cleanups
parent
e22b47cc4a
commit
de4fe46aff
|
@ -2,6 +2,15 @@
|
|||
to be tested for consistency. This is done
|
||||
using the testcase 'test_chisquare' -->
|
||||
<scene>
|
||||
<!-- Test the rough dielectric model with the anisotropic
|
||||
Ashikhmin-Shirley microfacet distribution -->
|
||||
<bsdf type="roughconductor">
|
||||
<string name="preset" value="Au"/>
|
||||
<string name="distribution" value="as"/>
|
||||
<float name="alphaU" value="0.1"/>
|
||||
<float name="alphaV" value="0.3"/>
|
||||
</bsdf>
|
||||
|
||||
<!-- Test the diffuse model -->
|
||||
<bsdf type="diffuse"/>
|
||||
|
||||
|
@ -81,4 +90,11 @@
|
|||
<float name="intIOR" value="1.5"/>
|
||||
<float name="extIOR" value="1.0"/>
|
||||
</bsdf>
|
||||
|
||||
<!-- Test the rough conductor model with the
|
||||
Beckmann microfacet distribution -->
|
||||
<bsdf type="roughconductor">
|
||||
<string name="distribution" value="beckmann"/>
|
||||
<float name="alpha" value=".3"/>
|
||||
</bsdf>
|
||||
</scene>
|
||||
|
|
|
@ -7,7 +7,7 @@ plugins += env.SharedLibrary('diffuse', ['diffuse.cpp'])
|
|||
#plugins += env.SharedLibrary('plastic', ['plastic.cpp'])
|
||||
|
||||
plugins += env.SharedLibrary('roughdielectric', ['roughdielectric.cpp'])
|
||||
#plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp'])
|
||||
plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp'])
|
||||
#plugins += env.SharedLibrary('roughdiffuse', ['roughdiffuse.cpp'])
|
||||
#plugins += env.SharedLibrary('roughplastic', ['roughplastic.cpp'])
|
||||
|
||||
|
|
|
@ -157,7 +157,8 @@ public:
|
|||
return eval(m, alphaU, alphaV) * Frame::cosTheta(m);
|
||||
|
||||
/* For the Ashikhmin-Shirley model, the sampling density
|
||||
does not include the cos(theta_M) factor */
|
||||
does not include the cos(theta_M) factor, and the
|
||||
normalization is slightly different than in eval(). */
|
||||
const Float cosTheta = Frame::cosTheta(m);
|
||||
const Float ds = 1 - cosTheta * cosTheta;
|
||||
if (ds < 0)
|
||||
|
@ -277,7 +278,9 @@ public:
|
|||
/* Approximation recommended by Bruce Walter: Use
|
||||
the Beckmann shadowing-masking function with
|
||||
specially chosen roughness value */
|
||||
cout << alpha << endl;
|
||||
alpha = std::sqrt(0.5f * alpha + 1) / tanTheta;
|
||||
cout << " becomes " << alpha << endl;
|
||||
|
||||
case EBeckmann: {
|
||||
/* Use a fast and accurate (<0.35% rel. error) rational
|
||||
|
|
|
@ -0,0 +1,402 @@
|
|||
/*
|
||||
This file is part of Mitsuba, a physically based rendering system.
|
||||
|
||||
Copyright (c) 2007-2011 by Wenzel Jakob and others.
|
||||
|
||||
Mitsuba is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License Version 3
|
||||
as published by the Free Software Foundation.
|
||||
|
||||
Mitsuba is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <mitsuba/core/fresolver.h>
|
||||
#include <mitsuba/render/bsdf.h>
|
||||
#include <mitsuba/render/sampler.h>
|
||||
#include <mitsuba/render/texture.h>
|
||||
#include "microfacet.h"
|
||||
|
||||
MTS_NAMESPACE_BEGIN
|
||||
|
||||
/* Suggestion by Bruce Walter: sample the model using a slightly
|
||||
wider density function. This in practice limits the importance
|
||||
weights to values <= 4.
|
||||
|
||||
Turned off by default, since it seems to increase the variance
|
||||
of the reflection component.
|
||||
*/
|
||||
#define ENLARGE_LOBE_TRICK 0
|
||||
|
||||
/*! \plugin{roughconductor}{Rough conductor material}
|
||||
* \parameters{
|
||||
* \parameter{distribution}{\String}{
|
||||
* Specifies the type of microfacet normal distribution
|
||||
* used to model the surface roughness.
|
||||
* \begin{enumerate}[(i)]
|
||||
* \item \code{beckmann}: Physically-based distribution derived from
|
||||
* Gaussian random surfaces. This is the default.
|
||||
* \item \code{phong}: Classical $\cos^p\theta$ distribution.
|
||||
* Due to the underlying microfacet theory,
|
||||
* the use of this distribution here leads to more realistic
|
||||
* behavior than the separately available \pluginref{phong} plugin.
