. This in practice limits the importance
weights to values <= 4. See also \ref sample() */
/* Suggestion by Bruce Walter: sample the model using a slightly
wider density function. This in practice limits the importance
weights to values <= 4.
*/
#define ENLARGE_LOBE_TRICK 1
/*! \plugin{roughdielectric}{Rough dielectric material}
@ -140,8 +141,7 @@ MTS_NAMESPACE_BEGIN
*/
class RoughDielectric : public BSDF {
public:
RoughDielectric(const Properties &props)
: BSDF(props) {
RoughDielectric(const Properties &props) : BSDF(props) {
m_specularReflectance = new ConstantSpectrumTexture(
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
m_specularTransmittance = new ConstantSpectrumTexture(
@ -186,22 +186,17 @@ public:
m_intIOR = stream->readFloat();
m_extIOR = stream->readFloat();
m_components.push_back(
EGlossyReflection | EFrontSide | EBackSide | ECanUseSampler);
m_components.push_back(
EGlossyTransmission | EFrontSide | EBackSide | ECanUseSampler);
m_usesRayDifferentials =
m_alphaU->usesRayDifferentials() ||
m_alphaV->usesRayDifferentials() ||
m_specularReflectance->usesRayDifferentials() ||
m_specularTransmittance->usesRayDifferentials();
configure();
}
void configure() {
unsigned int extraFlags = 0;
m_components.clear();
if (m_alphaU != m_alphaV) {
extraFlags |= EAnisotropic;
if (m_distribution.getType() !=
@ -212,6 +207,7 @@ public:
"(named \"as\")");
}
m_components.clear();
m_components.push_back(
EGlossyReflection | EFrontSide | EBackSide | ECanUseSampler | extraFlags);
m_components.push_back(
@ -298,7 +294,7 @@ public:
alphaV = m_distribution.transformRoughness(
m_alphaV->getValue(bRec.its).average());
/* Microsurface normal distribution */
/* Evaluate the microsurface normal distribution */
const Float D = m_distribution.eval(H, alphaU, alphaV);
if (D == 0)
return Spectrum(0.0f);
@ -388,16 +384,13 @@ public:
alphaV = m_distribution.transformRoughness(
m_alphaV->getValue(bRec.its).average());
#if defined(ENLARGE_LOBE_TRICK)
/* Suggestion by Bruce Walter: sample using a slightly wider
density function. This in practice limits the importance
weights to values <= 4. See also \ref sample() */
#if ENLARGE_LOBE_TRICK == 1
Float factor = (1.2f - 0.2f * std::sqrt(
std::abs(Frame::cosTheta(bRec.wi))));
alphaU *= factor; alphaV *= factor;
#endif
/* Microsurface normal sampling density */
/* Evaluate the microsurface normal sampling density */
Float prob = m_distribution.pdf(H, alphaU, alphaV);
if (sampleTransmission && sampleReflection) {
@ -476,10 +469,7 @@ public:
alphaV = m_distribution.transformRoughness(
m_alphaV->getValue(bRec.its).average());
/* Suggestion by Bruce Walter: sample using a slightly wider
density function. This in practice limits the importance
weights to values <= 4. See also \ref sample() */
#if defined(ENLARGE_LOBE_TRICK)
#if ENLARGE_LOBE_TRICK == 1
Float factor = (1.2f - 0.2f * std::sqrt(
std::abs(Frame::cosTheta(bRec.wi))));
Float sampleAlphaU = alphaU * factor,
@ -607,10 +597,7 @@ public:
alphaV = m_distribution.transformRoughness(
m_alphaV->getValue(bRec.its).average());
/* Suggestion by Bruce Walter: sample using a slightly wider
density function. This in practice limits the importance
weights to values <= 4. See also \ref sample() */
#if defined(ENLARGE_LOBE_TRICK)
#if ENLARGE_LOBE_TRICK == 1
Float factor = (1.2f - 0.2f * std::sqrt(
std::abs(Frame::cosTheta(bRec.wi))));
Float sampleAlphaU = alphaU * factor,
@ -702,6 +689,7 @@ public:
std::string toString() const {
std::ostringstream oss;
oss << "RoughDielectric[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " distribution = " << m_distribution.toString() << "," << endl
<< " alphaU = " << indent(m_alphaU->toString()) << "," << endl
<< " alphaV = " << indent(m_alphaV->toString()) << "," << endl