|
||||
* \item \code{ggx}: New distribution proposed by
|
||||
* Walter et al. meant to better handle the long
|
||||
* tails observed in measurements of ground surfaces.
|
||||
* Renderings with this distribution may converge slowly.
|
||||
* \item \code{as}: Anisotropic Phong-style microfacet distribution proposed by
|
||||
* Ashikhmin and Shirley \cite{Ashikhmin2005Anisotropic}.\vspace{-3mm}
|
||||
* \end{enumerate}
|
||||
* }
|
||||
* \parameter{alpha}{\Float\Or\Texture}{
|
||||
* Specifies the roughness value of the unresolved surface microgeometry.
|
||||
* When the Beckmann distribution is used, this parameter is equal to the
|
||||
* \emph{root mean square} (RMS) slope of the microfacets. This
|
||||
* parameter is only valid when \texttt{distribution=beckmann/phong/ggx}.
|
||||
* \default{0.1}.
|
||||
* }
|
||||
* \parameter{alphaU, alphaV}{\Float\Or\Texture}{
|
||||
* Specifies the anisotropic rougness values along the tangent and bitangent directions. These
|
||||
* parameter are only valid when \texttt{distribution=as}.
|
||||
* \default{0.1}.
|
||||
* }
|
||||
* \parameter{preset}{\String}{Name of a material preset, see
|
||||
* \tblref{conductor-iors}.\!\default{\texttt{Cu} / copper}}
|
||||
* \parameter{eta}{\Spectrum}{Real part of the material's index
|
||||
* of refraction \default{based on the value of \texttt{preset}}}
|
||||
* \parameter{k}{\Spectrum}{Imaginary part of the material's index of
|
||||
* refraction, also known as absorption coefficient.
|
||||
* \default{based on the value of \texttt{preset}}}
|
||||
* \lastparameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
|
||||
* factor used to modulate the reflectance component\default{1.0}}
|
||||
* }
|
||||
*/
|
||||
class RoughConductor : public BSDF {
|
||||
public:
|
||||
RoughConductor(const Properties &props) : BSDF(props) {
|
||||
ref<FileResolver> fResolver = Thread::getThread()->getFileResolver();
|
||||
|
||||
m_specularReflectance = new ConstantSpectrumTexture(
|
||||
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
|
||||
|
||||
std::string preset = props.getString("preset", "Cu");
|
||||
Spectrum presetEta, presetK;
|
||||
presetEta.fromContinuousSpectrum(InterpolatedSpectrum(
|
||||
fResolver->resolve("data/ior/" + preset + ".eta.spd")));
|
||||
presetK.fromContinuousSpectrum(InterpolatedSpectrum(
|
||||
fResolver->resolve("data/ior/" + preset + ".k.spd")));
|
||||
|
||||
m_eta = props.getSpectrum("eta", presetEta);
|
||||
m_k = props.getSpectrum("k", presetK);
|
||||
|
||||
m_distribution = MicrofacetDistribution(
|
||||
props.getString("distribution", "beckmann")
|
||||
);
|
||||
|
||||
Float alpha = props.getFloat("alpha", 0.1f),
|
||||
alphaU = props.getFloat("alphaU", alpha),
|
||||
alphaV = props.getFloat("alphaV", alpha);
|
||||
|
||||
m_alphaU = new ConstantFloatTexture(alphaU);
|
||||
if (alphaU == alphaV)
|
||||
m_alphaV = m_alphaU;
|
||||
else
|
||||
m_alphaV = new ConstantFloatTexture(alphaV);
|
||||
|
||||
m_usesRayDifferentials = false;
|
||||
}
|
||||
|
||||
RoughConductor(Stream *stream, InstanceManager *manager)
|
||||
: BSDF(stream, manager) {
|
||||
m_distribution = MicrofacetDistribution(
|
||||
(MicrofacetDistribution::EType) stream->readUInt()
|
||||
);
|
||||
m_alphaU = static_cast<Texture *>(manager->getInstance(stream));
|
||||
m_alphaV = static_cast<Texture *>(manager->getInstance(stream));
|
||||
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
||||
m_eta = Spectrum(stream);
|
||||
m_k = Spectrum(stream);
|
||||
|
||||
m_usesRayDifferentials =
|
||||
m_alphaU->usesRayDifferentials() ||
|
||||
m_alphaV->usesRayDifferentials() ||
|
||||
m_specularReflectance->usesRayDifferentials();
|
||||
|
||||
configure();
|
||||
}
|
||||
|
||||
void configure() {
|
||||
unsigned int extraFlags = 0;
|
||||
if (m_alphaU != m_alphaV) {
|
||||
extraFlags |= EAnisotropic;
|
||||
if (m_distribution.getType() !=
|
||||
MicrofacetDistribution::EAshikhminShirley)
|
||||
Log(EError, "Different roughness values along the tangent and "
|
||||
"bitangent directions are only supported when using the "
|
||||
"anisotropic Ashikhmin-Shirley microfacet distribution "
|
||||
"(named \"as\")");
|
||||
}
|
||||
|
||||
m_components.clear();
|
||||
m_components.push_back(
|
||||
EGlossyReflection | EFrontSide | extraFlags);
|
||||
|
||||
/* Verify the input parameter and fix them if necessary */
|
||||
m_specularReflectance = ensureEnergyConservation(
|
||||
m_specularReflectance, "specularReflectance", 1.0f);
|
||||
|
||||
BSDF::configure();
|
||||
}
|
||||
|
||||
virtual ~RoughConductor() { }
|
||||
|
||||
/// Helper function: reflect \c wi with respect to a given surface normal
|
||||
inline Vector reflect(const Vector &wi, const Normal &m) const {
|
||||
return 2 * dot(wi, m) * Vector(m) - wi;
|
||||
}
|
||||
|
||||
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
|
||||
/* Stop if this component was not requested */
|
||||
if (measure != ESolidAngle ||
|
||||
Frame::cosTheta(bRec.wi) < 0 ||
|
||||
Frame::cosTheta(bRec.wo) < 0 ||
|
||||
((bRec.component != -1 && bRec.component != 0) ||
|
||||
!(bRec.typeMask & EGlossyReflection)))
|
||||
return Spectrum(0.0f);
|
||||
|
||||
/* Calculate the reflection half-vector */
|
||||
Vector H = normalize(bRec.wo+bRec.wi);
|
||||
|
||||
/* Evaluate the roughness */
|
||||
Float alphaU = m_distribution.transformRoughness(
|
||||
m_alphaU->getValue(bRec.its).average()),
|
||||
alphaV = m_distribution.transformRoughness(
|
||||
m_alphaV->getValue(bRec.its).average());
|
||||
|
||||
/* Evaluate the microsurface normal distribution */
|
||||
const Float D = m_distribution.eval(H, alphaU, alphaV);
|
||||
if (D == 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
/* Fresnel factor */
|
||||
const Spectrum F = fresnelConductor(Frame::cosTheta(bRec.wi), m_eta, m_k);
|
||||
|
||||
/* Smith's shadow-masking function */
|
||||
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, alphaU, alphaV);
|
||||
|
||||
/* Calculate the total amount of reflection */
|
||||
Float value = D * G / (4.0f * Frame::cosTheta(bRec.wi));
|
||||
|
||||
return m_specularReflectance->getValue(bRec.its) * F * value;
|
||||
}
|
||||
|
||||
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
|
||||
if (measure != ESolidAngle ||
|
||||
Frame::cosTheta(bRec.wi) < 0 ||
|
||||
Frame::cosTheta(bRec.wo) < 0 ||
|
||||
((bRec.component != -1 && bRec.component != 0) ||
|
||||
!(bRec.typeMask & EGlossyReflection)))
|
||||
return 0.0f;
|
||||
|
||||
/* Calculate the reflection half-vector */
|
||||
Vector H = normalize(bRec.wo+bRec.wi);
|
||||
|
||||
/* Evaluate the roughness */
|
||||
Float alphaU = m_distribution.transformRoughness(
|
||||
m_alphaU->getValue(bRec.its).average()),
|
||||
alphaV = m_distribution.transformRoughness(
|
||||
m_alphaV->getValue(bRec.its).average());
|
||||
|
||||
#if ENLARGE_LOBE_TRICK == 1
|
||||
Float factor = (1.2f - 0.2f * std::sqrt(
|
||||
std::abs(Frame::cosTheta(bRec.wi))));
|
||||
alphaU *= factor; alphaV *= factor;
|
||||
#endif
|
||||
|
||||
return m_distribution.pdf(H, alphaU, alphaV)
|
||||
/ (4 * absDot(bRec.wo, H));
|
||||
}
|
||||
|
||||
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
|
||||
if (Frame::cosTheta(bRec.wi) < 0 ||
|
||||
((bRec.component != -1 && bRec.component != 0) ||
|
||||
!(bRec.typeMask & EGlossyReflection)))
|
||||
return Spectrum(0.0f);
|
||||
|
||||
/* Evaluate the roughness */
|
||||
Float alphaU = m_distribution.transformRoughness(
|
||||
m_alphaU->getValue(bRec.its).average()),
|
||||
alphaV = m_distribution.transformRoughness(
|
||||
m_alphaV->getValue(bRec.its).average());
|
||||
|
||||
#if ENLARGE_LOBE_TRICK == 1
|
||||
Float factor = (1.2f - 0.2f * std::sqrt(
|
||||
std::abs(Frame::cosTheta(bRec.wi))));
|
||||