View File

@ -1,204 +0,0 @@
/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/render/consttexture.h>
MTS_NAMESPACE_BEGIN
/**
* Rough metal BRDF model based on
* "Microfacet Models for Refraction through Rough Surfaces"
* by Bruce Walter, Stephen R. Marschner, Hongsong Li
* and Kenneth E. Torrance.
*
* This is similar to the 'microfacet' implementation, but
* the Fresnel term is now that of a conductor.
*/
class RoughMetal : public BSDF {
public:
RoughMetal(const Properties &props)
: BSDF(props) {
m_specularReflectance = new ConstantSpectrumTexture(
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
m_alphaB = props.getFloat("alphaB", .1f);
m_ior = props.getSpectrum("ior", Spectrum(0.370f)); /* Gold */
m_k = props.getSpectrum("k", Spectrum(2.820f));
m_componentCount = 1;
m_type = new unsigned int[m_componentCount];
m_combinedType = m_type[0] = EGlossyReflection | EFrontSide;
m_usesRayDifferentials = false;
}
RoughMetal(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_alphaB = stream->readFloat();
m_ior = Spectrum(stream);
m_k = Spectrum(stream);
m_componentCount = 1;
m_type = new unsigned int[m_componentCount];
m_combinedType = m_type[0] = EGlossyReflection | EFrontSide;
m_usesRayDifferentials =
m_specularReflectance->usesRayDifferentials();
}
virtual ~RoughMetal() {
delete[] m_type;
}
/**
* Beckmann distribution function for gaussian random surfaces
* \param thetaM Tangent of the angle between M and N.
*/
Float beckmannD(const Vector &m) const {
Float ex = Frame::tanTheta(m) / m_alphaB;
return std::exp(-(ex*ex)) / (M_PI * m_alphaB*m_alphaB *
std::pow(Frame::cosTheta(m), (Float) 4.0f));
}
/**
* Sample microsurface normals according to
* the Beckmann distribution
*/
Normal sampleBeckmannD(Point2 sample) const {
Float thetaM = std::atan(std::sqrt(-m_alphaB*m_alphaB
* std::log(1.0f - sample.x)));
Float phiM = (2.0f * M_PI) * sample.y;
return Normal(sphericalDirection(thetaM, phiM));
}
/**
* Smith's shadow-masking function G1 for the Beckmann distribution
* \param m The microsurface normal
* \param v An arbitrary direction
*/
Float smithBeckmannG1(const Vector &v, const Vector &m) const {
if (dot(v, m) * Frame::cosTheta(v) <= 0)
return 0.0;
const Float tanTheta = Frame::tanTheta(v);
if (tanTheta == 0.0f)
return 1.0f;
const Float a = 1.0f / (m_alphaB * tanTheta);
const Float aSqr = a * a;
if (a >= 1.6f)
return 1.0f;
return (3.535f * a + 2.181f * aSqr) /
(1.0f + 2.276f * a + 2.577f * aSqr);
}
inline Vector reflect(const Vector &wi, const Normal &n) const {
return Vector(n*(2.0f*dot(n, wi))) - wi;
}
Spectrum f(const BSDFQueryRecord &bRec) const {
if (!(bRec.typeMask & m_combinedType)
|| bRec.wi.z <= 0 || bRec.wo.z <= 0)
return Spectrum(0.0f);\
Vector Hr = normalize(bRec.wi+bRec.wo);
/* Fresnel factor */
Spectrum F = fresnelConductor(dot(bRec.wi, Hr), m_ior, m_k);
/* Microsurface normal distribution */
Float D = beckmannD(Hr);
/* Smith's shadow-masking function for the Beckmann distribution */
Float G = smithBeckmannG1(bRec.wi, Hr) * smithBeckmannG1(bRec.wo, Hr);
/* Calculate the total amount of specular reflection */
Spectrum specRef = F * (D * G /
(4.0f * Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo)));
return m_specularReflectance->getValue(bRec.its) * specRef;
}
Float pdf(const BSDFQueryRecord &bRec) const {
if (bRec.wi.z <= 0 || bRec.wo.z <= 0)
return 0.0f;
Vector Hr = normalize(bRec.wi + bRec.wo);
/* Jacobian of the half-direction transform. */
Float dwhr_dwo = 1.0f / (4.0f * absDot(bRec.wo, Hr));
return beckmannD(Hr) * Frame::cosTheta(Hr) * dwhr_dwo;
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
if (bRec.wi.z <= 0)
return Spectrum(0.0f);
/* Sample M, the microsurface normal */
Normal m = sampleBeckmannD(sample);
/* Perfect specular reflection along the microsurface normal */
bRec.wo = reflect(bRec.wi, m);
bRec.sampledComponent = 1;
bRec.sampledType = EGlossyReflection;
if (bRec.wo.z <= 0)
return Spectrum(0.0f);
return f(bRec) / pdf(bRec);
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
manager->serialize(stream, m_specularReflectance.get());
stream->writeFloat(m_alphaB);
m_ior.serialize(stream);
m_k.serialize(stream);
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
m_specularReflectance = static_cast<Texture *>(child);
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
} else {
BSDF::addChild(name, child);
}
}
std::string toString() const {
std::ostringstream oss;
oss << "RoughMetal[" << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << std::endl
<< " ior = " << m_ior.toString() << "," << std::endl
<< " k = " << m_k.toString() << "," << std::endl
<< " alphaB = " << m_alphaB << std::endl
<< "]";
return oss.str();
}
MTS_DECLARE_CLASS()
private:
ref<Texture> m_specularReflectance;
Float m_alphaB;
Spectrum m_ior, m_k;
};
MTS_IMPLEMENT_CLASS_S(RoughMetal, false, BSDF)
MTS_EXPORT_PLUGIN(RoughMetal, "Rough metal BRDF");
MTS_NAMESPACE_END

View File

@ -137,16 +137,16 @@ public:
if (f.isZero() || pdfVal == 0 || pdfVal2 == 0) {
if (!sampled.isZero())
Log(EWarn, "Inconsistency (1): f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s, measure=%i",
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str(), measure);
Log(EWarn, "Inconsistency (1): f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s",
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str());
#if defined(MTS_DEBUG_FP)
disableFPExceptions();
#endif
return boost::make_tuple(bRec.wo, 0.0f, ESolidAngle);
} else if (sampled.isZero()) {
if ((!f.isZero() && pdfVal != 0) || (!f2.isZero() && pdfVal2 != 0))
Log(EWarn, "Inconsistency (2): f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s, measure=%i",
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str(), measure);
Log(EWarn, "Inconsistency (2): f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s",
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str());
#if defined(MTS_DEBUG_FP)
disableFPExceptions();
#endif
@ -155,8 +155,8 @@ public:
Spectrum sampled2 = f/pdfVal, evaluated = f2/pdfVal2;
if (!sampled.isValid() || !sampled2.isValid() || !evaluated.isValid()) {
Log(EWarn, "Ooops: f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s, measure=%i",
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str(), measure);
Log(EWarn, "Ooops: f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s",
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str());
return boost::make_tuple(bRec.wo, 0.0f, ESolidAngle);
}