Float sampleAlphaU = alphaU * factor,
|
||||
sampleAlphaV = alphaV * factor;
|
||||
#else
|
||||
Float sampleAlphaU = alphaU,
|
||||
sampleAlphaV = alphaV;
|
||||
#endif
|
||||
|
||||
/* Sample M, the microsurface normal */
|
||||
const Normal m = m_distribution.sample(sample,
|
||||
sampleAlphaU, sampleAlphaV);
|
||||
|
||||
/* Perfect specular reflection based on the microsurface normal */
|
||||
bRec.wo = reflect(bRec.wi, m);
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EGlossyReflection;
|
||||
|
||||
/* Side check */
|
||||
if (Frame::cosTheta(bRec.wo) <= 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
const Spectrum F = fresnelConductor(Frame::cosTheta(bRec.wi),
|
||||
m_eta, m_k);
|
||||
|
||||
Float numerator = m_distribution.eval(m, alphaU, alphaV)
|
||||
* m_distribution.G(bRec.wi, bRec.wo, m, alphaU, alphaV)
|
||||
* dot(bRec.wi, m);
|
||||
|
||||
Float denominator = m_distribution.pdf(m, sampleAlphaU, sampleAlphaV)
|
||||
* Frame::cosTheta(bRec.wi);
|
||||
|
||||
return m_specularReflectance->getValue(bRec.its) * F
|
||||
* (numerator / denominator);
|
||||
}
|
||||
|
||||
Spectrum sample(BSDFQueryRecord &bRec, Float &_pdf, const Point2 &sample) const {
|
||||
if (Frame::cosTheta(bRec.wi) < 0 ||
|
||||
((bRec.component != -1 && bRec.component != 0) ||
|
||||
!(bRec.typeMask & EGlossyReflection)))
|
||||
return Spectrum(0.0f);
|
||||
|
||||
/* Evaluate the roughness */
|
||||
Float alphaU = m_distribution.transformRoughness(
|
||||
m_alphaU->getValue(bRec.its).average()),
|
||||
alphaV = m_distribution.transformRoughness(
|
||||
m_alphaV->getValue(bRec.its).average());
|
||||
|
||||
#if ENLARGE_LOBE_TRICK == 1
|
||||
Float factor = (1.2f - 0.2f * std::sqrt(
|
||||
std::abs(Frame::cosTheta(bRec.wi))));
|
||||
Float sampleAlphaU = alphaU * factor,
|
||||
sampleAlphaV = alphaV * factor;
|
||||
#else
|
||||
Float sampleAlphaU = alphaU,
|
||||
sampleAlphaV = alphaV;
|
||||
#endif
|
||||
|
||||
/* Sample M, the microsurface normal */
|
||||
const Normal m = m_distribution.sample(sample,
|
||||
sampleAlphaU, sampleAlphaV);
|
||||
|
||||
/* Perfect specular reflection based on the microsurface normal */
|
||||
bRec.wo = reflect(bRec.wi, m);
|
||||
bRec.sampledComponent = 0;
|
||||
bRec.sampledType = EGlossyReflection;
|
||||
|
||||
/* Side check */
|
||||
if (Frame::cosTheta(bRec.wo) <= 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
/* Guard against numerical imprecisions */
|
||||
_pdf = pdf(bRec, ESolidAngle);
|
||||
|
||||
if (_pdf == 0)
|
||||
return Spectrum(0.0f);
|
||||
else
|
||||
return eval(bRec, ESolidAngle);
|
||||
}
|
||||
|
||||
void addChild(const std::string &name, ConfigurableObject *child) {
|
||||
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "alpha") {
|
||||
m_alphaU = m_alphaV = static_cast<Texture *>(child);
|
||||
m_usesRayDifferentials |= m_alphaU->usesRayDifferentials();
|
||||
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "alphaU") {
|
||||
m_alphaU = static_cast<Texture *>(child);
|
||||
m_usesRayDifferentials |= m_alphaU->usesRayDifferentials();
|
||||
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "alphaV") {
|
||||
m_alphaV = static_cast<Texture *>(child);
|
||||
m_usesRayDifferentials |= m_alphaV->usesRayDifferentials();
|
||||
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
|
||||
m_specularReflectance = static_cast<Texture *>(child);
|
||||
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
|
||||
} else {
|
||||
BSDF::addChild(name, child);
|
||||
}
|
||||
}
|
||||
|
||||
void serialize(Stream *stream, InstanceManager *manager) const {
|
||||
BSDF::serialize(stream, manager);
|
||||
|
||||
stream->writeUInt((uint32_t) m_distribution.getType());
|
||||
manager->serialize(stream, m_alphaU.get());
|
||||
manager->serialize(stream, m_alphaV.get());
|
||||
manager->serialize(stream, m_specularReflectance.get());
|
||||
m_eta.serialize(stream);
|
||||
m_k.serialize(stream);
|
||||
}
|
||||
|
||||
std::string toString() const {
|
||||
std::ostringstream oss;
|
||||
oss << "RoughConductor[" << endl
|
||||
<< " name = \"" << getName() << "\"," << endl
|
||||
<< " distribution = " << m_distribution.toString() << "," << endl
|
||||
<< " alphaU = " << indent(m_alphaU->toString()) << "," << endl
|
||||
<< " alphaV = " << indent(m_alphaV->toString()) << "," << endl
|
||||
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
|
||||
<< " eta = " << m_eta.toString() << "," << endl
|
||||
<< " k = " << m_k.toString() << endl
|
||||
<< "]";
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
Shader *createShader(Renderer *renderer) const;
|
||||
|
||||
MTS_DECLARE_CLASS()
|
||||
private:
|
||||
MicrofacetDistribution m_distribution;
|
||||
ref<Texture> m_specularReflectance;
|
||||
ref<Texture> m_alphaU, m_alphaV;
|
||||
Spectrum m_eta, m_k;
|
||||
};
|
||||
|
||||
/* Fake conductor shader -- it is really hopeless to visualize
|
||||
this material in the VPL renderer, so let's try to do at least
|
||||
something that suggests the presence of a translucent boundary */
|
||||
class RoughConductorShader : public Shader {
|
||||
public:
|
||||
RoughConductorShader(Renderer *renderer) :
|
||||
Shader(renderer, EBSDFShader) {
|
||||
m_flags = ETransparent;
|
||||
}
|
||||
|
||||
void generateCode(std::ostringstream &oss,
|
||||
const std::string &evalName,
|
||||
const std::vector<std::string> &depNames) const {
|
||||
oss << "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
|
||||
<< " return vec3(0.08);" << endl
|
||||
<< "}" << endl
|
||||
<< endl
|
||||
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
|
||||
<< " return " << evalName << "(uv, wi, wo);" << endl
|
||||
<< "}" << endl;
|
||||
}
|
||||
MTS_DECLARE_CLASS()
|
||||
};
|
||||
|
||||
Shader *RoughConductor::createShader(Renderer *renderer) const {
|
||||
return new RoughConductorShader(renderer);
|
||||
}
|
||||
|
||||
MTS_IMPLEMENT_CLASS(RoughConductorShader, false, Shader)
|
||||
MTS_IMPLEMENT_CLASS_S(RoughConductor, false, BSDF)
|
||||
MTS_EXPORT_PLUGIN(RoughConductor, "Rough conductor BRDF");
|
||||
MTS_NAMESPACE_END
|
|
@ -24,9 +24,10 @@
|
|||
|
||||
MTS_NAMESPACE_BEGIN
|
||||
|
||||
/* Suggestion by Bruce Walter: sample using a slightly wider
|
||||
density function. This in practice limits the importance
|
||||
weights to values <= 4. See also \ref sample() */
|
||||
/* Suggestion by Bruce Walter: sample the model using a slightly
|
||||
wider density function. This in practice limits the importance
|
||||
weights to values <= 4.
|
||||
*/
|
||||
#define ENLARGE_LOBE_TRICK 1
|
||||
|
||||
/*! \plugin{roughdielectric}{Rough dielectric material}
|
||||
|
@ -140,8 +141,7 @@ MTS_NAMESPACE_BEGIN
|
|||
*/
|
||||
class RoughDielectric : public BSDF {
|
||||
public:
|
||||
RoughDielectric(const Properties &props)
|
||||
: BSDF(props) {
|
||||
RoughDielectric(const Properties &props) : BSDF(props) {
|
||||
m_specularReflectance = new ConstantSpectrumTexture(
|
||||
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
|
||||
m_specularTransmittance = new ConstantSpectrumTexture(
|
||||
|
@ -186,22 +186,17 @@ public:
|
|||
m_intIOR = stream->readFloat();
|
||||
m_extIOR = stream->readFloat();
|
||||
|
||||
m_components.push_back(
|
||||
EGlossyReflection | EFrontSide | EBackSide | ECanUseSampler);
|
||||
m_components.push_back(
|
||||
EGlossyTransmission | EFrontSide | EBackSide | ECanUseSampler);
|
||||
|
||||
m_usesRayDifferentials =
|
||||
m_alphaU->usesRayDifferentials() ||
|
||||
m_alphaV->usesRayDifferentials() ||
|
||||
m_specularReflectance->usesRayDifferentials() ||
|
||||
m_specularTransmittance->usesRayDifferentials();
|
||||
|
||||
configure();
|
||||
}
|
||||
|
||||
void configure() {
|
||||
unsigned int extraFlags = 0;
|
||||
m_components.clear();
|
||||
if (m_alphaU != m_alphaV) {
|
||||
extraFlags |= EAnisotropic;
|
||||
if (m_distribution.getType() !=
|
||||
|
@ -212,6 +207,7 @@ public:
|
|||
"(named \"as\")");
|
||||
}
|
||||
|
||||
m_components.clear();
|
||||
m_components.push_back(
|
||||
EGlossyReflection | EFrontSide | EBackSide | ECanUseSampler | extraFlags);
|
||||
m_components.push_back(
|
||||
|
@ -298,7 +294,7 @@ public:
|
|||
alphaV = m_distribution.transformRoughness(
|
||||
m_alphaV->getValue(bRec.its).average());
|
||||
|
||||
/* Microsurface normal distribution */
|
||||
/* Evaluate the microsurface normal distribution */
|
||||
const Float D = m_distribution.eval(H, alphaU, alphaV);
|
||||
if (D == 0)
|
||||
return Spectrum(0.0f);
|
||||
|
@ -388,16 +384,13 @@ public:
|
|||
alphaV = m_distribution.transformRoughness(
|
||||
m_alphaV->getValue(bRec.its).average());
|
||||
|
||||
#if defined(ENLARGE_LOBE_TRICK)
|
||||
/* Suggestion by Bruce Walter: sample using a slightly wider
|
||||
density function. This in practice limits the importance
|
||||
weights to values <= 4. See also \ref sample() */
|
||||
#if ENLARGE_LOBE_TRICK == 1
|
||||
Float factor = (1.2f - 0.2f * std::sqrt(
|
||||
std::abs(Frame::cosTheta(bRec.wi))));
|
||||
alphaU *= factor; alphaV *= factor;
|
||||
#endif
|
||||
|
||||
/* Microsurface normal sampling density */
|
||||
/* Evaluate the microsurface normal sampling density */
|
||||
Float prob = m_distribution.pdf(H, alphaU, alphaV);
|
||||
|
||||
if (sampleTransmission && sampleReflection) {
|
||||
|
@ -476,10 +469,7 @@ public:
|
|||
alphaV = m_distribution.transformRoughness(
|
||||
m_alphaV->getValue(bRec.its).average());
|
||||
|
||||
/* Suggestion by Bruce Walter: sample using a slightly wider
|
||||
density function. This in practice limits the importance
|
||||
weights to values <= 4. See also \ref sample() */
|
||||
#if defined(ENLARGE_LOBE_TRICK)
|
||||
#if ENLARGE_LOBE_TRICK == 1
|
||||
Float factor = (1.2f - 0.2f * std::sqrt(
|
||||
std::abs(Frame::cosTheta(bRec.wi))));
|
||||
Float sampleAlphaU = alphaU * factor,
|
||||
|
@ -607,10 +597,7 @@ public:
|
|||
alphaV = m_distribution.transformRoughness(
|
||||
m_alphaV->getValue(bRec.its).average());
|
||||
|
||||
/* Suggestion by Bruce Walter: sample using a slightly wider
|
||||
density function. This in practice limits the importance
|
||||
weights to values <= 4. See also \ref sample() */
|
||||
#if defined(ENLARGE_LOBE_TRICK)
|
||||
#if ENLARGE_LOBE_TRICK == 1
|
||||
Float factor = (1.2f - 0.2f * std::sqrt(
|
||||
std::abs(Frame::cosTheta(bRec.wi))));
|
||||
Float sampleAlphaU = alphaU * factor,
|
||||
|
@ -702,6 +689,7 @@ public:
|
|||
std::string toString() const {
|
||||
std::ostringstream oss;
|
||||
oss << "RoughDielectric[" << endl
|
||||
<< " name = \"" << getName() << "\"," << endl
|
||||
<< " distribution = " << m_distribution.toString() << "," << endl
|
||||
<< " alphaU = " << indent(m_alphaU->toString()) << "," << endl
|
||||
<< " alphaV = " << indent(m_alphaV->toString()) << "," << endl
|
||||
|
|
|
@ -1,204 +0,0 @@
|
|||
/*
|
||||
This file is part of Mitsuba, a physically based rendering system.
|
||||
|
||||
Copyright (c) 2007-2011 by Wenzel Jakob and others.
|
||||
|
||||
Mitsuba is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License Version 3
|
||||
as published by the Free Software Foundation.
|
||||
|
||||
Mitsuba is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <mitsuba/render/bsdf.h>
|
||||
#include <mitsuba/render/consttexture.h>
|
||||
|
||||
MTS_NAMESPACE_BEGIN
|
||||
|
||||
/**
|
||||
* Rough metal BRDF model based on
|
||||
* "Microfacet Models for Refraction through Rough Surfaces"
|
||||
* by Bruce Walter, Stephen R. Marschner, Hongsong Li
|
||||
* and Kenneth E. Torrance.
|
||||
*
|
||||
* This is similar to the 'microfacet' implementation, but
|
||||
* the Fresnel term is now that of a conductor.
|
||||
*/
|
||||
class RoughMetal : public BSDF {
|
||||
public:
|
||||
RoughMetal(const Properties &props)
|
||||
: BSDF(props) {
|
||||
m_specularReflectance = new ConstantSpectrumTexture(
|
||||
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
|
||||
m_alphaB = props.getFloat("alphaB", .1f);
|
||||
m_ior = props.getSpectrum("ior", Spectrum(0.370f)); /* Gold */
|
||||
m_k = props.getSpectrum("k", Spectrum(2.820f));
|
||||
|
||||
m_componentCount = 1;
|
||||
m_type = new unsigned int[m_componentCount];
|
||||
m_combinedType = m_type[0] = EGlossyReflection | EFrontSide;
|
||||
m_usesRayDifferentials = false;
|
||||
}
|
||||
|
||||
RoughMetal(Stream *stream, InstanceManager *manager)
|
||||
: BSDF(stream, manager) {
|
||||
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
|
||||
m_alphaB = stream->readFloat();
|
||||
m_ior = Spectrum(stream);
|
||||
m_k = Spectrum(stream);
|
||||
|
||||
m_componentCount = 1;
|
||||
m_type = new unsigned int[m_componentCount];
|
||||
m_combinedType = m_type[0] = EGlossyReflection | EFrontSide;
|
||||
m_usesRayDifferentials =
|
||||
m_specularReflectance->usesRayDifferentials();
|
||||
}
|
||||
|
||||
virtual ~RoughMetal() {
|
||||
delete[] m_type;
|
||||
}
|
||||
|
||||
/**
|
||||
* Beckmann distribution function for gaussian random surfaces
|
||||
* \param thetaM Tangent of the angle between M and N.
|
||||
*/
|
||||
Float beckmannD(const Vector &m) const {
|
||||
Float ex = Frame::tanTheta(m) / m_alphaB;
|
||||
return std::exp(-(ex*ex)) / (M_PI * m_alphaB*m_alphaB *
|
||||
std::pow(Frame::cosTheta(m), (Float) 4.0f));
|
||||
}
|
||||
|
||||
/**
|
||||
* Sample microsurface normals according to
|
||||
* the Beckmann distribution
|
||||
*/
|
||||
Normal sampleBeckmannD(Point2 sample) const {
|
||||
Float thetaM = std::atan(std::sqrt(-m_alphaB*m_alphaB
|
||||
* std::log(1.0f - sample.x)));
|
||||
Float phiM = (2.0f * M_PI) * sample.y;
|
||||
return Normal(sphericalDirection(thetaM, phiM));
|
||||
}
|
||||
|
||||
/**
|
||||
* Smith's shadow-masking function G1 for the Beckmann distribution
|
||||
* \param m The microsurface normal
|
||||
* \param v An arbitrary direction
|
||||
*/
|
||||
Float smithBeckmannG1(const Vector &v, const Vector &m) const {
|
||||
if (dot(v, m) * Frame::cosTheta(v) <= 0)
|
||||
return 0.0;
|
||||
|
||||
const Float tanTheta = Frame::tanTheta(v);
|
||||
|
||||
if (tanTheta == 0.0f)
|
||||
return 1.0f;
|
||||
|
||||
const Float a = 1.0f / (m_alphaB * tanTheta);
|
||||
const Float aSqr = a * a;
|
||||
|
||||
if (a >= 1.6f)
|
||||
return 1.0f;
|
||||
|
||||
return (3.535f * a + 2.181f * aSqr) /
|
||||
(1.0f + 2.276f * a + 2.577f * aSqr);
|
||||
}
|
||||
|
||||
inline Vector reflect(const Vector &wi, const Normal &n) const {
|
||||
return Vector(n*(2.0f*dot(n, wi))) - wi;
|
||||
}
|
||||
|
||||
Spectrum f(const BSDFQueryRecord &bRec) const {
|
||||
if (!(bRec.typeMask & m_combinedType)
|
||||
|| bRec.wi.z <= 0 || bRec.wo.z <= 0)
|
||||
return Spectrum(0.0f);\
|
||||
|
||||
Vector Hr = normalize(bRec.wi+bRec.wo);
|
||||
|
||||
/* Fresnel factor */
|
||||
Spectrum F = fresnelConductor(dot(bRec.wi, Hr), m_ior, m_k);
|
||||
|
||||
/* Microsurface normal distribution */
|
||||
Float D = beckmannD(Hr);
|
||||
/* Smith's shadow-masking function for the Beckmann distribution */
|
||||
Float G = smithBeckmannG1(bRec.wi, Hr) * smithBeckmannG1(bRec.wo, Hr);
|
||||
/* Calculate the total amount of specular reflection */
|
||||
Spectrum specRef = F * (D * G /
|
||||
(4.0f * Frame::cosTheta(bRec.wi) * Frame::cosTheta(bRec.wo)));
|
||||
|
||||
return m_specularReflectance->getValue(bRec.its) * specRef;
|
||||
}
|
||||
|
||||
Float pdf(const BSDFQueryRecord &bRec) const {
|
||||
if (bRec.wi.z <= 0 || bRec.wo.z <= 0)
|
||||
return 0.0f;
|
||||
|
||||
Vector Hr = normalize(bRec.wi + bRec.wo);
|
||||
/* Jacobian of the half-direction transform. */
|
||||
Float dwhr_dwo = 1.0f / (4.0f * absDot(bRec.wo, Hr));
|
||||
return beckmannD(Hr) * Frame::cosTheta(Hr) * dwhr_dwo;
|
||||
}
|
||||
|
||||
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
|
||||
if (bRec.wi.z <= 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
/* Sample M, the microsurface normal */
|
||||
Normal m = sampleBeckmannD(sample);
|
||||
/* Perfect specular reflection along the microsurface normal */
|
||||
bRec.wo = reflect(bRec.wi, m);
|
||||
|
||||
bRec.sampledComponent = 1;
|
||||
bRec.sampledType = EGlossyReflection;
|
||||
|
||||
if (bRec.wo.z <= 0)
|
||||
return Spectrum(0.0f);
|
||||
|
||||
return f(bRec) / pdf(bRec);
|
||||
}
|
||||
|
||||
void serialize(Stream *stream, InstanceManager *manager) const {
|
||||
BSDF::serialize(stream, manager);
|
||||
|
||||
manager->serialize(stream, m_specularReflectance.get());
|
||||
stream->writeFloat(m_alphaB);
|
||||
m_ior.serialize(stream);
|
||||
m_k.serialize(stream);
|
||||
}
|
||||
|
||||
void addChild(const std::string &name, ConfigurableObject *child) {
|
||||
if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "specularReflectance") {
|
||||
m_specularReflectance = static_cast<Texture *>(child);
|
||||
m_usesRayDifferentials |= m_specularReflectance->usesRayDifferentials();
|
||||
} else {
|
||||
BSDF::addChild(name, child);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
std::string toString() const {
|
||||
std::ostringstream oss;
|
||||
oss << "RoughMetal[" << endl
|
||||
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << std::endl
|
||||
<< " ior = " << m_ior.toString() << "," << std::endl
|
||||
<< " k = " << m_k.toString() << "," << std::endl
|
||||
<< " alphaB = " << m_alphaB << std::endl
|
||||
<< "]";
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
MTS_DECLARE_CLASS()
|
||||
private:
|
||||
ref<Texture> m_specularReflectance;
|
||||
Float m_alphaB;
|
||||
Spectrum m_ior, m_k;
|
||||
};
|
||||
|
||||
MTS_IMPLEMENT_CLASS_S(RoughMetal, false, BSDF)
|
||||
MTS_EXPORT_PLUGIN(RoughMetal, "Rough metal BRDF");
|
||||
MTS_NAMESPACE_END
|
|
@ -137,16 +137,16 @@ public:
|
|||
|
||||
if (f.isZero() || pdfVal == 0 || pdfVal2 == 0) {
|
||||
if (!sampled.isZero())
|
||||
Log(EWarn, "Inconsistency (1): f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s, measure=%i",
|
||||
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str(), measure);
|
||||
Log(EWarn, "Inconsistency (1): f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s",
|
||||
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str());
|
||||
#if defined(MTS_DEBUG_FP)
|
||||
disableFPExceptions();
|
||||
#endif
|
||||
return boost::make_tuple(bRec.wo, 0.0f, ESolidAngle);
|
||||
} else if (sampled.isZero()) {
|
||||
if ((!f.isZero() && pdfVal != 0) || (!f2.isZero() && pdfVal2 != 0))
|
||||
Log(EWarn, "Inconsistency (2): f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s, measure=%i",
|
||||
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str(), measure);
|
||||
Log(EWarn, "Inconsistency (2): f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s",
|
||||
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str());
|
||||
#if defined(MTS_DEBUG_FP)
|
||||
disableFPExceptions();
|
||||
#endif
|
||||
|
@ -155,8 +155,8 @@ public:
|
|||
|
||||
Spectrum sampled2 = f/pdfVal, evaluated = f2/pdfVal2;
|
||||
if (!sampled.isValid() || !sampled2.isValid() || !evaluated.isValid()) {
|
||||
Log(EWarn, "Ooops: f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s, measure=%i",
|
||||
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str(), measure);
|
||||
Log(EWarn, "Ooops: f=%s, f2=%s, pdf=%f, pdf2=%f, sampled f/pdf=%s, bRec=%s",
|
||||
f.toString().c_str(), f2.toString().c_str(), pdfVal, pdfVal2, sampled.toString().c_str(), bRec.toString().c_str());
|
||||
return boost::make_tuple(bRec.wo, 0.0f, ESolidAngle);
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue